Improved Resolution of 4-Chloromandelic Acid and the Effect of Chlorine Interactions Using (*R*)-(+)-Benzyl-1-Phenylethylamine as a Resolving Agent

Yangfeng Peng ^{1,*}, Cai Feng ¹, Sohrab Rohani ², and Quan (Sophia) He ³

- ¹ School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; yfpeng@ecust.edu.cn
- ² Department of Chemical and Biochemical Engineering, Western University, London, ON N6A 5B9, Canada; srohani@uwo.ca
- ³ Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada; quan.he@dal.ca
- * Correspondence: yfpeng@ecust.edu.cn; Tel: +86-21-64252345

Entry	11 4-СІМА :11 ВРА	T/°C	V/ml	d.e./%	Yield/%	E/%
1	1: 1	25	10	95.4	78.1	74.5
2	1: 1	20	6	95.6	84.8	81.1
3	1: 1	15	8	94.8	88.9	84.3
4	1: 0.85	25	6	95.0	81.7	77.6
5	1: 0.85	20	8	96.4	80.3	77.4
6	1:0.85	15	10	97.9	79.9	78.2
7	1:0.70	25	8	96.8	70.8	68.5
8	1:0.70	20	10	95.4	71.9	68.6
9	1:0.70	15	6	95.0	79.9	75.9
X_{1j}	71.00	78.20	79.47		X=76.23	
X_{2j}	77.73	76.73	75.70			
X_{3j}	79.97	73.77	73.53			
SS_j	43.59	10.18	18.06		SST=71.83	

Table S1. The Orthogonal Experiment Result for the Resolution of (R, S)-4-ClMA by (R)-(+)-BPA.

4-CIMA=0.005mol in all cases.

Table S2. Crystal Structure Data of (R)-(-)-4-ClMA·(R)-(+)-BPA and (S)-(+)-4-ClMA·(R)-(+)-BPA.

	(R)-(-)-4-C1MA·(R)-(+)-BPA	(S)-(+)-4-ClMA·(R)-(+)-BPA	
Empirical formula	C23H24ClNO3	C23H24ClNO3	
Formula weight(g/mol)	397.88	397.88	
Temperature(K)	110	293(2)	
Wavelength(Å)	1.54178	0.71073	
Crystal system	monoclinic	Orthorhombic	
Space group	C2	P212121	
a(Å)	17.783(5)	9.179(7)	
b(Å)	9.6993(19)	14.046(11)	
c (Å)	12.796(3)	16.222(12)	
$\alpha(^{\circ})$	90	90	
β(°)	107.868(10)	90	
$\gamma(^{\circ})$	90	90	
V(Å ³)	2100.6(8)	2092(3)	
$D_{calc}(g/cm^3)$	1.258	1.264	

(b)

Figure S1. Atomic-numbering Schemes of (*R*)-(-)-4-ClMA·(*R*)-(+)-BPA (a) and (*S*)-(+)-4-ClMA·(*R*)-(+)-BPA (b)

Figure S2: The H-bonding network in the less soluble salt (a and b) and more soluble salt (c and d). The red parts represent carboxylate anions of 4-ClMA and the blue parts represent ammonium cations of BPA

Figure S3. The CH/ π interactions within hydrogen column of less soluble salt.

Figure S4: The CH/ π interactions between adjacent hydrophobic layers of less soluble salt.Viewed from b-axis

Figure S5. The Cl...Cl halogen bond between adjacent hydrogen bonding net work columns and the view of adjacent four columns from b-axis in the less soluble salt (a)viewed from a-axis; (b)viewed from b-axis

(a)

Figure S6 The Cl/ π halogen bonds between columns and the view of adjacent four columns from aaxis in the more soluble salt(a)viewed from b-axis; (b) viewed from a-axis

(a)

Figure S7. Packing mode of the less soluble salt in hydrophobic region;(a) The distance of benzene rings; (b) the packing mode of hydrophobic layers (viewed from b-axis)

Figure S8. packing mode of the more soluble salt in hydrophobic region; a, The distance between benzene rings; b, the packing mode of hydrophobic layers (viewed from b-axis)