Improved Resolution of 4-Chloromandelic Acid and the Effect of Chlorine Interactions Using (R)-(+)-Benzyl-1-Phenylethylamine as a Resolving Agent

Yangfeng Peng ${ }^{1, *}$, Cai Feng ${ }^{1}$, Sohrab Rohani ${ }^{2}$, and Quan (Sophia) He ${ }^{3}$

1 School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; yfpeng@ecust.edu.cn
2 Department of Chemical and Biochemical Engineering, Western University, London, ON N6A 5B9, Canada; srohani@uwo.ca
${ }^{3}$ Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada; quan.he@dal.ca

* Correspondence: yfpeng@ecust.edu.cn; Tel: +86-21-64252345

Table S1. The Orthogonal Experiment Result for the Resolution of $(R, S)-4$-CIMA by $(R)-(+)$-BPA.

Entry	$n_{4-\text { CIMA: }}$ BPA	$T /{ }^{\circ} \mathrm{C}$	V/ml	d.e. $/ \%$	Yield/ $\%$	$E / \%$
1	$1: 1$	25	10	95.4	78.1	74.5
2	$1: 1$	20	6	95.6	84.8	81.1
3	$1: 1$	15	8	94.8	88.9	84.3
4	$1: 0.85$	25	6	95.0	81.7	77.6
5	$1: 0.85$	20	8	96.4	80.3	77.4
6	$1: 0.85$	15	10	97.9	79.9	78.2
7	$1: 0.70$	25	8	96.8	70.8	68.5
8	$1: 0.70$	20	10	95.4	71.9	68.6
9	$1: 0.70$	15	6	95.0	79.9	75.9
$X_{1 j}$	71.00	78.20	79.47		$X=76.23$	
$X_{2 j}$	77.73	76.73	75.70			
$X_{3 j}$	79.97	73.77	73.53			
$S S_{j}$	43.59	10.18	18.06		$S S_{T}=71.83$	

4 - $\mathrm{ClMA}=0.005 \mathrm{~mol}$ in all cases.

Table S2. Crystal Structure Data of $(R)-(-)-4-\mathrm{ClMA} \cdot(R)-(+)-\mathrm{BPA}$ and $(S)-(+)-4-\mathrm{ClMA} \cdot(R)-(+)-\mathrm{BPA}$.

	$(R)-(-)-4-\mathrm{ClMA} \cdot(\mathrm{R})-(+)-\mathrm{BPA}$	$(\mathrm{S})-(+)-4-\mathrm{ClMA}^{2}(\mathbf{R})-(+)-\mathrm{BPA}$
Empirical formula	$\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{ClNO}_{3}$	$\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{ClNO}_{3}$
Formula weight $(\mathrm{g} / \mathrm{mol})$	397.88	397.88
Temperature(K)	110	$293(2)$
Wavelength (\AA)	1.54178	0.71073
Crystal system	monoclinic	Orthorhombic
Space group	C 2	P 212121
$\mathrm{a}(\AA)$	$17.783(5)$	$9.179(7)$
$\mathrm{b}(\AA)$	$9.6993(19)$	$14.046(11)$
$\mathrm{c}(\AA)$	$12.796(3)$	$16.222(12)$
$\alpha\left({ }^{\AA}\right)$	90	90
$\beta\left({ }^{\circ}\right)$	$107.868(10)$	90
$\gamma\left({ }^{\circ}\right)$	90	90
$\mathrm{~V}\left(\AA^{3}\right)$	$2100.6(8)$	$2092(3)$
$D_{\text {call }}\left(\mathrm{g} / \mathrm{gm}^{3}\right)$	1.258	1.264

Z	4	4
Crystal size (mm)	$0.564 \times 0.126 \times 0.119$	$0.600 \times 0.400 \times 0.180$
Reflection collected	34940	10112
Goodness-of-fit on F^{2}	1.037	0.829
Final R indices $(I>2 \sigma(I))$	$R_{1}=0.0359, w R_{2}=0.0879$	$R_{1}=0.0379, w R_{2}=0.0693$
R indices(all data)	$R_{1}=0.0427, w R_{2}=0.0915$	$R_{1}=0.0718, w R_{2}=0.0742$

(a)

(b)

Figure S1. Atomic-numbering Schemes of $(R)-(-)-4-\mathrm{ClMA} \cdot(R)-(+)-\mathrm{BPA}(\mathrm{a})$ and $(S)-(+)-4-\mathrm{ClMA} \cdot(R)-(+)-$ BPA (b)

(a)

(b)

(c)

(d)

Figure S2: The H-bonding network in the less soluble salt (a and b) and more soluble salt (c and d).The red parts represent carboxylate anions of 4-ClMA and the blue parts represent ammonium cations of BPA

Figure S3. The CH / π interactions within hydrogen column of less soluble salt.

Figure S4: The CH / π interactions between adjacent hydrophobic layers of less soluble salt.Viewed from b-axis

Figure S5. The $\mathrm{Cl} . . \mathrm{Cl}$ halogen bond between adjacent hydrogen bonding net work columns and the view of adjacent four columns from b-axis in the less soluble salt (a)viewed from a-axis; (b)viewed from b-axis

Figure S6 The Cl / π halogen bonds between columns and the view of adjacent four columns from aaxis in the more soluble salt(a)viewed from b-axis; (b) viewed from a-axis

Figure S7. Packing mode of the less soluble salt in hydrophobic region;(a) The distance of benzene rings; (b) the packing mode of hydrophobic layers (viewed from b-axis)

(a)

(b)

Figure S8. packing mode of the more soluble salt in hydrophobic region; a, The distance between benzene rings; b, the packing mode of hydrophobic layers (viewed from b-axis)

