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Abstract: Highly acidic peptides with no disulfide bridges are widely present in the scorpion venoms;
however, none of them has been functionally characterized so far. Here, we cloned the full-length
cDNA of a short-chain highly acidic peptide (referred to as HAP-1) from a cDNA library made from
the venom glands of the Chinese scorpion Mesobuthus martensii Karsch. HAP-1 contains 19 amino
acid residues with a predicted IP value of 4.25. Acidic amino residues account for 33.3% of the total
residues in the molecule of HAP-1. HAP-1 shows 76–98% identities to some scorpion venom peptides
that have not yet been functionally characterized. Secondary structure prediction showed that HAP-1
contains a beta-sheet region (residues 9–17), and two coiled coil regions (residues 1–8 and 18–19)
located at the N-terminal and C-terminal regions of the peptide, respectively. Antimicrobial assay
showed that HAP-1 does not have any effect on the growth of the bacterium Staphylococcus aureus
AB94004. However, it potently inhibits the antimicrobial activity of a 13-mer peptide from M. martensii
Karsch against Staphylococcus aureus AB94004. This finding is the first characterization of the function
of such highly acidic peptides from scorpions.

Keywords: venom; highly acidic peptide; scorpion; Mesobuthus martensii Karsch; antimicrobial
peptide

1. Introduction

Scorpion venom is a really rich source of bioactive peptides. Over the past decades, approximately
700 venom peptides have been identified from 56 species of scorpions [1]. These peptides include the
toxins with three–four disulfide bridges, which target Na+, K+, Cl−, and Ca2+ channels, and the venom
peptides without disulfide bridges, which possess antimicrobial, anti-virus, bradykinin-potentiating,
or immune-regulatory activities [2–17]. The scorpion toxins characterized so far contain four different
core topologies [18]. The most common core topology is cystine-stabilized α/β (CS α/β) motif in
which an α-helix and a β-sheet are covalently connected by two or multiple disulfide bonds [19–21].
The second topology is cystine-stabilized α-helix-loop helix (CS α/α), where two short α-helices are
connected by a β-turn [22]. The third fold found in scorpion-venom peptides is the inhibitor cystine
knot (ICK) motif, and the fourth is disulfide-directed hairpin (DDH) motif, which is regarded as the
ancestral fold of ICK [18,23]. The scorpion venom peptides without disulfide bridges display diverse
primary structures, which are α-helical and cationic with 13–47 amino acid residues or are highly acidic
with 19–50 residues [5,9,20]. Scorpion peptides have great potential applications in the pharmaceutical
and agrochemical fields [6,9,24–28].
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Acidic peptides are a new class of scorpion venom peptides, which have been rarely identified
and poorly characterized so far. Over the past 10 years, 19 such peptides have been identified from
scorpions, including BmKa1 and BmKa2 from M. martensii Karsch [25], SJE098.1 and SJE098.2 from
Scorpiops jendeki [29], Q5G8B2, Q5G8A9, Q5G8B1, and Q5G8B0 from Tityus costatus [30], MeVP-8,
AMX81473.1, ABR21055.1, ABR20121.1, and Mevtoxinlip-4 from Mesobuthus eupeus, ACJ23161.1 and
BoiTx776 from Buthus occitanus Israelis [31], ADY62660.1 and HjVP from Hottentotta judaicus [32],
and ALX72366.1 and ALY87545.1 from Odontobuthus doriae. The common properties of these peptides
are: (i) Highly acidic with a calculated isoelectric point (IP) lower than 5.0; (ii) highly hydrophilic;
(iii) composed of random coil regions and with some α-helical domains; and (iv) all these peptides
have not yet been functionally characterized.

Acidic peptides are widely present in the venom glands of all detected species of scorpions.
For example, the transcripts of acidic peptides are the seventh most abundant accounting for 2.60% of
the total venom peptide transcriptome of scorpion Androctonus bicolor [17]. It is therefore interesting
to determine: what functions or activities do these peptides possess? In this study, we identified
an acidic peptide (referred to as HAP-1) from scorpion M. martensii Karsch. We, for the first time,
found that HAP-1 has significant inhibitory effect on the activity of a 13-mer antimicrobial peptide
from the scorpion. The finding of this study may help to explain why the pore-forming activities
of antimicrobial peptides in the storage cells of scorpion venom never damage the storage cells,
and deepen our understandings of the pharmacological activities of scorpion venom peptides.

2. Results

2.1. Screening of the cDNA Library Made from the Venom Glands of M. martensii Karsch

From 1.0 µg of cDNA, we obtained a total of 5.56 × 105 clones. This suggests that our cDNA
library covers approximately 99.99% of the total transcripts generated in scorpion venom glands.
We randomly picked 20 bacterial colonies from the library for quality evaluation. Plasmid DNAs
extracted from these bacteria were digested with Not I and Sal I. Electrophoresis analysis for the
digested products showed that among the 20 clones, 19 contain inserts of 200 bp to 500 bp, and one is
the empty vector. It is well known that the precursors of scorpion venom peptides are 50–96 amino
acid residues long. It can thus be inferred by the full-length cDNAs encoding these peptides should
be 250–600 bp long. Therefore, the cDNA inserts of our cDNA library represent nearly intact mRNA
pools coding for scorpion venom peptides.

In situ screening of the cDNA library using DNA hybridization with the probe mixture showed
that the majority of the bacterial colonies are positive clones; this suggests that there are very few
new types of scorpion venom peptides that have not yet been identified from M. martensii Karsch.
Screening of 3000 clones yielded 52 clones with a negative hybridization signal. DNA sequencing
of these clones showed that we obtained a novel cDNA clone encoding a short-chain highly acidic
peptide (referred to as HAP-1) with no disulfide-bridges, which represents a new class of scorpion
venom peptides (Figures 1 and 2).

2.2. Precursor of HAP-1

The cDNA shown in Figure 1A is 402 bp long. It contains a 5′-untranslated region of 12 bp and
a 3′-untranslated region of 135 bp. A potential polyadenylation signal (AATAAA) is located at the
positions 381-386 of the nucleotide sequence.
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Figure 1. Precursor of HAP-1. (A) The cDNA and protein sequences of HAP-1. The deduced amino acid 
residues are given below the corresponding nucleotide codons. The amino acid residues sequence is 
numbered starting from the N-terminal residue of the peptide; the first residue of the mature peptide is 
numbered as +1, whereas the signal peptide is numbered as minus. The signal peptide is underlined; a 
putative polyadenylation signal (AATAAA) is marked by italic; the posttranslational processing signal is 
marked with a box. (B) Comparison of the precursor structure of HAP-1 with those of some antimicrobial 
peptides from the scorpion M. martensii Karsch. 

2.3. Bioinformatic Characterization of HAP-1 

The predicted molecular weight of HAP-1 is 3250 Da. It is a highly acidic peptide, of which predicted 
IP is 4.25. Protein sequence homology search indicated that the precursor of HAP-1 shows 98%, 95%, 95%, 
95%, 89%, 87%, 85%, 83%, 83%, 81%, and 76% identities to those of AMX81473.1, MeVP-8, ABR21055.1, 
ABR20121.1, Mevtoxinlip-4, ALX72366.1, ALY87545.1, HjVP, ADY62660.1, ACJ23161.1, and BoiTx776 from 
scorpions, respectively (Figure 2A); the mature peptide of HAP-1 displays 100%, 100%, 95%, 100%, 95%, 
79%, 84%, 94%, 79%, 74%, and 75% identities to those of the eleven peptides, respectively (Figure 2B). Except 
for the eleven peptides, HAP-1 shows no significant homology with any other known venom peptides from 
scorpions and other animals. This suggests that HAP-1, together with AMX81473.1, MeVP-8, ABR21055.1, 
ABR20121.1, Mevtoxinlip-4, ALX72366.1, ALY87545.1, HjVP, ADY62660.1, ACJ23161.1, and BoiTx776 
represents a novel class of scorpion venom peptides. 

Secondary structure prediction showed that HAP-1 is composed of two coiled coil regions (residues 1–
8 and 18–19), which are separated by a β-sheet strand (residues 9–17) (Figure 2C). In comparison, the circular 
dichroism (CD) spectroscopy analysis indicated that the secondary structure of HAP-1 consists of 27% helix, 
28% beta-sheet, 19% beta-turn, and 26% random coil, as determined in 50 mM phosphate buffer saline 

Figure 1. Precursor of HAP-1. (A) The cDNA and protein sequences of HAP-1. The deduced amino
acid residues are given below the corresponding nucleotide codons. The amino acid residues sequence
is numbered starting from the N-terminal residue of the peptide; the first residue of the mature peptide
is numbered as +1, whereas the signal peptide is numbered as minus. The signal peptide is underlined;
a putative polyadenylation signal (AATAAA) is marked by italic; the posttranslational processing
signal is marked with a box. (B) Comparison of the precursor structure of HAP-1 with those of some
antimicrobial peptides from the scorpion M. martensii Karsch.

The precursor of HAP-1 (AGV98852.1) deduced from the cDNA consists of 84 amino acid residues.
The N-terminal region has a hydrophobic signal peptide of 23 residues for endoplasmic-reticulum
membrane translocation, which would be cleaved off at the residue Gln. A typical pro-peptide
cleavage signal Gly-Arg-Lys was found at the sites of the residues 43–45, and the processing reactions
would follow a common rule that starts with cleavage of the pro-peptide at the site of paired basic
residues Arg-Lys. This reaction generates an intermediate peptide ended with Gly-COOH, which
would be modified by amidating enzyme. Therefore, the processing reactions lead to formation of a
mature peptide of 19 amino acid residues with an amidated C-terminal end. As shown in Figure 1B,
the structural organization and processing signal of the HAP-1 precursor are similar to those of the
precursors of some antimicrobial peptides from the scorpion M. martensii Karsch, such as BmKn1 and
BmKb1 [26]. This suggests that the genes encoding HAP-1 and the antimicrobial peptides may have
originated from a common ancestor.
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Figure 2. Bioinformatic characterization of HAP-1. (A) Multiple sequence alignment of the precursors of 
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To determine the function of HAP-1, we tested whether it has antimicrobial activity or not. 
Antimicrobial assay was performed against some representative species of Gram-positive bacteria, 
including Staphylococcus aureus AB94004, Bacillus magaterium AB90008, Bacillus thuringiensis AB93100, and 
Gram-negative bacteria, including Escherichia coli DH5α, Escherichia coli JM109, Pseudomonas putida, 
Pseudomonas fluorescens, Klebsiella oxytoca AB2010143, Enterobacter cloacae AB2010162, Salmonella enterica 
AB2010185, as well as fungi Candida tropicalis AY91009, as described previously [5], using the synthetic 
HAP-1 peptide at a maximal concentration of 80 μM. Unfortunately, the result showed that HAP-1 has no 
significant antimicrobial activity. 

Figure 2. Bioinformatic characterization of HAP-1. (A) Multiple sequence alignment of the precursors
of HAP-1 and its homologues. The signal peptides, matured peptides, and propeptides are highlighted
in green, blue, and red colors, respectively. (B) Multiple sequence alignment of the mature peptides of
HAP-1 and its homologues. (C) Secondary structure prediction of HAP-1. C and E stand for coiled coil
and β-sheet structures, respectively.

2.3. Bioinformatic Characterization of HAP-1

The predicted molecular weight of HAP-1 is 3250 Da. It is a highly acidic peptide, of which
predicted IP is 4.25. Protein sequence homology search indicated that the precursor of HAP-1 shows
98%, 95%, 95%, 95%, 89%, 87%, 85%, 83%, 83%, 81%, and 76% identities to those of AMX81473.1,
MeVP-8, ABR21055.1, ABR20121.1, Mevtoxinlip-4, ALX72366.1, ALY87545.1, HjVP, ADY62660.1,
ACJ23161.1, and BoiTx776 from scorpions, respectively (Figure 2A); the mature peptide of HAP-1
displays 100%, 100%, 95%, 100%, 95%, 79%, 84%, 94%, 79%, 74%, and 75% identities to those of the
eleven peptides, respectively (Figure 2B). Except for the eleven peptides, HAP-1 shows no significant
homology with any other known venom peptides from scorpions and other animals. This suggests that
HAP-1, together with AMX81473.1, MeVP-8, ABR21055.1, ABR20121.1, Mevtoxinlip-4, ALX72366.1,
ALY87545.1, HjVP, ADY62660.1, ACJ23161.1, and BoiTx776 represents a novel class of scorpion
venom peptides.

Secondary structure prediction showed that HAP-1 is composed of two coiled coil regions
(residues 1–8 and 18–19), which are separated by a β-sheet strand (residues 9–17) (Figure 2C).
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In comparison, the circular dichroism (CD) spectroscopy analysis indicated that the secondary structure
of HAP-1 consists of 27% helix, 28% beta-sheet, 19% beta-turn, and 26% random coil, as determined
in 50 mM phosphate buffer saline (Figure S1). Such structure significantly differs from those of other
acidic peptides from scorpions, which mainly consist of coiled coil domains [26].

2.4. HAP-1 Markedly Inhibits the Activity of an Antimicrobial Peptide from M. martenssi Karsch

To determine the function of HAP-1, we tested whether it has antimicrobial activity or not.
Antimicrobial assay was performed against some representative species of Gram-positive bacteria,
including Staphylococcus aureus AB94004, Bacillus magaterium AB90008, Bacillus thuringiensis AB93100,
and Gram-negative bacteria, including Escherichia coli DH5α, Escherichia coli JM109, Pseudomonas putida,
Pseudomonas fluorescens, Klebsiella oxytoca AB2010143, Enterobacter cloacae AB2010162, Salmonella enterica
AB2010185, as well as fungi Candida tropicalis AY91009, as described previously [5], using the synthetic
HAP-1 peptide at a maximal concentration of 80 µM. Unfortunately, the result showed that HAP-1 has
no significant antimicrobial activity.

We further tested whether HAP-1 possesses synergistic effect on the antimicrobial activity of
ApHt_20 (GFWGSLWEGVKSVI), an IsCT-like venom peptide from M. martensii Karsch. The result
showed that HAP-1 has no synergistic effect on the antimicrobial activity of ApHt_20.

It is interesting to see that HAP-1 is able to markedly inhibit the activity of ApHt_20 against
Staphylococcus aureus AB94004 (Figure 3). As shown in Figure 3A, we performed an antimicrobial
assay by placing sterile paper discs containing different concentrations of ApHt_20 onto the plate,
which was coated by bacterial cells. The results showed that when 40 nM or higher concentrations of
ApHt_20 were added, the inhibition zone around disc was completely transparent; however, higher
concentrations of ApHt_20 cannot increase the size of the inhibition zone due to limited diffusibility
of peptides in the agar. Thus, we used 40 nM of ApHt_20 to perform the antimicrobial assay in the
presence of HAP-1. We found that the minimum concentration of HAP-1 required to completely inhibit
the generation of the inhibition zone is 140 nM.
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Figure 3. The inhibitory effect of HAP-1 on the antimicrobial activity of ApHt_20 (GFWGSLWEGVKSVI)
against Staphylococcus aureus AB94004. (A) The agar diffusion assay. Disc a contains 40 nM of
ApHt_20; Disc b contains 40 nM of ApHt_20 and 140 nM of HAP-1. (B) MICs of ApHt_20 against
Staphylococcus aureus AB94004 in the presence/absence of 32 µM HAP-1.

As shown in Figure 3B, ApHt_20 inhibits the growth of Staphylococcus aureus AB94004 with the
minimal inhibitory concentration (MIC) of 8 µM; however, if 32 µM of HAP-1 was added to the culture,
the MIC of ApHt_20 increased to approximately 16 µM. As a negative control, the heated HAP-1
peptide (treated at 120 ◦C for 30.0 min) failed to block the antimicrobial activity of ApHt_20.
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It was shown that the pH value of the medium is a factor that significantly affects the MIC of
an antimicrobial peptide against certain bacterium. We thus analyzed the pH value of the medium.
We found that the presence of 32 µM HAP-1 had no detectable effect on the pH value of this medium.
This observation excluded the possibility that the inhibitory effect of HAP-1 on the antimicrobial
activity of ApHt_20 was attributed to that this acidic peptide could reduce the pH level of the cultural
medium; more likely, the inhibition was resulted from the molecular interaction between HAP-1
and ApHt_20.

Therefore, HAP-1 markedly inhibits the antimicrobial activity of ApHt_20 from M. martensii Karsch.

3. Discussion

M. martenssi Karsch is a representative scorpion species in Asia. It has been used as a key
traditional medicine to relieve pain and treat some other diseases such as epilepsy, tetanus, rheumatism,
stoke, and tumors for thousands of years [33,34]. Thus, it is fascinating to identify and functionally
characterize pharmacologically active components from the venom of the scorpion, and gain new
insights into the molecular mechanisms of actions. We have focused on the identification and functional
characterization of new venom peptides from this scorpion since 1999 [14]. Until now, at least 120
different venom peptides have been identified from M. martensii Karsch by our group and other
researchers (see GenBank database).

Acidic peptides are a new group of venom peptides from scorpions, which can be classified
into two subfamilies: One includes BmKa1, SJE098.1, SJE098.2, Q5G8B2, Q5G8A9, Q5G8B1, Q5G8B0,
and BmKa2, and the other includes MeVP-8, Mevtoxinlip-4, HjVP, BoiTx776, AMX81473.1, ABR21055.1,
ABR20121.1, ALX72366.1, ALY87545.1, ADY62660.1, ACJ23161.1, and HAP-1 [25,29–32]. However,
none of these acidic peptides have been functionally characterized so far. As these peptides display
no significant homology with any other peptides that were functionally described before, it is tough
to predict their functions. Here, we found that HAP-1 possesses no detectable antimicrobial and
hemolytic activity when 80 µM of HAP-1 was added to the bacterial culture. However, HAP-1 is
able to potently inhibit the activity of a 13-mer antimicrobial peptide (ApHt_20) from M. martensii
Karsch. This suggests that the highly acidic peptides may function as a regulator of the activities
of the antimicrobial peptides from the scorpion venom. The finding of this work has deepened our
understandings of scorpion venom peptides, and may explain why the pore-forming activities of
antimicrobial peptides in the storage cells of scorpion never damage the storage cells themselves.

HAP-1 is a highly acidic peptide while ApHt_20 is positively charged. However, we found
that HAP-1 is not able to change the pH level of the medium at a concentration as high as 80 µM.
This suggests that the inhibitory effect of HAP-1 on the antimicrobial activity of ApHt_20 could
be attributed to the direct interaction of the two molecules, instead of the pH value changes of the
medium. This interaction would change the alpha-helix structure of ApHt_20 that is required for its
antimicrobial activity.

4. Materials and Methods

4.1. Scorpion Treatment and Purification of Total mRNA from the Venom Glands

The frozen telsons of the scorpion M. martensii Karsch were gifted from Prof. Wenxin Li, College
of Life Sciences, Wuhan University, China. All the operations of animal treatment were approved
by the Institutional Animal Care and Use Committee of Wuhan University (No. ECCLS20120076),
and were conducted as described previously [35]. The glands were thoroughly ground in a mortar
with a pestle in the presence of liquid nitrogen. Total RNA was extracted from the homogenized venom
glands using RNAiso Plus. Poly(A)+ mRNA was purified using OligotexTM-dT30 mRNA purification
Kit (TaKaRa, Dalian, China).
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4.2. Construction of a cDNA Library

A cDNA library of the scorpion venom glands was constructed using the TaKaRa cDNA Library
Construction kit as described by the manufacturer. Briefly, first and double-stranded cDNA was
synthesized from 2.0 mg of the purified mRNA using M-MLV Reverse Transcriptase and Oligo(dT)18
Anchor Primer (Invitrogen, Carlsbad, CA, USA). After that, synthesized cDNA was exacted with
phenol-chloroform-isoamyl, and was precipitated with ethanol. Purified cDNA was then ligated into
EcoR I-Sma I adaptor, and digested with Not I. After removal of excess adaptors and the short-chain
cDNA using a Spin column, the cDNA was ligated into pAP3neo Predigested Vector. Ligated cDNA
was introduced into the competent Escherichia coli DH5α cells by transformation.

4.3. Screening of the cDNA Library

M. martensii Karsch is well characterized in its venom peptides. At least 100 different peptides
have been identified from this scorpion. Therefore, it is essential to remove redundant or highly
expressed known cDNAs when a random sequencing strategy was used to isolate new cDNA clones.
In situ screening of bacterial colonies was performed with DNA probe hybridization. The DNA probe
is a mixture of cDNA fragments including the coding sequences of BmKbpp, BmKCT, BmKBT, BmKT,
BmKK2, BmTx1, and BmM4. The probes were 32P-labeled using PCR strategy with a mixture of
primers corresponding to all the probe cDNAs. Individual colonies are replicated from the plate to
a nylon hybridization filter. The filter was placed on an OmniTray previously filled with LB agar
containing the Kanamycin antibiotic, and incubated overnight at 37 ◦C, allowing the cells to grow on
the filter. The bacteria were lysed with alkaline, and the filter was neutralized using 1.0 mL of 1.0 M
Tris (pH 5.4). After being air-dried, the filter was hybridized with 32P-labeled probes. Auto-radiogram
was thus developed after exposure with intensifying screen at −80 ◦C for 5 h. We selected the clones
with negative signals and with the inserts ranging from 250 bp to 500 bp for sequencing analysis.

4.4. Bioinformatics Analysis

Amino acid residues sequence homology searches were performed using the BLAST software
(http://www.ncbi.nlm.nih.gov/BLAST). Physico-chemical property of a peptide was predicted by the
ProtParam tool (http://expasy.org/tools/protparam). Protein secondary structure was predicted using
the YASPIN program (http://www.ibi.vu.nl/programs/yaspin). Putative signal peptide cleavage site
was determined using the SignalP 3.0 server (http://www.cbs.dtu.dk/services/SignalP/).

4.5. Bacterial Plaque Inhibition Assay

Bacteria were grown in the TSB (Tryptic Soy Broth) medium into an OD600 of 0.6. About 0.1 mL
of the culture containing approximate 1 × 108 cells was spread over the TSB agar plate. A small sterile
paper disc (5 mm) containing peptides was placed onto the plate. The dishes were incubated overnight
at 37 ◦C. The dimension of the bacterial growth inhibition zone was thus measured. Minimum
inhibitory concentration (MIC) of the antimicrobial peptide was also determined, as previously
described [5].

5. Conclusions

In this study, we cloned the full-length cDNA of a short-chain highly-acidic peptide (referred to as
HAP-1) from a cDNA library made from the venom glands of the Chinese scorpion Mesobuthus martensii
Karsch. Using bioinformatical analysis, we found that HAP-1 contains 19 amino acid residues with the
predicted IP value of 4.25. Acidic amino residues account for 33.3% of the total residues in the molecule
of HAP-1. Secondary structure prediction showed that HAP-1 contains a beta-sheet region (residues
9–17), and two coiled coil regions (residues 1–8 and 18–19) located at the N-terminal and C-terminal
regions of the peptide, respectively. HAP-1 possesses no detectable antimicrobial and hemolytic activity
when 80 µM of HAP-1 was included in the bacterial culture. Antimicrobial assay showed that HAP-1

http://www.ncbi.nlm.nih.gov/BLAST
http://expasy.org/tools/protparam
http://www.ibi.vu.nl/programs/yaspin
http://www.cbs.dtu.dk/services/SignalP/
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does not have any effect on the growth of the bacterium Staphylococcus aureus AB94004. However,
it potently inhibits the antimicrobial activity of a 13-mer peptide from M. martensii Karsch against
Staphylococcus aureus AB94004. This finding is the first characterization of the function of the highly
acidic peptides from scorpions. This work may help to fully understand the physiological functions of
scorpion venom, and gains new insight into the mechanism by which the pore-forming activities of
antimicrobial peptides in the venom storage cells of scorpions never damage the storage cells.
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