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Abstract: In the present study, we have developed a green approach for the synthesis of silver
nanoparticles (DSAgNPs) using aqueous extract of Durio zibethinus seed and determined its
antibacterial, photocatalytic and cytotoxic effects. Surface plasmon resonance confirmed the formation
of DSAgNPs with a maximum absorbance (λmax) of 420 nm. SEM and TEM images revealed DSAgNPs
were spherical and rod shaped, with a size range of 20 nm and 75 nm. The zeta potential was found
to be −15.41 mV. XRD and EDX analyses confirmed the nature and presence of Ag and AgCl.
DSAgNPs showed considerable antibacterial activity, exhibited better cytotoxicity against brine
shrimp, and shown better photocatalytic activity against methylene blue. Based on the present
research work, it can be concluded that DSAgNPs could be used in the field of water treatment,
pharmaceuticals, biomedicine, biosensor and nanotechnology in near future.
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1. Introduction

Nanoparticles have been extensively explored in the fields of optics, catalysis, engineering,
biology, medicine and pharmaceutical sciences because of their unique chemical and physical
properties. Different approaches have been practiced for preparing nanoparticles, including chemical
or electrochemical methods. Generally, the utilized chemicals or the by-products formed during the
process are hazardous that not only increase difficulty in purification stages but these also require
high energy for the preparation [1,2]. Apart of the toxicity problems, researchers frequently encounter
other major challenges when preparing nanoparticles, such as control of size/shape variation and

Molecules 2018, 23, 3311; doi:10.3390/molecules23123311 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
http://dx.doi.org/10.3390/molecules23123311
http://www.mdpi.com/journal/molecules
http://www.mdpi.com/1420-3049/23/12/3311?type=check_update&version=2


Molecules 2018, 23, 3311 2 of 15

monodispersity attainment. To address such issues, the use of plant extracts has evolved as one of
the most promising options for the synthesis of nanoparticles. The plant constituents act as reducing
as well as protective agents for the reduction of metal ions to their corresponding nanoparticles and
protect them from aggregation by capping [3]. The key advantages of this method are the absence of
complex purification steps and maintenance of microbial cell cultures [4]. As increased interest has been
observed in nanotechnology and biotechnology during the last two decades, an increased need for the
development of innovative technologies for biosynthesis of nanoparticles has also been noticed [5].

Most of the reported silver nanoparticles synthesis methods are found to be associated
with various problems, including lack of stability, growth of crystals and particle aggregation.
Silver-based products have been utilized over the centuries to prevent and treat numerous diseases,
especially infections, due to strong growth inhibitory and bactericidal effects of silver [6]. Moreover,
biosynthesized silver nanoparticles have also indicated antimicrobial activities [7–9], anticancer
activity [10], anti-inflammatory effects [11], anti-viral activities [12], anti-angiogenesis activities [13]
and antidiabetic activities [14].

Durio zibethinus (durian) plant, a member of Malvaceae family, has been reported to possess
antioxidant, anti-diabetic, anti-hyperlipidemic and anti-proliferative activities [15,16]. Moreover,
the nutritional values and health benefits associated with durian consumption have also been
observed [17,18]. Its medicinal properties have collectively been attributed to several bioactive
compounds present in durian fruit, such as flavonoids, tannins, polyphenols, carbohydrates, protein,
vitamin B, vitamin C, calcium, potassium, iron, manganese, sodium, magnesium, and copper [19,20].
Toledo et al. reported the presence of amino acids [16], and Hokputsa et al. reported saccharides and
sterols as essential elements of durian seed [21].

The main objective of our study was to utilize aqueous extract of Durio zibethinus fruit waste
(seed) for the biosynthesis of silver nanoparticles. Moreover, the antibacterial potential of DSAgNPs
against various bacterial strains was evaluated and photocatalytic activities of DSAgNPs were tested
against methylene blue. Additionally, brine shrimp cytotoxicity assay was conducted to analyze
preliminary toxicity which could be extrapolated for cell-line toxicity and anti-tumor activities [22,23].
The significance of the present study was, for the first time we had utilized the fruit waste (seed) extract
of Durio zibethinus for the biological reduction of silver nanoparticles using under sunlight, and the
synthesized silver nanoparticles showed better antimicrobial, cytotoxic and photocatalytic activity
with good stability.

2. Results and Discussion

2.1. Synthesis of Silver Nanoparticles: Process Optimization

In the present study, green synthesis of silver nanoparticles was achieved by bio-reduction of silver
nitrate utilizing Durio zibethinus seed aqueous extract as reducing and capping agent. The selection
criteria for durian seed was based on several factors, viz. the presence of saccharides, which
are responsible for the reduction of Ag+ in reaction solution, amino acids for stabilization of the
formed silver nanoparticles, and preference in this area of research, and as it is a waste that causes
environmental pollution [24–28].

Aqueous extract of durian seeds was utilized to reduce AgNO3 to Ag0 where the observed color
change from colorless to yellowish brown confirms the reduction. The maximum absorbance exhibited
by the reaction solution at 420 nm (Figure 1A) is the characteristic surface plasmon resonance (SPR)
peak of DSAgNPs. Factors including size and shape of particles formed could have influenced SPR
peak formation [29].

Initially, the reaction was carried out with a fixed concentration of silver nitrate (1 mM) and
seed extract (1 mL) at different conditions like room temperature, at 60 ◦C, in the dark and under
sunlight. The reactant solution which was kept at room temperature for 72 h, heated at 60 ◦C for 1 h
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and kept in dark for 72 h, did not demonstrate significant color change or absorbance peak in UV-Vis
spectral studies.

A significant change in the color and absorbance of the reactant solution was only observed when
it was kept in the sunlight (approximately 4000 ± 200 lux) for 10 min. Subsequently, parameters
viz. concentration of silver nitrate, time of reaction and volume of durian seed extract required for
synthesis of DSAgNPs were optimized. Based on the results, it could be deduced that 1.5 mL extract
of 10% durian seed in deionized water, 1.5 mM AgNO3 concentration, 1.5:8.5 ratio of seed extract
and silver nitrate, and 30 min reaction time in sunlight were found to be the optimized conditions
for synthesis of DSAgNPs. The sunlight exposure time for the formation of silver nanoparticles was
optimized as 30 min (Figure 1A) since there was a bathochromic and hypochromic shift in the visible
absorption spectrum after 30 min which indicates the agglomeration of silver clusters that leads to the
formation of larger size particles [30]. Also there was a second minor absorbance peak at a wavelength
near about 700 nm at an exposure time of 80 and 90 min, so we have selected 30 min as the optimum
time even though the colloidal solution of 80 and 90 min exposure time showed higher absorbance.
Figure 1B indicates the uncertainty in silver nanoparticles formation when the solution was exposed to
sunlight for longer time.
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2.2. Mechanism Involving in DSAgNPs Formation

The present study dealt with a waste-mediated silver nanoparticles synthesis using durian seed
aqueous extract, which might be instigated by the presence of saccharides and sterols in the extract.
In this study, the −OH and O present in side chains of the saccharides might be involved in the
reduction, as mentioned by Nadezhda et al. who stated that the −COO−, −OH and O present in
hydrolyzed products (galacturonic acid, galactose and arabinose) of pectin fragments were involved in
the development of silver nanoparticles [31]. The capping could also be facilitated by amino acids and
enzymes present in the seed extract. The possible reason behind this behavior might be the presence of
a greater number of photons of a certain wavelength in direct sunlight which catalyse the reducing
action by the generation of reducing moieties (e−), thus promoting the formation of AgNPs [30].

2.3. Characterization of DSAgNPs

The SEM results indicated the size of synthesized nanoparticles was in a range of 20–72 nm, with
an average size of 64 nm (Figure 2A).

Moreover, the SEM image clearly showed polydisperse spherical and rod-shaped particles,
however, the TEM images showed that the particle size ranged from 20−75 nm, with an average
size of 60 nm (Figure 2B) and SAED of DSAgNPS is shown in Figure 2C. The SAED confirmed the
face-centered cubic (fcc) structure of metallic silver, and it also contains some extra rings [secondary
phase (020)] which indicates the presence of unreduced silver nitrate. Figure 2D shows the EDX
spectrum of biosynthesized DSAgNPs which confirms the presence of elemental silver signals. Besides
a high intensity peak, a few tiny weak peaks of Cl and Cr were also observed in EDX spectrum owing
to biomolecules bonded onto the biosynthesized DSAgNPs. Five prominent diffraction peaks were
observed in XRD pattern (Figure 3A), at 2θ = 38.18◦, 44.54◦, 64.28◦ and 77.38◦ which corresponds to
(111), (200), (220) and (311) Bragg’s reflections of the face-centered cubic (fcc) structure of metallic silver,
respectively. Moreover, the peaks observed in the pattern were also found to be in good agreement
with reference of fcc structure from Joint Committee of Powder Diffraction Standard (JCPDS) Card
No-087-0720 and the SAED of DSAgNPs (Figure 2C). Also another three distinct diffraction peaks at
2θ = 28.10◦, 32.52◦ and 46.53◦ which corresponds to (111), (200) and (220) lattice planes of face centred
cubic (fcc) structure matched to silver chloride nanoparticles (JCPDS file No.: 85-1355). AgCl is a
common phase in green synthesis of silver nanoparticles [32]. The broadening of signals of pattern
evinces that the products are nanosized.
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The DLS analysis was carried out for determination of hydrodynamic diameters of DSAgNPs
whereby the mean hydrodynamic diameter of DSAgNPs was found to be 176.5 d.nm with intercept
0.809, and a low polydispersity index (PDI) of 0.290 (Figure 3B) was observed. A higher average size
value of nanoparticles was also observed through DLS analysis as compared to SEM and TEM analysis
which could be attributed to agglomeration of the nanoparticles.
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The DLS technique measures the hydrodynamic radii of the nanoparticles which include the
solvent layer and capping at the interface. Determination of zeta potential (−15.42 mV) confirmed the
stability of nanoparticles (Figure 3C). The negative potential value of DSAgNPs reflects the presence of
bio-organic components in the extract, as capping agent. The value also indicated that synthesized
DSAgNPs were moderately stable [33].

The explicit mechanism behind biological extract assistance in the synthesis of nanoparticles is
yet to be elucidated [34]. However, phytochemicals and plant-derived polysaccharides, viz. cellulose,
dextran and starch, have been reported to exert dual roles, as reducing as well as capping agents,
in plant-based synthesis of nanoparticles [35]. The possible groups responsible for the interaction
between capping agents and DSAgNPs were confirmed by FTIR. The FTIR spectrum of DSAgNPs
showed sharp intense peaks at 3580 cm−1 (phenolic OH stretching), 3436 cm−1 (aromatic N–H
stretching), 3312 cm−1 (OH stretching of phenol and alcohol), 1630 cm−1 (amide I bond of amino acids
due to carbonyl stretch), 1515 cm−1 (aromatic ring stretching), 1375 cm−1 (C–C bond of aromatic ring
or amide group-II), 1316-1285 cm−1 (aromatic secondary amine CN stretching) and 650 cm−1 (C–H
of alkynes). The results clearly indicate that the O–H, C–C and C–N vibration stretches in DSAgNPs
could be due to the presence of saccharides and amino acids in the extract of durian seeds which might
be involved in the formation of DSAgNPs by acting as capping and stabilizing agents.

The stability of the synthesized DSAgNPs in aqueous dispersion was evaluated based on the
changes in absorption maxima of SPR band, over a period of 120 days. The SPR bands remained
almost symmetrical within the tested period. Moreover, no significant shift in the surface plasmon
absorption peak was observed, which indicates that the biosynthesized DSAgNPs were not aggregated
during the storage period, under ambient conditions.

2.4. Antimicrobial Activity of DSAgNps

The synthesized DSAgNPs showed moderate antibacterial action on the tested bacterial pathogens.
The minimum inhibitory concentration (MIC) of DSAgNPs against S. aureus and S. typhimurium was
found to be 4 mg/mL, and MIC against E. coli, B. subtilis and S. typhi was found to be 2 mg/mL.
The minimum bactericidal concentration (MBC) of DSAgNPs against E. coli, B. subtilis, S. typhimurium
and S. typhi was found to be 4 mg/mL (Table S1). Based on the results obtained (Table 1), it can
be asserted that the newly synthesized silver nanoparticles exhibit potential antimicrobial activities
against the tested pathogens. The maximum antibacterial activity was observed against S. typhimurium,
S. heamolyticus and S. aureus, followed by B. subtilis, E. coli and S. typhi. DSAgNPs exhibited better
antibacterial activities against all tested bacterial strains as compared to AgNO3 and durian seed
aqueous extract alone. However, DSAgNPs expressed lesser inhibitory activities as compared to the
reference drug, gentamycin, against any of the tested bacterial strains which probably due to the higher
concentration of gentamycin (1 mg/mL). The study results are analogous with other studies reported
by fellow researchers [36–40].

Table 1. Antibacterial activity of DSAgNPs.

Bacteria
Zone of Inhibition (mm)

Gentamycin * DSAgNPs **

S. typhi 25 ± 1.32 7 ± 0.20
S. typhimurium 24 ± 2.91 11 ± 0.51

E. coli 20 ± 1.06 7 ± 0.22
S. aureus 23 ± 1.12 8 ± 0.13

S. haemolyticus 23 ± 1.82 11 ± 0.55
B. subtilis 25 ± 1.36 8 ± 0.34

n = 3, zone of inhibition ± SD, * 1 mg/mL, ** 4 mg/mL impregnated disc were used.
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The mechanism of the bactericidal effect of silver nanoparticles is not well-known. Silver
nanoparticles may attach to the surface of cell membrane and eventually this may disrupt power
functions, viz. permeability and respiration of bacteria. The particles bind to the bacteria based on the
availability of surface area for interaction. Moreover, smaller particles tend to possess larger surface
area which will exhibit more bactericidal effect as compared to larger particles [36]. Morones et al.,
have demonstrated the presence of silver nanoparticles not only cell membrane surface but also inside
the bacterium [41]. Additionally, Panacek et al., also reported that nanoparticles could release silver
ions which may complement the antimicrobial properties of silver nanoparticles [36].

2.5. Photocatalytic Activity

The dye degradation of MB under sunlight irradiation was performed to assess the photocatalytic
activities of biosynthesized DSAgNps. The dye degradation was detected by a gradual change in the
solution color from deep blue to colorless.

The decrease of peak intensity at 662 nm during 3 h exposure of MB to sunlight in the presence
of DSAgNPs displayed in Figure 4A indicates the photocatalytic degradation efficiency of DSAgNPs.
Photocatalytic degradation efficiency of DSAgNPs was represented as the variation in MB degradation
with time (C/C0, where C0 is the initial concentration of MB and C is the concentration of dye solution
after “t” min under sunlight irradiation) in the presence and absence of photocatalyst (Figure 4B).
The degradation was found to be 73.49% in 180 min. Additionally, the results fitted pseudo-first
order kinetics (Figure 4C) and the degradation reaction rate was identified as −K = 0.0077 suggesting
DSAgNPs are promising degrading agents for MB.
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2.6. Cytotoxicity against Artemia salina

The acute toxicity of toxic materials such as pesticides and heavy metals is evaluated by utilizing
Artemia species [42–45] As these provide distinctive advantages such as low cost, ease of culture, high
offspring production, short life span, year-round availability and no requirements for feeding during
assay process an extensive range of Artemia-based standard bioassays have been developed [45,46].

In this study, we have evaluated the cytotoxicity of DSAgNPs against brine shrimp. The brine
exposures to DSAgNPs were conducted in the absence of food. The positive control (5 mg/mL
of AgNO3) indicated about 3% mortality in 24 h which clearly validated that the experimental
mortalities were not due to the deprivation from food. Concurrently, the effect of durian seed extract
on survival of brine shrimp larvae was also evaluated for 24 h, during which it did not show any effect.
The highest mortality of 76.0% was observed at 5 mg/mL and the calculated LC50 value of DSAgNPs
was found to be 3.03 mg/mL (3030 mg/L). This indicated a direct proportional relationship between
the concentration of DSAgNPs and lethality. Figure 5 illustrates the % mortality rates of DSAgNPs at
different concentrations.
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Figure 5. Cytotoxic effect of DSAgNPs against Artemia salina.

Arulvasu et al. investigated the cytotoxic effect of chemically synthesized silver nanoparticles
against Artemia and stated that the LC50 value was found to be around 10 nM (10700 mg/L)
concentration [47] which is comparable with the present study results. Interestingly, our cytotoxicity
study results showed less cytotoxic effect against Artemia than the reported result of 331.08 mg/L of
neem leaf extract mediated silver nanoparticles reported by Avinash et al. [48].

Moreover, Phull et al. reported a LC50 of 33920 mg/L for green synthesized silver nanoparticles
from crude extract of Bergenia ciliate against brine shrimp [49] which is less toxic as compared to the
DSAgNPs synthesized in this study.

Since DSAgNPs showed enhanced lethal toxicity against Artemia in the present study, they could
be further tested for anti-tumor activities and may be further used in the management of cancer along
with other anticancer drugs as carrier and active principle ingredient. Moreover, it is safer for aquatic
ecology as the synthesized DSAgNPs concentration may be less as compared to the toxic concentration
of industrial waste or any environmental pollution present in the aquatic environment.

Among the advantages of this study we may mention the following. First, this study provies many
advantages form the viewpoint of an environmentally friendly approach: (1) waste (durian seed) is
used, which is a renewable source; (2) it is a green synthesis approach we have not used any hazardous
chemicals to prepare the silver nanoparticles; (3) the application of solar irradiation as a catalyzing
agent in the photochemical reaction of the extract and silver salt solution is cost free; (4) photocatalytic
studies of methylene blue degradation by the phytosynthesized silver nanoparticles can be envisaged
to degrade organic dyes in the textile industry, or to detoxify organic toxins in waste waters.

3. Materials and Methods

3.1. Materials

Fresh and healthy durian seeds were acquired from a local market (Sungai Petani, Kedah,
Malaysia). Silver nitrate (is ≥99.0%), nutrient broth (peptone 10.0 gm/L, beef extract 10.0 gm/L,
sodium chloride 5.0 gm/L, pH after sterilization 7.3 ± 0.1), Muller Hinton Agar (beef infusion
form 300.0 gm/L), casein acid hydrolysate 17.5 gm/L, starch 1.5 gm/L, agar 17.0 mg/L, final pH
(at 25 ◦C) were procured from Himedia Laboratories Pvt. Ltd. (Mumbai, India). The bacterial
cultures (Gram positive—Stapylococcus aureus ATCC 43300, Staphylococcus heamolyticus ATCC 29970 and
Bacillus subtilis ATCC 6633) and Gram negative—Salmonella typhi ATCC 7251, Salmonella typhimurium
ATCC 14028 and Escherichia coli ATCC 25922)) were obtained from Faculty of Applied Sciences, AIMST
University, Malaysia.
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3.2. Preparation of Durian Seed Extracts

The obtained durian seeds were washed with distilled water and cut into small pieces. Seeds
were soaked and rinsed with 70% methanol followed by air-drying at room temperature. About 20 g of
dried durian seeds were boiled with 200 mL of deionized water for 10 min in a water bath and cooled.
The extract was filtered through Whatman filter paper No. 1, and centrifuged for 15 min at 5300 rpm.
The supernatant was collected and stored in an amber color bottle at 4 ◦C for further use.

3.3. Biosynthesis of DSAgNPs

AgNO3 solution (9 mL, 1 mM) and durian seed extracts (1 mL) were mixed in a 10 mL volumetric
flask which was kept in the sunlight for 30 min. The formation of DSAgNPs was corroborated by
observing the change in the solution color to brown and by spectrophotometric determination.

3.4. Optimization of Reaction Parameters

The bioreduction of AgNO3 to silver nanoparticles depends on certain important parameters, viz.
time, silver nitrate concentration and durian seed extract volume needed for the reaction. However,
these parameters are equally important to determine the size, shape, yield and agglomeration state of
DSAgNPs. Hence, the parameters were optimized for the green synthesis of DSAgNPs by altering
one parameter at a time while the other parameters were kept fixed. Aqueous dispersion of DSAgNPs
was prepared and stored at ambient temperature in a 50 mL volumetric flask which was protected
with aluminium foil. Sample aliquots were withdrawn repeatedly at 1 week intervals for a period of
120 days to assess the stability of the synthesized DSAgNPs by measuring changes in UV-Vis spectra.

3.5. Characterization of DSAgNPs

The Surface Plasmon Resonance (SPR) shift and plasmon intensity of the colloidal DSAgNPs
were characterized by UV-Visible spectroscopy (model AV-1800 UV-Vis spectrophotometer, Shimadzu,
Tokyo, Japan) with a wavelength range of 400–700 nm. The morphology and size of the DSAgNPs
were confirmed by SEM (Hitachi, S-4300 SE, Tokyo, Japan), FE-TEM (JEM-2100F, JEOL, Tokyo, Japan),
elemental composition by EDX analysis (FESEM-EDX, INCA400, Oxford-Instruments, High Wycombe,
UK), and surface capping functional groups by FT-IR (FTIR-4100 spectrometer, JASCO, Tokyo, Japan)
at 4000 cm−1 to 400 cm−1). The crystallinity of DSAgNPs was confirmed by XRD (DMAX-2500, Rigaku,
Tokyo, Japan). The zeta potential of DSAgNPs was determined by a Zetasizer Ver. 7.03 (ELC-Z Zeta
potential and particle size analyzer, Photal Otsuka Electronics, Osaka, Japan).

3.6. Antimicrobial Activity

Synthesized DSAgNPs were investigated for antibacterial activities against Gram positive
and Gram negative bacteria by Minimum Inhibitory Concentration (MIC), Minimum Bactericidal
Concentration (MBC) and disc diffusion assay.

3.6.1. Minimum Inhibitory Concentration (MIC)

The MIC assay was carried out by using the broth microdilution assay. Serial dilutions of
DSAgNPs was added to 48-well microtiter plates, then 0.1 mL of suspension of Muller-Hinton (MH)
broth medium with the bacterial cultures adjusted to 0.5 McFarland was added to each well and
the plates were incubated at 37 ◦C for 24 h. The MIC value was determined by detecting the lowest
concentration of DSAgNPs that inhibited bacterial growth after 24 h.

3.6.2. Minimum Bactericidal Concentration (MBC)

About 50 µL culture suspensions from all the wells of 48-well microtiter plates which used for
MIC were inoculated in MH agar medium and the plates were incubated at 37 ◦C for 24 h. The MBC
value was determined by detecting the concentration that killed 100% bacteria.
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3.6.3. Disc Diffusion Assay

The selected bacteria were inoculated in LB broth. Then sterile discs of 6 mm diameter of Whatman
No. 1 filter paper impregnated with 4 mg/mL of DSAgNPs in water, gentamycin (1 mg/mL) (positive
control), durian seed extract (used for synthesis of silver nanoparticles), and silver nitrate (1.5 mM)
and deionized water (negative control) were placed on the agar surface. The plates were incubated for
24 h at 37 ◦C. The test was performed in triplicate and the zones of inhibition (ZoIs) were calculated to
determine the susceptibility of bacteria.

3.7. The Photocatalytic Degradation of Methylene Blue

To determine the photocatalytic property of DSAgNPs, 10 mg of DSAgNPs was dispersed
in 100 mL of distilled water and the dispersion was sonicated for 2 h in order to determine the
photocatalytic properties of DSAgNPs. Methylene blue (MB) powder (1 mg) was added to the above
aqueous DSAgNPs solution. It was stirred magnetically for 30 min in the shade and upon completion
the colloidal suspension was exposed to solar irradiation. During the experiment, the average
atmospheric temperature was found to be 30 ◦C with 3 h mean sunshine duration. Suspension
samples (5 mL) were repeatedly collected from the colloidal mixer at every 30 min and scanned
spectrophotometrically at 200 to 800 nm for determination of the degradation of MB. The dye
degradation (%) was calculated by using the following equation:

Dye degradation (%) = [C0 − Ct/C0] × 100

where C0 is the initial concentration of MB solution and Ct is the concentration of dye solution after “t”
h under sunlight irradiation. All dye concentration absorption peaks at 662 nm were measured by
UV-Vis spectroscopy [50].

3.8. Cytotoxicity of DSAgNPs against Artemia salina

With the help of capillary glass tubes, ten live and healthy larvae of A. salina were transferred from
the brighter part of hatching chamber to 24 well plates containing various concentrations (1–5 mg/mL)
of DSAgNPs in 1 mL of sterilized seawater. As a negative control, sterilized seawater without DSAgNPs
was used and maintained at 25 ◦C for 24 h (16 h light and 8 h dark). After incubation, the larval
mortality percentage was calculated from the number of larvae surviving in each test concentration.
Assays were carried out in triplicate and LC50 values were determined using a regression plot.

4. Conclusions

In this study, silver nanoparticles were synthesized by utilizing renewable sources such as durian
seeds and sunlight. As it is a green synthesis approach, the reported method meets the requirement of
environmental safety. In this study we have investigated the impact of silver nanoparticles on activities
against human pathogens that are major sources of bacterial infections, as catalysis for the degradation
of organic dyes which are prime sources of environmental pollution, and cytotoxic activities against
brine shrimp which is a preliminary test to analyze the anticancer potential of the tested compounds.
Various properties of the synthesized silver nanoparticles were also characterized by UV, SEM, TEM,
EDX, XRD and zeta potential. SEM and TEM images confirmed the spherical nature of the silver
nanoparticles. XRD images showed the presence of silver chloride nanoparticles and EDX images
indicated the presence of chlorine. The extra ring in SAED of TEM indicated the presence of unreduced
silver nitrate. DSAgNPs showed antibacterial activity as well as cytotoxicity against brine shrimp.
The study results indicated that the green synthesis of DSAgNPs yielded an effective nanoparticle
preparation that could be used against human pathogens as a potential therapeutic agent and also
for the purification of wastewater in the future. This is evident since the synthesized DSAgNPs
displayed good photocatalytic activities for the degradation of methylene blue and were also found
to be non-toxic. The present study suggested that greenly synthesized DSAgNPs can prevent many
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environmental hazards in an eco-friendly way and can also be used as therapeutic agents in the
pharmaceutical industry.

Supplementary Materials: The following are available online, Table S1: MIC and MBC results of DSAgNPS.
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