
molecules

Article

Bulnesia sarmientoi Supercritical Fluid Extract
Exhibits Necroptotic Effects and Anti-Metastatic
Activity on Lung Cancer Cells

Heng-Long Wang 1, Jung-Che Chang 1, Li-Wen Fang 2, Hsia-Fen Hsu 2, Li-Chiun Lee 2,
Jyh-Ferng Yang 3, Ming-Tsai Liang 3, Pei-Chi Hsiao 4, Chao-Ping Wang 5, Shih-Wei Wang 6,
Chi-Chang Chang 7,*,† and Jer-Yiing Houng 2,3,*,†

1 Department of Life Sciences, National University of Kaohsiung, Kaohsiung 81148, Taiwan;
hlwang@nuk.edu.tw (H.-L.W.); jungche2004@yahoo.com.tw (J.-C.C.)

2 Department of Nutrition, I-Shou University, Kaohsiung 82445, Taiwan; fanglw@isu.edu.tw (L.-W.F.);
fen153848@gmail.com (H.-F.H.); edman@isu.edu.tw (L.-C.L.)

3 Graduate Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung 84001,
Taiwan; jfyang@isu.edu.tw (J.-F.Y.); mtliang@isu.edu.tw (M.-T.L.)

4 Metal Industries Research & Development Centre, Kaohsiung 81160, Taiwan; peg3319@gmail.com
5 Divisions of Cardiology, E-Da Hospital/I-Shou University, Kaohsiung 82445, Taiwan; ed100232@edah.org.tw
6 Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine,

E-Da Hospital/I-Shou University, Kaohsiung 82445, Taiwan; shihwei8888@gmail.com
7 Department of Obstetrics & Gynecology, E-Da Hospital/I-Shou University, Kaohsiung 82445, Taiwan
* Correspondence: ed101779@edah.org.tw (C.-C.C.); jyhoung@isu.edu.tw (J.-Y.H.);

Tel.: +886-7-6151100 (ext. 7915) (J.-Y.H.)
† These authors contributed equally to this work.

Received: 20 November 2018; Accepted: 11 December 2018; Published: 13 December 2018 ����������
�������

Abstract: Bulnesia sarmientoi (BS) has long been used as an analgesic, wound-healing and
anti-inflammatory medicinal plant. The aqueous extract of its bark has been demonstrated to
have anti-cancer activity. This study investigated the anti-proliferative and anti-metastatic effects
of BS supercritical fluid extract (BSE) on the A549 and H661 lung cancer cell lines. The cytotoxicity
on cancer cells was assessed by an MTT assay. After 72 h treatment of A549 and H661 cells, the
IC50 values were 18.1 and 24.7 µg/mL, respectively. The cytotoxicity on MRC-5 normal cells was
relatively lower (IC50 = 61.1 µg/mL). BSE arrested lung cancer cells at the S and G2/M growth phase.
Necrosis of A549 and H661 cells was detected by flow cytometry with Annexin V-FITC/PI double
staining. Moreover, the cytotoxic effect of BSE on cancer cells was significantly reverted by Nec-1
pretreatment, and BSE induced TNF-α and RIP-1 expression in the absence of caspase-8 activity.
These evidences further support that BSE exhibited necroptotic effects on lung cancer cells. By wound
healing and Boyden chamber assays, the inhibitory effects of BSE on the migration and invasion
of lung cancer cells were elucidated. Furthermore, the chemical composition of BSE was examined
by gas chromatography-mass analysis where ten constituents of BSE were identified. α-Guaiene,
(−)-guaiol and β-caryophyllene are responsible for most of the cytotoxic activity of BSE against these
two cancer cell lines. Since BSE possesses significant cytotoxicity and anti-metastatic activity on A549
and H661 cells, it may serve as a potential target for the treatment of lung cancer.

Keywords: Bulnesia sarmientoi; supercritical fluid extraction; human lung cancer cells; necroptosis;
migration and invasion; chemical ingredient analysis
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1. Introduction

Lung cancer is one of the leading causes of death in the world, responsible for more than 1.5 million
deaths worldwide annually [1]. There are two major subtypes of lung cancer, non-small-cell lung
cancer (NSCLC) and small-cell lung cancer (SCLC). NSCLC accounts for approximately 80–85% of lung
cancer cases. The high mortality rate of this disease may be related to the obscurity of the symptoms
and its high metastasis rate. It is estimated around 57% of all lung cancers are metastatic in nature and
can spread to various tissues and organs [2,3]. Various methods, such as chemotherapy, surgery, and
radiation therapy, have been used to treat lung cancer patients. However, more effective therapies still
need to be developed for curing the cancer, especially the treatment for the advanced stages of cancer.

Traditionally, two types of cell death under drug treatment are generally recognized: apoptosis and
necrosis. Apoptosis is regarded as one form of programmed cell death, whereas necrosis is regarded as
an uncontrolled and unregulated type of cell death. Recently, accumulating evidences have shown that
necrosis can also be induced and proceed in a regular manner, which is a caspase-independent form of
regulated cell death. This type of necrosis is called “programmed necrosis” or “necroptosis” [4]. For the
necroptosis, upon stimulation of Fas/TNF receptor family to trigger extrinsic apoptotic signal, cells exhibit
the morphology like necrotic cell death in the absence of caspase activity, and then could transduce
necroptosis signal. In addition, the death of these necrotic cells was regulated by unique signaling
pathway, dependent on receptor-interacting protein kinase 1 (RIP-1) and/or RIP-3 and specifically
inhibited by the small molecule, necrostatin-1 (Nec-1) [5]. Necroptosis was found to associate
with pathogenic effect on ischemic brain injury, myocardial infarction and neurodegeneration [6–8].
Drug resistance contributes to the high mortality of cancer, i.e., cancer cells can escape from apoptosis
caused by chemotherapeutic drugs and this makes them resistant to chemotherapy. Several studies
have revealed that necroptosis would accelerate the death of cancer cells by increasing the sensitivity
of tumor cell to chemotherapy drugs [9–11]. Therefore, necroptosis provides an alternative process to
enhance the sensitivity of cancer cells to chemotherapeutic agents, especially for the cases where the
cancer cells are resistant to apoptosis. These properties make necroptosis a new target to eliminate
cancer cells when caspases are inhibited or defective [12,13].

Metastasis is a critical step in cancer progression and is the leading cause of cancer-related deaths
in human. Tumor metastasis is a complex multistep process, including tumor angiogenesis, cell
migration, cell attachment, degradation of extracellular matrix (ECM), invasion and proliferation.
Through these events, cancer cells spread primarily through the thin wall of the ECM into the blood
vessels or lymphatic circulation system to colonize distant organs, and ultimately resulting in distant
metastasis [14–16].

Some plants were reported to have anti-lung cancer effects, including Podophyllum peltatum, Taxus
brevifolia Nutt., Catharanthus roseus, and Camptotheca acuminata. Some of their bioactive compounds had
been developed as chemotherapeutic drugs, such as podophyllotoxin derivatives [17,18], taxol [19],
vinca alkaloids [20] and camptothecins [21]. Most of them exhibit apoptotic effects on tumors, while
some agents trigger necroptosis in cancer cells [22–26]. Shikonin was the first compound that was
reported to have the ability to induce necroptosis [27]. Subsequently, shikonin and its analogs were
reported successively to have high cytotoxicity on cancer cells, as well as the ability to avoid drug
resistance [28–31]. Furthermore, shikonin could reduce the lung metastasis of osteosarcoma by
inducing necroptosis [29].

Supercritical fluid extraction (SFE), generally performed by carbon dioxide (CO2), has been
widely recognized as a green sample preparation technique and has several advantages of non-toxicity,
efficiency, high separation selectivity and environmental friendliness, while it avoids thermal
degradation and can be recyclable. Especially, due to the lipophilic nature of CO2, SFE is very
suitable for the extraction of non-polar or moderately polar ingredients. Therefore, the use of SFE to
extract plants is rapidly increasing [32–34].

Bulnesia sarmientoi (BS, Palo Santo), an endemic tree in the Gran Chaco area around Argentina,
Bolivia, Brazil, and Paraguay borders, belongs to the Zygophyllaceae family, which is frequently
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used to produce wood furniture, handicrafts, Buddha tables, and flooring. The wood waste of BS is
often used to extract essential oils, which have the balmy rose or violet aroma, and have been used in
perfumery and aromatherapy [35]. Besides this, BS has been used as a traditional medicine in analgesic,
wound healing, anti-inflammation, antioxidant, bactericidal activities, to improve serum lipid profiles
and treat gastrointestinal problems [35,36]. Aqueous extract of BS (aqBSE) exhibited anti-platelet
activity and thrombus formation via MAP kinase inhibition [37]. BS has also shown anti-tumor activity.
The aqBSE could induce apoptosis of A549 lung cancer cells via p53 induction and decrease the tumor
size in subcutaneous sarcoma 180 tumor-bearing nude mice [38]. A similar apoptotic effect of aqBSE
on lung cancer H460 cells was also reported [39]. A further study demonstrated that (−)-epicatechin
isolated from aqBSE could enhance the apoptosis of SW480 human colon cancer cells by Bax and
p53 induction and Bcl-2 down-regulation [40]. Instead of the aqueous extract, this study evaluates
the anti-cancer potential of BS SFE extract (BSE) on lung cancer cells. The inhibitory effects of BSE
on cell proliferation, migration and invasion of lung cancer A549 and H661 cells were investigated.
Furthermore, the cell necroptosis induced by BSE was also elucidated.

2. Results and Discussion

2.1. Effects of BSE on Anti-Proliferation of Human Lung Cancer Cells

The cytotoxicities of BSE on A549 and H661 human lung cancer cells and human fetal lung
fibroblast MRC-5 normal cells are shown in Figure 1. The treatments were performed at different doses
for 24, 48 and 72 h, respectively. From the data shown in the figure, BSE exhibited the cytotoxicities on
each of these three cell lines in a dose-dependent manner. On the other hand, Table 1 shows that the
longer the treatment time, the greater the cytotoxicity. Among these three cell lines, BSE exhibited a
much lower toxicity to MRC-5 normal cells. When comparing to the clinical anti-cancer drug cisplatin,
BSE and cisplatin had similar cytotoxicity on lung cancer cells, but BSE appeared less toxic to MRC-5
normal cells than cisplatin. It is worth noting that cisplatin had higher toxicity to the normal lung cells
than the lung cancer cells.
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Figure 1. Effects of treatment concentration and duration of BSE on the proliferation of (A) lung cancer
A549 cells, (B) H661 cells, (C) lung fibroblast MRC-5 normal cells, (D) the comparison of the effects of
BSE and cisplatin on MRC-5 cells under 48 h treatment.
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Table 1. Cytotoxicities (expressed by IC50 value) of BSE and cisplatin on different lung cells.

Cell Line
BSE (µg/mL) Cisplatin (µg/mL)

24 h 48 h 72 h 24 h 48 h 72 h

A549 59.0 43.7 18.1 58.7 44.3 19.2
H661 46.6 44.6 24.7 79.6 16.9 16.1

MRC-5 120.8 89.7 61.1 34.1 10.7 7.8

Mollah et al. [38,39] reported that the IC50 values of aqBSE on A549 and H460 cells for 24 h
treatment were around 225 µg/mL and 75 µg/mL, respectively. In comparison, the cytotoxicity of BSE
is higher, i.e., the IC50 values for 24 h treatment were 59.0 µg/mL and 46.6 µg/mL on A549 and H661
cells, respectively. As mentioned previously, SFE is suitable for extracting non-polar or moderately
polar ingredients; while the aqueous extraction would get the polar constituents of BS. Thus, the
deviation of the cytotoxicities of these two extracts might be due to the difference of their compositions.

2.2. Effects of BSE on Cell Cycle Regulation of Lung Cancer Cells

The effects of BSE on cell cycle progression in A549 and H661 cells were investigated by the
quantitation of the cell cycle distribution under treatment with different BSE concentrations for 48 h
by flow cytometry (Figure 2). For these two cell lines, the number of cells in the S phase and the
G2/M phase rose significantly with increasing the BSE concentration from 0 to 88 µg/mL (Table 2).
This experimental finding implies that BSE could arrest A549 and H661 cells at S and G2/M phase.
In contrast, the aqBSE arrests A549, S180 and H460 lung cancer cells at the sub-G1 phase [38,39].
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Figure 2. Cell cycle analysis of A549 and H661 cells treated with different concentrations of BSE by
flow cytometry. The cells (1 × 106 cells) were incubated with: (A) 0 µg/mL (Control), (B) 22 µg/mL,
(C) 44 µg/mL, (D) 88 µg/mL of BSE for 48 h. The percentage of each phase was analyzed by WinMDI
2.5 software.

Table 2. Distribution of lung cancer cells arrested at different phases after the treatment of different
BSE concentrations for 48 h *.

BSE Conc.
(µg/mL)

A549 Cells H661 Cells

SubG1 (%) G0/G1 (%) * S (%) * G2/M (%) * SubG1 (%) G0/G1 (%) * S (%) * G2/M (%) *

0 0.37 ± 0.08 65.89 ± 1.33 10.61 ± 0.55 23.50 ± 1.83 2.96 ± 0.40 76.75 ± 0.51 4.72 ± 0.29 18.53 ± 0.23
22 0.56 ± 0.07 65.87 ± 3.50 9.99 ± 0.58 24.15 ± 3.30 4.48 ± 0.50 77.64 ± 0.36 4.80 ± 0.33 17.56 ± 0.42
44 1.54 ± 0.10 65.06 ± 1.64 11.78 ± 0.49. 23.16 ± 2.12 5.97 ± 0.47 72.28 ± 0.99 7.33 ± 0.24 20.39 ± 1.04
88 4.59 ± 0.16 42.25 ± 2.10 19.86 ± 3.83 37.89 ± 5.93 14.17 ± 0.31 52.85 ± 2.33 11.43 ± 1.49 35.72 ± 2.88

* Percentages of the cell distribution of G0/G1, S and G2/M phases were calculated without the ratio of Sub-G1.
The data are expressed as Mean ± SD in triplicate analysis.
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2.3. BSE Treatment Caused A549 and H661 Necrosis but not Apoptosis

The Annexin V-FITC/PI detection kit was used to stain the cells and to examine the influence
of BSE on cancer cell death by flow cytometry. Binding of Annexin V to phosphatidylserine (PS) of
cells and the staining of PI on nucleus are the unique properties of apoptotic cell and necrotic cell,
respectively. The analytical results are expressed in four quadrants (Figure 3). In general, the dots in
the lower left (LL, annexin V−/PI−) quadrant are viable cells; those in the upper left (UL, annexin
V−/PI+) quadrant are cells in necrosis; while those in the lower right (LR, annexin V+/PI−) quadrant
are cells undergoing early apoptosis; upper right (UR, annexin V+/PI+) quadrant are cells in late
apoptosis. Figure 3 shows the cell death pattern of H661 cancer cells under the BSE treatment. The dots
dispersed and shifted to the UL side, i.e., in necrosis, in a dose- and time-dependent manner.
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Figure 3. Effects of BSE on H661 cell death pattern under the treatment of different durations (24 and
48 h) and different concentrations of BSE: (A) 0 µg/mL (Control), (B) 22 µg/mL, (C) 44 µg/mL,
(D) 88 µg/mL, (E) Cisplatin in 100 µg/mL. Lower left (LL) quadrant: viable cells; upper left (UL)
quadrant: necrotic cells; lower right (LR) quadrant: early apoptotic cells; upper right (UR) quadrant:
late apoptotic cells.



Molecules 2018, 23, 3304 6 of 16

The flow data show that BSE had no significant effect on the induction of apoptosis on H661 cells.
In contrast, cisplatin induced some cells to die in necrosis, while some died by apoptosis (Figure 3E).
The same analysis was also performed on A549 cells and a similar necrotic effect was observed
(Figure 4). These data demonstrate that the major type of cell death of H661 and A549 stimulated by
BSE is necrosis but not apoptosis.
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2.4. Effect of BSE on Protein Expression Related to Necroptosis

As mentioned earlier, necroptosis is a form of regulated cell death. The expression of RIP-1 and/or
RIP-3, and specifically inhibited by Nec-1 are the crucial characteristics of necroptosis [4,5,41,42].
To characterize the type of necrosis that BSE triggered, we first tested whether Nec-1 could inhibit
BSE-stimulated necrosis in lung cancer cells. The H661 cells were pretreated by 20 µM Nec-1 for
30 min, and then treated with BSE. Data in Figure 5A show that Nec-1 nearly completely inhibited
BSE-induced cell death in H661 cells. This finding suggests that the cell death induced by BSE in H661
cells was necroptosis. In addition, Figure 5B shows that the RIP-1 was highly expressed on BSE-treated
H661 cells, while the level of RIP-3 was only slightly enhanced under BSE treatment. These results
indicate that the type of necrosis triggered by BSE was necroptosis through RIP-1 induction.

Necroptosis could be induced by stimulating death receptors with agonists such as TNF-α, FasL,
and TRAIL [5,41]. TNF-α stimulation can transduce necroptosis signal in the absence of caspase-8
activity [43]. Figure 5C shows that TNF-α was highly expressed when H661 cells were treated with 10
to 40 µg/mL of BSE. Moreover, the protein level of procaspase-8 had no significant change under BSE
treatment. Accordingly, these results indicate that the necroptosis might be stimulated by TNF-α in
the absence of caspase-8 activity.

In contrast, Mollah et al. [38,39] demonstrated that aqBSE triggers lung cancer cell death through
the apoptosis process by the evidences of DNA fragmentation, annexin V staining, and the results of
immunoblot analysis, i.e., treatment with aqBSE would increase the expressions of p53 and Bax and
down-regulate Bcl-2 protein in cancer cells.

2.5. BSE Inhibits the Migration and Invasion of A549 and H661 Cells

To study the anti-metastatic effect of BSE on lung cancer cells, the inhibitory effects of BSE on
migration and invasion of cancer cells were investigated by using the wound healing assay and Boyden
chamber assay. At first, A549 and H661 cells were incubated in the absence or presence of BSE for the
wound healing assay. Figure 6 shows that incubation with BSE significant decreased the migration
of A549 and H661 cells into the wounded area in a time- and dose-dependent manner. Comparing
these results with the control (0 µg/mL), the treatment at 10 and 20 µg/mL of BSE reduced the cancer
cell migration by around 64% and 89% on A549 cells and by around 47% and 72% on H661 cells
at 24 h, respectively. Furthermore, the results of Boyden chamber assay using a transwell chamber
are demonstrated in Figure 7. The stained migratory cells treated by 10 and 20 µg/mL BSE were
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Figure 5. BSE induces cell death via necroptotic pathway in the H661 cells. (A) Cytotoxic effect of BSE
is reverted by Nec-1. H661 cells were pretreated with or without 20 µM nec-1 for 30 min and then
treated with different doses of BSE (10, 20 and 40 µg/mL) or DMSO (0 µg/mL) for 48 h. The viability of
these cells was measured by MTT assay. A significant difference between the denoted two experiments
was indicated as *** p < 0.001. (B) BSE induces RIP-1 expression in H661 cells; (C) BSE induces TNF-α
expression in the absence of caspase-8 activity in H661 cells. Cell extracts from BSE administration
were harvested at 24 h and subjected to western blot analysis. Densitometric analyses of protein were
normalized to the loading control β-actin.
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Figure 7. Effect of BSE on A549 and H661 cell migration by transwell assay. An aliquot of 2 × 105 cells
of A549 and H661, respectively, were seeded onto the upper chamber in serum-free medium with BSE
(0, 10 and 20 µg/mL) for 24 h. The cells migrated through polycarbonate membrane were stained
with crystal violet and photographed. The crystal violet-stained cells were calculated. A significant
difference from the vehicle was indicated as *** p < 0.001 (Student’s t-test).
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The inhibitory effects of BSE on the invasion of lung cancer cells were examined by a cell invasion
assay with the Boyden chamber coated with collagen. The number of A549 and H661 cells that invaded
through the Matrigel was significantly inhibited by BSE treatment (Figure 8). Quantification of cells in
the lower chamber indicates that BSE treatment significantly inhibited A549 and H661 cell invasion in
a concentration-dependent manner. The cell invasion rate is expressed as a percentage to the control
(0 µg/mL). When treating with 10 µg/mL BSE, the percentage of invasive cells decreased to 50%
and 31% on A549 and H661 cells, respectively. While at the concentration of 20 µg/mL BSE, the cell
invasions were almost totally inhibited, i.e., the invasive activity were 9% and 7% on A549 and H661
cells, respectively. In summary, these results suggested that BSE displayed strong inhibitory effects on
the migration and invasion of A549 and H661 cancer cells.
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Figure 8. Effect of BSE on A549 and H661 cell invasion. A BD BioCoatTM MatrigelTM invasion
chamber was used for invasion assay. An aliquot of 2 × 105 cells of A549 and H661, respectively,
were seeded onto the upper chamber in serum-free medium with BSE (0, 10 and 20 µg/mL) for 24 h.
The cells invaded through Matrigel were stained with crystal violet and photographed. The crystal
violet-stained cells were calculated. A significant difference from the vehicle was indicated *** p < 0.001
(Student’s t-test).

2.6. Cytotoxicity of Main Ingredients of BSE on Lung Cancer Cells

The gas chromatography-mass spectrometry (GC-MS) analytical results show that BSE contains at
least 25 ingredients (Figure 9), of which 10 compounds were identified using the NIST spectral database
of the mass spectrometry. The main constituents of BSE were identified as α-guaiene (relative content
RC = 34.0%; retention time RT = 25.21 min), (−)-guaiol (RC = 28.7%; RT = 23.69 min), (−)-nortrachelogenin
(RC = 8.3%; RT = 43.04 min), β-eudesmol (RC = 6.4%; RT = 28.20 min) and β-caryophyllene (RC = 1.4%;
RT = 12.55 min). The identities of α-guaiene, (−)-guaiol, β-eudesmol and β-caryophyllene were further
confirmed by comparing their mass spectral data with the analytical results from the commercially
available products, while (−)-nortrachelogenin was commercially unavailable.
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Figure 9. Gas chromatography-mass spectrometry profile of BSE sample and the four ingredients
identified from this analysis. These four compounds were confirmed by comparing with their mass
spectral data with the NIST mass spectral library and commercially available products.

The cytotoxicity assessments of these four compounds on two lung cancer cell lines for 48 h
treatment are shown in Figure 10. The cytotoxicity (expressed by IC50 value) of α-guaiene, (−)-guaiol
and β-caryophyllene to A549 cells were 142.6 ± 5.1 µg/mL (0.698 ± 0.025 mM), 110.8 ± 4.0 µg/mL
(0.618 ± 0.022 mM) and 150.2 ± 3.7 µg/mL (0.685 ± 0.017 mM), respectively. To H661 cells, the IC50

values of these three ingredients were 69.9 ± 1.3 µg/mL (0.342 ± 0.006 mM), 111.9 ± 3.1 µg/mL
(0.624 ± 0.017 mM) and 106.2 ± 3.3 µg/mL (0.520 ± 0.016 mM), respectively. The cytotoxicities of
β-eudesmol to these two cancer cell lines were insignificant. Therefore, α-guaiene, (−)-guaiol and
β-caryophyllene should be responsible for the main cytotoxicity of BSE against A549 and H661 cells.
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Figure 10. Cytotoxicities of α-guaiene, (−)-guaiol, β-caryophyllene and β-eudesmol on A549 and H661
cells for 48 h treatment.

α-Guaiene is a sesquiterpene and exists in the extracts of numerous plants [44–46]. However, there
has been little literature reported on its anti-cancer activity. (−)-Guaiol is a sesquiterpene alcohol and is
a key component of many medicinal plants [47,48]. It has been demonstrated that (−)-guaiol possesses
significant cytotoxicity on NSCLC cells and regulates autophagic cell death [49,50]. β-Caryophyllene,
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an important component in the extracts of various species of medicinal plants, has been reported to
have anti-proliferative effects on various cancer cells, including pancreatic cancer, colon cancer [51],
hepatoma [52], endometrial cancer [53], and skin epidermoid cancer [54].

Rodilla et al. [35] reported that the major components of their BS essential oil were bulnesol
(RC = 34.7%) and guaiol (RC = 20.4%). α-Guaiene (RC = 0.2%), β-caryophyllene (RC = 0.1%) and
β-eudesmol (RC = 1.3%) were also presented but in a small amount. The difference in the composition
between this essential oil extract and BSE should be mainly due to the difference in extraction methods,
in which the former and the latter were prepared by steam distillation and SFE, respectively.

As for the aqBSE, the analytical results from high performance liquid chromatography (HPLC)
show that the main active ingredients are various types of catechins, such as (−)-epigallocatechin,
(−)-epicatechin, (−)-epicatechin gallate, and (+)-catechin gallate; and these catechins have their own
anti-cancer effects [39].

3. Materials and Methods

3.1. Reagents

Dulbecco’s modified Eagle’s medium (DMEM), fetal bovine serum, RPMI-1640 medium,
L-glutamine, penicillin and streptomycin were from Gibco (Grand Island, NY, USA).
3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and necrostatin-1 reagent were
purchased from Sigma-Aldrich (St. Louis, MO, USA). Antibodies to RIP-1 and TNF-α were purchased
from Cell Signaling Technology (Danvers, MA, USA). Primary antibody to RIP-3 and the horseradish
peroxidase-conjugated anti-rabbit and anti-mouse IgG secondary antibodies were obtained from
Millipore Co. (Temecula, CA, USA). Antibodies to procaspase-8 and β-actin were separately purchased
from BD Bioscience (San Jose, CA, USA) and Santa Cruz Biotechnology (Santa Cruz, CA, USA).
All chemicals used in this study were of reagent or higher grade.

3.2. Preparation of BSE

The wood waste material of BS (imported from South America) was purchased from a local
wood furniture company (Chiayi, Taiwan). The supercritical-CO2 fluid extract (BSE) was prepared
by processing 2 kg of the crushed powder in the supercritical fluid extractor (5 L/1000 bar R&D
unit, Natex, Ternitz, Austria). The dynamic extractions were performed as: 0–150 bar for 20 min;
150–250 bar for 20 min; 250–300 bar for 10 min; 300–350 bar for 10 min; and stay at 350 bar, 40 ◦C for
2 h. The extracted sample was dried in a freeze-dryer. The resulting extract was 208 g. The extraction
yield was 10.4%. The BSE was stored at −20 ◦C and dissolved in dimethyl sulfoxide (DMSO) before
use. The final DMSO concentration in the medium was less than 0.1%.

3.3. Cell Culture

Human lung carcinoma cell line A-549 (BCRC 60074), H661 (BCRC 60125) and human lung normal
fibrobast MRC-5 (BCRC 60023) were purchased from Bioresource Collection and Research Center
(BCRC, Hsinchu, Taiwan). A-549 and MRC-5 cells were grown in DMEM with 10% fetal bovine serum,
1% penicillin/streptomycin, and supplemented with 2 mM L-glutamine. H661 cells were grown in
RPMI-1640 medium supplemented with 10% fetal bovine serum, 1% penicillin/streptomycin, and
2 mM L-glutamine. Cells were subcultured every two days and cultivated in a humidified incubator at
37 ◦C with 5% CO2 and 95% air.

3.4. Cytotoxicity Assay

Cancer cells were cultured in 96-well plates at 1 × 104 cells for 24 h before treatment. The indicated
concentration of BSE was then added. After cultivation for the given period, the culture medium was
replaced by 100 µL of the culture medium containing 0.5 mg/mL MTT assay kit (Sigma-Aldrich
Chemicals), and the cells were further incubated for 2 h. The medium solution was removed
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and an aliquot of 100 µL DMSO was added. The plate was shaken until the crystals dissolved.
The cytotoxicity against the tested cells was measured at 570 nm using an ELISA reader (Model 550,
Bio-Rad Laboratories, Hercules, CA, USA).

3.5. Flow Cytometric Analysis on Cell Cycle

Lung cancer cells (1 × 106 cells) were incubated in a 10 cm dish for 24 h. Treated with various
concentrations of BSE for 48 h. The treated cells were harvested, washed with phosphate-buffer saline
(PBS) and treated with 100 µL trypsin-EDTA solution to detach the cells. The suspension solution
was collected and centrifuged at 200× g for 10 min. The cell pellet was washed with PBS, and then
fixed in 70% ethanol at 4 ◦C overnight. After washing twice with cold PBS, cells were suspended in
PBS that contained 40 µg/mL propidium iodide (PI) and 0.1 mg/mL RNase A (Gentra Systems Inc.,
Minneapolis, MN, USA), and was kept at 4 ◦C for 12 h. The stained cells were then analyzed with
BD FACSCaliburTM flow cytometer (BD Bioscience, Franklin Lakes, NJ, USA). The percentages of cell
cycles were calculated by WinMDI 2.9 software (TSRI, La Jolla, CA, USA).

3.6. Measurement of Apoptotic Ratio of A549 Cells

The necrotic and apoptotic cells were analyzed with Annexin-V-FITC apoptosis detection kit
(AVK050, Strong Biotech Co., Taipei, Taiwan). Lung cancer cells (1 × 106 cells) were incubated in
10 cm dish for 24 h. After treating with different concentrations of BSE for 24 and 48 h, the treated
cells were harvested, washed with PBS, and then treated with trypsin-EDTA solution to detach the
cells. The suspended cells were centrifuged at 200× g for 10 min. After washing twice with cold PBS,
cells were collected by centrifugation at 200× g for 5 min, and stained with FITC-conjugated annexin
V and propidium iodide (PI). Cytometry was performed on BD FACSCaliburTM flow cytometer and
analyzed with WinMDI 2.9 software.

3.7. Cell Migration by Wound Healing Assay

An aliquot of 1 × 106 cells were seeded into 6 cm dish and cultured for 24 h. Cells wound was
artificially injured by using a sterile pipette tip. The cells were washed twice with PBS buffer to
remove detached cells and cell debris. After which the culture medium containing certain dose of
BSE was added. Cell migration into the wounded area was photographed at different time points
using an inverted phase-contrast microscope (Nikon Eclipse TS100, Chiyoda-ku, Tokyo, Japan) at a
magnification of 4×. All wound healing assays were conducted in triplicate. The closure rate was
calculated using the following formula:

Wound closure rate (%) = (Original width − Width after migration)/Original width × 100%

3.8. Cell Migration and Invasion Assays by Boyden Chamber

Cell migration and invasion were evaluated with the CytoSelect™ 24-well cell migration assay
(Cell Biolabs, San Diego, CA, USA) and BioCoat™ Matrigel™ Invasion Chamber (BD Biosciences),
respectively. To determine the effect of BSE on cell migration, 2 × 105 lung cancer cells with 0, 10
and 20 µg/mL BSE in 200 µL serum-free medium were placed on a polycarbonate membrane insert
(8 µm pore size), and then put this insert on the bottom chamber which was filled with DMEM or
RPMI-1640 medium containing 10% FBS as a chemo-attractant. After incubation at 37 ◦C for 24 h, the
non-migratory cells in the upper chamber were wiped away by scrubbing with wet cotton-tipped swabs
for 2–3 times. The invaded cells were fixed with methanol, stained with crystal violet, photographed
and counted under a phase-contrast microscope (400×, Nikon Eclipse TS100, Chiyoda-ku, Tokyo,
Japan). The similar procedure was carried out in experiments on cell invasion, except that the
polycarbonate membrane was coated with a uniform layer of collagen.
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3.9. Western Blot Analysis

To analyze the related proteins, 1.5 × 106 cells were seeded into 10 cm culture dish with or
without BSE treatment. After 24 h incubation, the medium was removed and cells were washed
several times with PBS (0.01 M, pH 7.2). Whole-cell lysates were prepared as our previous paper [53].
The harvested protein concentration was measured using a protein assay kit (Bio-Rad). Samples with
equal amounts of denatured proteins were resolved on 10% sodium dodecyl sulfate polyacrylamide gel
electrophoresis (SDS-PAGE). Proteins were transferred onto a nitrocellulose membrane (Immunobilin P;
Millipore, Billerica, MA, USA). The membrane was blocked with 5% nonfat milk in Tris-buffered saline,
probed with indicated primary antibody and then hybridized with horseradish peroxidase-conjugated
secondary antibodies. The protein levels were detected using Enhanced Chemiluminescence (ECL)
Plus Western blotting detection reagents (Amersham Bioscience, Uppsala, Sweden). Densitometric
analyses were conducted by ChemiDocTM XRS+ System (Bio-Rad).

3.10. Gas Chromatography-Mass Spectrometry

GC-MS analysis was performed using Clarus 500 GC and Clarus 500 system (Perkin Elmer, San
Diego, CA, USA) with the electron impact mode (70 eV) injector. The GC column was ZB-5 capillary
column (30 m × 0.25 mm, film thickness 0.1 µm, FactorFourTM, Phenomenex, Torrance, CA, USA). Injector
temperature was set at 150 ◦C. Oven temperature was kept at 55 ◦C for 5 min, then raised to 300 ◦C by a
rate of 5 ◦C/min, and kept for 10 min. The carrier gas was helium at a flow rate of 1 mL/min. Diluted
samples of 1.0 µL were injected manually and the split ratio was 1:5. The percentages of the compounds
were calculated by the area normalization method without considering response factors. The components
were identified by comparison of their mass spectra with the NIST MS 2.0 database (NIST, Gaithersburg,
MD, USA). Four authentic compounds used to confirm the MS-identified ingredients and used in the
cytotoxicity experiment on lung cancer cells were purchased from Sigma-Aldrich.

3.11. Statistical Analysis

All experiments were carried out for three to five independent replicates. The experimental
data were analyzed by Microsoft Excel software (2010, Microsoft Software Inc., Redmond, WA, USA).
The data are expressed in terms of mean and standard deviation. The statistical differences were
analyzed by Student’s t-test.

4. Conclusions

This study demonstrates that the supercritical fluid extract of BS (BSE) had significant cytotoxicity
on A549 and H661 lung cancer cells. Under BSE treatment, the cell cycle arrest, necrosis by
annexin V-FITC/PI double staining detection, and expressions of necroptotic proteins in cancer
cells were investigated. These results indicate that BSE exhibited necroptotic effect on NSCLC cells.
Additionally, BSE had significant suppressive effects on the migration and invasion of lung cancer
cells. The experimental data of chemical composition analysis and the bioactivity assay indicate that
α-guaiene, (−)-guaiol and β-caryophyllene were mostly responsible for the anti-cancer activity of
BSE. In comparison to the aforementioned literature of the aqBSE, the main ingredients of BSE were
quite different from those of aqBSE. This might result in the different cell death types (necroptosis vs
apoptosis) and their cytotoxicities. Since BSE is prepared by SFE, which is an environment-friendly
and efficient technique, as well as possesses a high cytotoxicity toward NSCLC cells, BSE represents a
potential source for the treatment of lung cancer.
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