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Abstract: A convenient and effective route for the synthesis of aryl(difluoromethyl)phosphonates
has been developed based on cross-coupling reactions. Upon treatment with a stoichiometric
amount (or a catalytic amount in some cases) of Cul and CsF, aryl iodides reacted smoothly with
(silyldifluoromethyl)phosphonates to give the corresponding aryl(difluoromethyl)phosphonates in
good yields.
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1. Introduction

Fluorinated organic compounds play important roles in the progress of medicinal, agricultural,
and material sciences [1-9]. Difluoromethylene compounds have been important synthetic targets
due to the unique properties of the CF,-moiety, which acts as a bioisostere for an ether oxygen
atom or a carbonyl group [10-12]. Organic compounds containing difluoromethylphosphonate
moieties (-CF,PO(OR),) are of great interest for application as protein tyrosine phosphatase (PTP)
inhibitors [13-17]. Among them, aryl(difluoromethyl)phosphonates (Ar-CF,PO(OR);) have received
a great deal of attention in the design and development of bioactive agents. Currently, the selective
introduction of CF,PO(OR), groups into aromatic compounds is a topic of considerable interest.
Meanwhile, transition metal-catalyzed cross-coupling reactions are now employed for wide
repertoire of aromatic carbon-carbon, carbon-heteroatom bond-forming reactions [18]. Fluoro and
fluoroalkyl cross-coupling reactions are one of the most powerful methods to construct fluoro
aromatic compounds [19-21]. To date, selective introduction of difluoromethylphosphonate groups
into aromatics with high generality and functional-group compatibility has been investigated
broadly [22-36]. For the construction of Ar-CF,PO(OR); frameworks, one of the most common
and reliable methods is copper-mediated cross-coupling reactions involving CuCF;PO(OR),
species [22,23,25-28,32,33,35]. Despite such synthetic utility, most of the reported methods
require the use of stoichiometric (sometimes, excess) amounts of copper reagents to complete
these cross-coupling reactions [26,28]. There have been few and limited successful examples
in which a small amount of transition metal complexes promoted cross-coupling reactions for
introducing difluoromethyl-phosphonate moieties. Due to the demand for Ar-CF,PO(OR),
compounds, a general catalytic approach is required. @ As a cross-coupling participant,
[(trimethylsilyl)difluoromethyl]phosphonate (Me3Si-CF,PO(OEt),: 2) is stable and readily available
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from Br-CF,PO(OEt);, [37]. Herein, we describe fundamental studies on Cu-mediated cross-coupling
of aryl iodides 1 and [(silyl)difluoromethyl]phosphonate 2 to deliver Ar-CF,PO(OEt), 3 (Scheme 1).
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Scheme 1. Cross-coupling of aryl iodides 1 with (silyldifluoromethyl)phosphonate 2.
2. Results and Discussion

Initially, we surveyed the suitable reaction conditions for Cu-promoted cross-coupling of aryl
iodides 1 with (silyldifluoromethyl)phosphonates 2. When a mixture of 4-iodobenzonitrile (1a) and
[(trimethylsilyl)difluoromethyl]phosphonates (2) in toluene was heated at 60 °C for 24 h in the presence
of Cul (1.0 equiv.) and KF (1.2 equiv.), the desired cross-coupling product 3a was not obtained at all
(Table 1, Entry 1). Next, we conducted the reaction using a polar aprotic solvent such as DMSO, and as
a consequence, aryl(difluoromethyl)phosphonate 3a was obtained in 43% NMR yield (Entry 2). The use
of amide solvents such as NMP and DMF was effective for the formation of phosphonate 3a in 55%
and 76% yields, respectively (Entries 3 and 4). Furthermore, THF was one of the promising solvents
for the Cu-mediated transformation to afford 3a in 74% NMR yield (Entry 5). Then, we focused our
attention on fluoride sources. Instead of potassium fluoride, the use of tetrabutylammonium fluoride
(TBAF) in DMF resulted in protodesilylation of 2 to yield HCF,PO(OEt), as a major product (Entry 6).
Cesium fluoride was found to be effective to the cross-coupling reaction Entry 7). The combination of
CsF as a fluoride source and THF as a solvent gave the highest product yield of 3a (Entry 8).

Table 1. Cul-promoted cross-coupling of p-iodobenzonitrile (1a) with [(trimethylsilyl)difluoromethyl]
phosphonate (2): Screening of solvents and fluorides !.

; 2 Cul (1 eq) o
2 MF (1.2 eq) CF,P(OEt),
+ Me,Si—CF,P(OEt), >
NC Sglvent NG /©/
1a 2 (1.2 eq) 60°C.24h 3a
Entry Solvent Fluoride (MF) Yield 2
1 toluene KF 0
2 DMSO KF 43
3 NMP KF 55
4 DMF KF 76
5 THF KF 74
6 DMF TBAF 0
7 DMF CsF 40
8 THF CsF 97 (84) 3

1 Each reaction of 4-iodobenzonitrile (1a 0.50 mmol) with Me3Si-CF,PO(OEt), (2 0.60 mmol) was carried out in the
presence of Cul (0.50 mmol), and KF (TBAF or CsF) (0.60 mmol) in solvent (1.0 mL) at 60 °C for 24 h. 2 Each yield
was calculated by F-NMR analysis of the crude product using CF3CH,OH as an internal standard. ® The value in
parenthesis indicates the isolated yield of 3a.

With optimized reaction conditions in hand, other examples of the selective formation of
aryl(difluoromethyl)phosphonate 3 were tested (Table 2). Upon treatment with a stoichiometric
amount of Cul, a wide repertoire of aryl iodides 1 underwent cross-coupling reactions to give the
corresponding difluoromethylphosphonates 3 in moderate to good yields. Of significant interest,
the present protocol worked well for both electron-deficient and electron-rich iodoarenes (1a—d).
Cyano and ester groups in 1a and 1b were tolerable under the nucleophilic fluoroalkylating conditions.
The cross-coupling of l-iodonaphthalene (le) with silyl phosphonate 2 proceeded to afford
naphthyl difluoromethylphosphonate 3e. Furthermore, heteroarenes 1f and 1g underwent the
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difluoromethylenephosphonation to give 3f and 3g in 51% and 70% isolated yields, respectively.
Notably, chloro and bromo functionalities in 3h and 3i were compatible with the present transformation.
In the each cross-coupling of 1 with 2, the major by-product was HCF,PO(OEt),; for instance,
the reaction of 2-iodopyridine (1f) with 2 gave 25% of HCF,PO(OEt), besides the desired
Py-CF,P(O)(OEt), (3f). With a good level of functional group tolerance, the reactions proceeded
smoothly under mild conditions.

Table 2. Cul-mediated cross-coupling of iodoarenes 1 with [(trimethylsilyl)difluoromethyl]
phosphonate (2) 13,

Cul (1 eq) 1l
R | Me,Si-CF ('P?(OEt) BsE (i2eg) N PO
T + €351~ - _
pZ T 2 THF R
1 2(1.2eq) 60°C,24h 3

2 o 9
/©/CF2P(OEUQ /©/CF2P(OEI)2 ©/CF2P(OEt)2
NC EtO,C
3b

3a
84% 46% 57%
2 CF P(OEt
/©/ TR 2 N CF2P<OEt>2
| N
o0 OO )
3d
36% (51%) 49° 51°
9 Q o
CENJ/CFQP(OEU;. cl CF,P(OEt), CF,P(OEt),
| & o)
Z cl Br
70°o 44°o 580°

1 Each reaction of 4-iodobenzonitrile (1a 0.50 mmol) with Me3Si-CF,PO(OEt), (2 0.60 mmol) was carried out in
the presence of Cul (0.50 mmol), and CsF (0.60 mmol) in solvent (1.0 mL) at 60 °C for 24 h. 2 Isolated yields
of 3. 3 The value in parenthesis indicates the yield calculated by F-NMR analysis of the crude product using
CF3;CH,OH as an internal standard.

Copper-mediated cross-coupling of aryl iodides with BrZnCF,PO(OEt), is one of the most
reliable methods for the synthesis of Ar-CF,PO(OEt), species (Scheme 2) [23]. However, there
is a technical drawback for the transmetallation methodology using BrZnCF,PO(OEt), and
BrCdCF,PO(OEt),; in most cases, the use of stoichiometric amounts of copper salts is needed to
complete the cross-coupling reactions. Poisson and co-workers reported the cross-coupling reactions of
Me3Si-CF,PO(OEt); (2) with aryl diazonium salts and iodonium salts upon exposure to a stoichiometric
amount of CuSCN [35]. In 2012, Zhang overcame the shortcoming of Cu-mediated cross-coupling
for install of CF,PO(OEt); group into aryl rings [26]. As a key strategy, employing the aryl iodides
(or aryl bromides) possessing directing substituents such as methoxycarbonyl or triazene groups at
the ortho-position in aryl iodides to facilitate the oxidative addition. Anyway, in order to accomplish
the reactions promoted by a small amount of copper complexes, there is a limitation concerning the
substrates endowed with ortho-directing groups [26,28].
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Scheme 2. Cu-mediated/catalyzed cross-coupling for the synthesis of aryl(difluoromethyl) phosphonates.

We examined the reactions of aryl iodides 1 with (silyldifluoromethyl)phosphonate 2 by the use
of a small amount of Cul (Scheme 3).

| Cul (X eq) o
/@/ o CsF (1.2 eq) CF,P(OEt),
+ MegSi—CF,P(OEt), - /©/
NC THF NC
1a 2(1.2eq) 60°C,24h 3a

X =1.0; 97% yield?
X =0.5; 71% yield?
X =0.2; 50% yield?
X=0.1; 8% yield?

0
No! 0 " N_ _CF,P(OEt
= , I CsF (1.2 eq) N oP(OEt),
P + Me;Si-CF,P(OEt), - U
THF ~
1f 2 (1.2 eq) 60 °C, 24 h 3f
X = 0.2; 42% yield?
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THF P
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Scheme 3. Cu-catalyzed difluoromethylenephosphonation of aryl iodides. # Each yield was calculated by
19F-NMR analysis of the crude product using CF3CH,OH as an internal standard. ? Isolated yield of 3g.

When a mixture of 1a, phosphonates 2 and CsF in THF was heated at 60 °C for 24 h
in the presence of Cul (0.5 equiv. to 1a) under argon atmosphere, the cross-coupling reaction
proceeded to give 3a in 71% yield. Upon treatment with further reduced amount of Cul (0.2 equiv.
to 1a and 1f), the cross-coupling products 3a and 3f were obtained in 50% and 42% NMR
yields, respectively. Interestingly, iodoquinoline participated in cross-coupling reaction to afford
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difluoromethylphosphonate 3g in 69% yield at 10 mol% catalyst loading. Control of the rate of the
generation of CF,PO(OEt); anion by the reaction of Me3Si-CF,PO(OEt); (2) with CsF would render a
reaction catalytic in copper possible. The major role of CsF is the activation of organosilicon compound
2 to generate CF,PO(OEt); anion. The low solubility of CsF in THF would contribute to slow generation
of CF,PO(OE), anion and formation of CuCF,PO(OEt), species in the catalytic reactions.

3. Materials and Methods

3.1. General Information

All reactions were carried out under an argon atmosphere in flame-dried glassware. Syringes used
to transfer anhydrous solvents or reagents were purged with argon prior to use. Most chemicals were
purchased from commercial suppliers and used without further purification. THF was dried by
reflux over Na chips in the presence of benzophenone as indicator. Analytical TLC was performed
on aluminum silica gel 60 Fys54 (Merck, Darmstadt, Germany) sheets, which were visualized by the
quenching of UV fluorescence (254 nm). Column chromatography was conducted on silica gel (Cica,
60-210 mesh, spherical, neutral). NMR spectra were acquired on a JNMECS 400 (400 MHz for 'H
and 376 MHz for '°F, respectively) spectrometer (JEOL, Ltd., Tokyo, Japan). 'H-NMR spectra were
recorded using TMS (MeySi) as internal standard (5 = 0). PE-NMR spectra were recorded using
hexafluorobenzene (C4Fg) as internal standard (5 = 0). All the 'H-NMR and F-NMR spectra of 3
matched those reported previously [23,25,31,35].

3.2. Cross-Coupling of Aryl lodides with Me3SiCF,PO(OEt),

To a mixture of Cul (95.2 mg, 0.50 mmol), CsF (91.1 mg, 0.60 mmol), 4-iodobenzonitrile (1a,
114.0 mg, 0.50 mmol), and THF (1.0 mL) was added [(trimethylsilyl)difluoromethyl]phosphonate (2,
156.2 mg, 0.60 mmol) at room temperature. The reaction mixture was stirred at 60 °C in an atmosphere
of nitrogen for 24 h and quenched with water. The aqueous layer was extracted with ethyl acetate.
Then, the combined organic phase was washed with water, dried over anhydrous Na;SO4. The crude
product was purified by column chromatography on silica gel (hexane/EtOAc = 2/1) to give 3a
(121.4 mg, 0.42 mmol, 84%) as a pale-yellow oil.

Diethyl (4-cyanophenyl)difluoromethylphosphonate (3a). 'H-NMR (CDCl3): 7.82-7.71 (m, 4H),
4.35-4.18 (m, 4H), 1.34 (t, ] = 7.2 Hz, 6H); 1YF-NMR (CDCl3): 51.7 (d, ] = 112.8 Hz, 2F).

Ethyl 4-[(diethoxyphosphoryl)difluoromethyl]benzoate (3b). Following a general procedure, Cul
(95.2 mg, 0.50 mmol), CsF (91.1 mg, 0.60 mmol), ethyl 4-iodobenzoate (1b, 138.0 mg, 0.50 mmol),
[(trimethylsilyl)difluoromethyl]phosphonate (2, 156.2 mg, 0.60 mmol) were used in THF (1.0 mL)
at 60 °C for 24 h. The crude product was purified by column chromatography on silica gel
(hexane/EtOAc = 2/1) to give product 2b (77.4 mg, 46% yield) as a pale yellow oil. 'H-NMR (CDCl;):
8.13 (2H, d, ] = 8.4),7.70 (2H, d, ] = 8.4), 441 (2H, q, ] = 7.2), 4.26-4.12 (4H, m), 1.41 3H, t, ] = 7.2), 1.32
(6H, t, ] =7.2); YF-NMR (CDCls): 52.4 (d, ] = 112.8 Hz, 2F).

Diethyl  difluoro(phenyl)methylphosphonate (3c). Following a general procedure, Cul
(95.2 mg, 0.50 mmol), CsF (91.1 mg, 0.60 mmol), iodobenzene (1c, 102.0 mg, 0.50 mmol),
[(trimethylsilyl)-difluoromethyl]phosphonate (2, 156.2 mg, 0.60 mmol) were used in THF (1.0 mL)
at 60 °C for 24 h. The crude product was purified by column chromatography on silica gel
(hexane/EtOAc = 3/1) to give product 2c (76.1 mg, 57% yield) as a pale-yellow oil. 'H-NMR (CDCl;):
7.63 (2H, d, ] = 8.0), 7.50-7.45 (3H, m), 4.26-4.13 (4H, m), 1.31 (6H, t, ] = 7.0); ’F-NMR (CDCl3): 53.2 (d,
J =116.6 Hz, 2F).

Diethyl (4-methoxyphenyl)difluoromethylphosphonate (3d) Following a general procedure, Cul
(95.2 mg, 0.50 mmol), CsF (91.1 mg, 0.60 mmol), 1-ethoxy-4-iodobenzene (1d, 117.0 mg, 0.50 mmol),
[(trimethylsilyl)difluoromethyl]phosphonate (2, 157.5 mg, 0.61 mmol) were used in THF (1.0 mL)
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at 60 °C for 24 h. The crude product was purified by column chromatography on silica gel
(hexane/EtOAc = 3/1) to give product 2d (51.1 mg, 36% yield) as a colorless oil. 'H-NMR (CDCl3,):
7.95(2H, d, ] =7.6), 7.54 (2H, d, | = 7.6), 4.23-4.10 (4H, m), 3.83 (3H, s), 1.30 (6H, t, ] = 6.8); ’F-NMR
(CDCl3): 54.6 (d, ] = 115.8 Hz, 2F).

Diethyl difluoro(naphthalen-1-yl)methylphosphonate (3e). Following a general procedure, Cul
(95.2 mg, 0.50 mmol), CsF (91.1 mg, 0.60 mmol), 1-iodonaphthalene (1e, 127.0 mg, 0.50 mmol),
[(trimethylsilyl)difluoromethyl]phosphonate (2, 156.2 mg, 0.60 mmol) were used in THF (1.0 mL)
at 60 °C for 24 h. The crude product was purified by column chromatography on silica gel
(hexane/EtOAc = 3/1) to give product 2e (77.1 mg, 49% yield) as a colorless oil. H-NMR (CDCl3):
8.44 (1H, d, ] = 8.4),7.97 (1H, d, ] = 8.4), 7.88 (1H, d, ] = 8.4), 7.81 (1H, d, ] = 7.2), 7.60-7.48 (3H, m),
4.24-4.00 (4H, m), 1.27 (6H, t, ] = 7.2); YF-NMR (CDCl;): 53.2 (d, ] = 112.8 Hz, 2F).

Diethyl difluoro(pyridin-2-yl)methylphosphonate (3f).  Following a general procedure, Cul
(95.2 mg, 0.50 mmol), CsF (91.1 mg, 0.60 mmol), 2-iodopyridine (1f, 102.5 mg, 0.50 mmol),
[(trimethylsilyl)difluoromethyl]phosphonate (2, 157.6 mg, 0.61 mmol) were used in THF (1.0 mL)
at 60 °C for 24 h. The crude product was purified by column chromatography on silica gel
(hexane/EtOAc = 2/1) to give product 2e (67.0 mg, 51% yield) as a pale yellow oil. 'H-NMR (CDCl;):
872(1H,d,J=4.4),7.85 (1H,t,] =8.0),7.71 (1H, d, ] = 8.0), 7.44-7.41 (1H, m), 4.24-4.37 (4H, m), 1.36
(6H, t, ] = 7.0); YF-NMR (CDCls): 51.1 (d, ] = 109.8 Hz, 2F).

Diethyl difluoro(quinolin-2-yl)methylphosphonate (3g). To a mixture of Cul (9.5 mg,
0.05 mmol), CsF (91.1 mg, 0.60 mmol), 2-iodoquinoline (1g, 127.5 mg, 0.50 mmol),
[(trimethylsilyl)difluoromethyl]-phosphonate (2, 151.0 mg, 0.58 mmol), and THF (1.0 mL) was
added [(trimethylsilyl)-difluoromethyl]phosphonate (2, 156.2 mg, 0.60 mmol) at room temperature.
The reaction mixture was stirred at 60 °C in an atmosphere of nitrogen for 24 h and quenched
with water. The aqueous layer was extracted with ethyl acetate. Then, the combined organic phase
was washed with water, dried over anhydrous Nay;SO4. The crude product was purified by column
chromatography onsilica gel (hexane/EtOAc=2/1) to give 3g (110.0 mg, 69% yield) as a pale yellow oil.
'H-NMR (CDCl3,): 8.32 (1H, d, ] = 8.4),8.19 (1H, d, ] = 8.4), 7.89 (1H, d, ] = 8.0), 7.81-7.77 (1H, m), 7.64
(1H, t, ] = 8.0), 4.39-4.32 (4H, m), 1.38 (6H, t, ] = 7.2); ’F-NMR (CDCl3): 51.1 (d, ] = 103.8 Hz, 2F).

Diethyl (3,4-dichlorophenyl)difluoromethylphosphonate (3h). Following a general procedure, Cul
(91.4 mg, 0.48 mmol), CsF (89.3 mg, 0.59 mmol), 3,4-dichloro-1-iodobenzene (1h, 131.7 mg, 0.48 mmol),
[(trimethylsilyl)difluoromethyl]phosphonate (2, 153.1 mg, 0.58 mmol) were used in THF (1.0 mL)
at 60 °C for 24 h. The crude product was purified by column chromatography on silica gel
(hexane/EtOAc = 3/1) to give product 3h (71.2 mg, 44% yield) as a pale yellow oil. TH-NMR (CDCl5):
7.70 (1H, s), 7.55 (1H, d, ] = 8.3), 7.47 (1H, d, ] = 8.3), 4.33-4.14 (4H, m), 1.35 (6H, t, ] = 7.0); ’F-NMR
(CDCl3): 52.8 (2F, d, ] = 113.4 Hz).

Diethyl (4-bromophenyl)difluoromethylphosphonate (3i). Following a general procedure, Cul
(95.2 mg, 0.50 mmol), CsF (91.1 mg, 0.60 mmol), 4-bromo-1-iodobenzene (1i, 142.0 mg, 0.50 mmol),
[(trimethylsilyl)difluoromethyl]phosphonate (2, 156.2 mg, 0.60 mmol) were used in THF (1.0 mL)
at 60 °C for 24 h. The crude product was purified by column chromatography on silica gel
(hexane/EtOAc = 3/1) to give product 3i (100.0 mg, 58% yield) as a pale yellow oil. 'H-NMR (CDCl3):
7.60 (2H, d, ] = 8.4),7.49 (2H, d, ] = 8.4), 4.10-4.30 (4H, m), 1.33 (6H, t, ] = 7.1); ’F-NMR (CDCl;): 52.8
(2F d, ] =113.4 Hz).

4. Conclusions

In summary, we have developed a convenient route to aryl(difluoromethyl)phosphonates
from aryl iodides. Using a simple combination of the coupling partners (iodoarenes and
Me3Si-CF,PO(OEt),), the cross-coupling proceeded smoothly under mild reaction conditions.
The present transformations employing Cul are synthetically useful. In some cases, a small amount
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of Cul promoted the cross-coupling reactions to afford aryl(difluoromethyl)phosphonates. From the
practical viewpoint, this study will enable the development of valuable organofluorine compounds
with potential biological utility.
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