

Mollicellins O-R, Four New Depsidones Isolated from the Endophytic Fungus *Chaetomium* sp. Eef-10

Jinkui Ouyang ^{1,†}, Ziling Mao ^{1,2,†}, Hui Guo ³, Yunying Xie ⁴, Zehua Cui ⁵, Jian Sun ⁵, Huixiong Wu ¹, Xiujun Wen ¹, Jun Wang ^{1,2,*} and Tijiang Shan ^{1,2,*}

- ¹ Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; ouyangjinkui@stu.scau.edu.cn (J.O.); zlmao@scau.edu.cn (Z.M.); hxwu@scau.edu.cn (H.W.); wenxiujun@scau.edu.cn (X.W.)
- ² Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
- ³ College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China; tggh635@163.com
- ⁴ Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peaking Union Medical College, Beijing 100050, China; xieyy@imb.pumc.edu.cn
- ⁵ National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China; cuizehua@stu.scau.edu.cn (Z.C.); jiansun@scau.edu.cn (J.S.)
- * Correspondence: wangjun@scau.edu.cn (J.W.); tjshan@scau.edu.cn (T.S.); Tel.: +86-136-5084-6155 (J.W.); +86-158-2025-8367 (T.S.)
- + These authors contributed equally to this work.

Received: 15 November 2018; Accepted: 4 December 2018; Published: 5 December 2018

Contents

Figure S1.1 UV spectrum of mollicellin O (1)	4
Figure S1.2 IR spectrum of mollicellin O (1)	4
Figure S1.3 ¹ H NMR spectrum of mollicellin O (1) (Acetone-d ₆ , 600MHz)	5
Figure S1.4 ¹³ C NMR spectrum of mollicellin O (1) (Acetone- <i>d</i> ₆ , 150 MHz)	5
Figure S1.5 HSQC spectrum of mollicellin O (1) (Acetone-d ₆)	6
Figure S1.6 HMBC spectrum of mollicellin O (1) (Acetone- <i>d</i> ₆)	6
Figure S1.7 NOESY spectrum of mollicellin O (1) (Acetone- <i>d</i> ₆)	7
Figure S1.8 HR-ESI-MS spectrum of mollicellin O (1)	7
Figure S2.1 UV spectrum of mollicellin P (2)	8
Figure S2.2 IR spectrum of mollicellin P (2)	9
Figure S2.3 ¹ H NMR spectrum of mollicellin P (2) (Acetone- <i>d</i> ₆ , 600MHz)	9
Figure S2.4 ¹³ C NMR spectrum of mollicellin P (2) (Acetone-d ₆ , 150 MHz)	10
Figure S2.5 HSQC spectrum of mollicellin P (2) (Acetone- <i>d</i> ₆)	10
Figure S2.6 HMBC spectrum of mollicellin P (2) (Acetone-d ₆)	11
Figure S2.7 NOESY spectrum of mollicellin P (2) (Acetone- <i>d</i> ₆)	11
Figure S2.8 HR-ESI-MS spectrum of mollicellin P (2)	
Figure S3.1 UV spectrum of mollicellin Q (3)	13
Figure S3.2 IR spectrum of mollicellin Q (3)	13
Figure S3.3 ¹ H NMR spectrum of mollicellin Q (3) (Acetone- <i>d</i> ₆ , 600MHz)	14
Figure S3.4 ¹³ C NMR spectrum of mollicellin Q (3) (Acetone- <i>d</i> ₆ , 150 MHz)	14
Figure S3.5 HSQC spectrum of mollicellin Q (3) (Acetone- <i>d</i> ₆)	15
Figure S3.6 HMBC spectrum of mollicellin Q (3) (Acetone-d ₆)	15
Figure S3.7 NOESY spectrum of mollicellin Q (3) (Acetone- <i>d</i> ₆)	16
Figure S3.8 HR-ESI-MS spectrum of mollicellin Q (3)	16
Figure S4.1 UV spectrum of mollicellin R (4)	17
Figure S4.2 IR spectrum of mollicellin R (4)	18
Figure S4.3 ¹ H NMR spectrum of mollicellin R (4) (Acetone- <i>d</i> ₆ , 600MHz)	

Figure S4.4 ¹³ C NMR spectrum of mollicellin R (4) (Acetone- <i>d</i> ₆ , 150 MHz)	19
Figure S4.5 HSQC spectrum of mollicellin R (4) (Acetone-d ₆)	19
Figure S4.6 HMBC spectrum of mollicellin R (4) (Acetone-d ₆)	20
Figure S4.7 NOESY spectrum of mollicellin R (4) (Acetone-d ₆)	20
Figure S4.8 HR-ESI-MS spectrum of mollicellin R (4)	21
Figure S5.1 UV spectrum of mollicellin G (5)	22
Figure S5.2 IR spectrum of mollicellin G (5)	22
Figure S5.3 ¹ H NMR spectrum of mollicellin G (5) (Acetone- <i>d</i> ₆ , 600MHz)	23
Figure S5.4 ¹³ C NMR spectrum of mollicellin G (5) (Acetone- <i>d</i> ₆ , 600MHz)	23
Figure S5.5 HR-ESI-MS spectrum of mollicellin G (5)	24
Figure S6.1 UV spectrum of mollicellin H (6)	24
Figure S6.2 IR spectrum of mollicellin H (6)	25
Figure S6.3 ¹ H NMR spectrum of mollicellin H (6) (DMSO-d ₆ , 600MHz)	25
Figure S6.4 ¹³ C NMR spectrum of mollicellin H (6) (DMSO-d ₆ , 150 MHz)	26
Figure S6.5 HSQC spectrum of mollicellin H (6) (DMSO-d6)	26
Figure S6.6 HMBC spectrum of mollicellin H (6) (DMSO-d ₆)	27
Figure S6.7 NOESY spectrum of mollicellin H (6) (DMSO-d ₆)	27
Figure S6.8 HR-ESI-MS spectrum of mollicellin H (6)	28
Figure S7.1 ¹ H NMR spectrum of mollicellin I (7) (Acetone- <i>d</i> ₆ , 600MHz)	28
Figure S7.2 ¹³ C NMR spectrum of mollicellin I (7) (Acetone- <i>d</i> ₆ , 600MHz)	29
Figure S7.3 HR-ESI-MS spectrum of mollicellin I (7)	29

Figure S1.1 UV spectrum of mollicellin O (1)

Figure S1.2 IR spectrum of mollicellin O (1)

Figure S1.3 ¹H NMR spectrum of mollicellin O (1) (Acetone-d₆, 600MHz)

Figure S1.4 ¹³C NMR spectrum of mollicellin O (1) (Acetone-d₆, 150 MHz)

Figure S1.5 HSQC spectrum of mollicellin O (1) (Acetone-d₆)

Figure S1.6 HMBC spectrum of mollicellin O (1) (Acetone-d₆)

Figure S1.7 NOESY spectrum of mollicellin O (1) (Acetone-*d*₆)

Figure S1.8 HR-ESI-MS spectrum of mollicellin O (1)

Figure S1.9 HMBC correlation of H-2' with C-4a and C-3 in mollicellin O (1)

Figure S2.1 UV spectrum of mollicellin P (2)

Figure S2.2 IR spectrum of mollicellin P (2)

Figure S2.3 ¹H NMR spectrum of mollicellin P (2) (Acetone-d₆, 600MHz)

Figure S2.4 ¹³C NMR spectrum of mollicellin P (2) (Acetone-d₆, 150 MHz)

Figure S2.5 HSQC spectrum of mollicellin P (2) (Acetone-d₆)

Figure S2.6 HMBC spectrum of mollicellin P (2) (Acetone-d₆)

Figure S2.7 NOESY spectrum of mollicellin P (2) (Acetone-*d*₆)

Figure S2.8 HR-ESI-MS spectrum of mollicellin P (2)

Figure S2.9 HMBC correlation of H-2' with C-4a and C-3 in mollicellin P (2)

Figure S3.1 UV spectrum of mollicellin Q (3)

Figure S3.2 IR spectrum of mollicellin Q (3)

Figure S3.3 ¹H NMR spectrum of mollicellin Q (3) (Acetone-d₆, 600MHz)

Figure S3.4 ¹³C NMR spectrum of mollicellin Q (3) (Acetone-*d*₆, 150 MHz)

Figure S3.5 HSQC spectrum of mollicellin Q (3) (Acetone-d₆)

Figure S3.6 HMBC spectrum of mollicellin Q (3) (Acetone-*d*₆)

Figure S3.7 NOESY spectrum of mollicellin Q (3) (Acetone-*d*₆)

					Mac	c Snor	strum S	martE	orm	ula D	oport				
					Inda	is oper	Juline	maru	UIII		epon				
Analysis Info											Acquisition Date 6/27/2018 4:26:33 PM				
Analysis Na Method Sample Na Comment	ame me	D:\Data\MS\data\201806\ouyang_oy-14_pos_54_01_5031.d LC_Direct Infusion_pos_100-1000mz.m ouyang_oy-14_pos									Operator SCSIO Instrument maXis 255552.000				
Acquisition Paramet Source Type Focus Scan Begin Scan End		er ESI Active 100 m/z 2000 m/z			lo Se Se Se	n Polarity et Capillary et End Plate C et Charging V et Corona	Positive 4500 V -500 V 0 V 0 N			Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve Set APCI Heater			0.4 Bar 180 °C 4.0 l/min Waste 0 °C		
Intens,:														+MS, 1	.4min #8
×105															
2.5															
2.0				415.1751											
1.5															
1.0															
												437.1565			
0.5											434.1478				
405		41	0	415		420	425		430		435	, , ,	440	445	m
N	Meas. m/z 415.1751 437.1565 851.3243	# 1 1	lon Formula C23H27O7 C23H26NaO7 C46H52NaO14	Score 100.00 100.00 100.00	m/z 415.1751 437.1571 851.3249	err [ppm] -0.1 -1.3 -0.7	err [mDa] -0.1 -0.6 -0.6	mSigma 5.8 1.8 19.0	rdb 10.5 10.5 20.5	e ⁻ Conf even even even	N-Rule ok ok ok				

Figure S3.8 HR-ESI-MS spectrum of mollicellin Q (3)

Figure S3.9 HMBC correlation of H-2' with C-4a and C-3 in mollicellin Q (3)

Figure S4.1 UV spectrum of mollicellin R (4)

Figure S4.2 IR spectrum of mollicellin R (4)

Figure S4.3 ¹H NMR spectrum of mollicellin R (4) (Acetone-d₆, 600MHz)

-194.92

Figure S4.4 ¹³C NMR spectrum of mollicellin R (4) (Acetone-d₆, 150 MHz)

Figure S4.5 HSQC spectrum of mollicellin R (4) (Acetone-d₆)

Figure S4.6 HMBC spectrum of mollicellin R (4) (Acetone-d₆)

Figure S4.7 NOESY spectrum of mollicellin R (4) (Acetone-d₆)

Figure S4.8 HR-ESI-MS spectrum of mollicellin R (4)

Figure S4.9 HMBC correlation of H-2' with C-4a and C-3 in mollicellin R (4)

Figure S5.1 UV spectrum of mollicellin G (5)

Figure S5.2 IR spectrum of mollicellin G (5)

Figure S5.3 ¹H NMR spectrum of mollicellin G (5) (Acetone-d₆, 600MHz)

Figure S5.4 ¹³C NMR spectrum of mollicellin G (5) (Acetone-*d*₆, 600MHz)

				Mas	s Spec	strum S	SmartF	orm	ula R	eport					
Analysis Info									A	Acquisition [Date 6/27/2	e 6/27/2018 4:19:34 PM			
nalysis Name D:\DatalMS\idata\201806\ouyang_oy-9_pos_52_01_5029.d lethod LC_Direct Infusion_pos_100-1000mz.m ample Name ouyang_oy-9_pos iomment									C	Operator nstrument	SCSIO maXis	255552.	00029		
Acquisition Parameter Source Type Focus Scan Begin Scan End		F Active 100 m/z 2000 m/z		lor Se Se Se	n Polarity et Capillary et End Plate C et Charging Ve et Corona	Positive 4500 V -500 V 0 V 0 nA			Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve Set APCI Heater		0.4 Bar 180 °C 4.0 l/min Waste 0 °C				
Intens.													+MS, 0.4min #24		
x10 ²															
0.8-															
0.6			369.1335												
0.4															
0.2-								3	33.1491						
0.0		205	, _ <u>_</u>	, <i>, ,</i> ,			381	.1322	+ + +		391.1151	396	3.8024		
300			310	· .	3/5		300				355	380	miz		
Meas. 369.1	nvz # 335 1	C21H21O8	100.00	m/z 369.1333	err [ppm] -0.5	err [mDa] -0.2	msigma 11.1	rdb 11.5	e Conf even	N-Rule ok					
391.1 759.2	151 1 403 1	C21H20NaO6 C42H40NaO12	100.00	391.1152 759.2412	0.2	0.1 0.9	77.9 15.8	11.5 22.5	even	ok ok					

Figure S5.5 HR-ESI-MS spectrum of mollicellin G (5)

Figure S6.1 UV spectrum of mollicellin H (6)

Figure S6.2 IR spectrum of mollicellin H (6)

Figure S6.3 ¹H NMR spectrum of mollicellin H (6) (DMSO-d₆, 600MHz)

Figure S6.4 ¹³C NMR spectrum of mollicellin H (6) (DMSO-d₆, 150 MHz)

Figure S6.5 HSQC spectrum of mollicellin H (6) (DMSO-d₆)

Figure S6.6 HMBC spectrum of mollicellin H (6) (DMSO-d₆)

Figure S6.7 NOESY spectrum of mollicellin H (6) (DMSO-d₆)

Mass Spectrum SmartFormula Report

1+ 370.1375 0.2 1+ 371.1400 374.9056 0.0+ 362 364 366 368 370 372 374 376 378 m/z err [mDa] 0.2 e^C Conf N-Rule Ion Formula mSigma Meas, m/z rdb # Score m/z err [ppm] 369.134420 C22H17N4O2 100.00 369.134602 0.5 1.3 16.5 1 ok even -1.2 -3.2 0.5 2 C21H21O6 66.00 369.133265 -3.1 12.8 11.5 even ok 737.259253 737.261928 22.5 32.5 23.08 -4.3 0.7 19.3 40.2 737.262442 1 C42H41012 even ok 100.00 2 C44H33N8O4 ok even

Figure S6.8 HR-ESI-MS spectrum of mollicellin H (6)

Figure S7.1 ¹H NMR spectrum of mollicellin I (7) (Acetone-*d*₆, 600MHz)

Figure S7.2 ¹³C NMR spectrum of mollicellin I (7) (Acetone-d₆, 600MHz)

Figure S7.3 HR-ESI-MS spectrum of mollicellin I (7)

 $\ensuremath{\mathbb{C}}$ 2018 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).