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Abstract: Human Epidermal Growth Factor Receptor-1 (EGFR), a transmembrane tyrosine kinase
receptor (RTK), has been associated with several types of cancer, including breast, lung, ovarian,
and anal cancers. Thus, the receptor was targeted by a variety of therapeutic approaches for cancer
treatments. A series of chalcone derivatives are among the most highly potent and selective inhibitors
of EGFR described to date. A series of chalcone derivatives were proposed in this study to investigate
the intermolecular interactions in the active site utilizing molecular docking and molecular dynamics
simulations. After a careful analysis of docking results, compounds 1a and 1d were chosen for
molecular dynamics simulation study. Extensive hydrogen bond analysis throughout 7 ns molecular
dynamics simulation revealed the ability of compounds 1a and 1d to retain the essential interactions
needed for the inhibition, especially MET 93. Finally, MM-GBSA calculations highlight on the
capability of the ligands to bind strongly within the active site with binding energies of −44.04
and −56.6 kcal/mol for compounds 1a and 1d, respectively. Compound 1d showed to have a close
binding energy with TAK-285 (−66.17 kcal/mol), which indicates a high chance for compound
1d to exhibit inhibitory activity, thus recommending to synthesis it to test its biological activity.
It is anticipated that the findings reported here may provide very useful information for designing
effective drugs for the treatment of EGFR-related cancer disease.

Keywords: anti-cancer; tyrosine kinase inhibitors; chalcone; molecular docking; molecular dynamics;
MM-GBSA

1. Introduction

Epidermal growth factor (EGF) or ErbB receptors belong to subclass I of the receptor tyrosine
kinase protein’s family that consists of EGFR (ErbB1), HER2 (ErbB2, HER2/neu), HER3 (ErbB3),
and HER4 (ErbB4) [1]. The three-dimensional structure of the EGFR is built up of three domains,
namely; extracellular ligand binding domain region, transmembrane domain and cytoplasmic or an
intracellular kinase domain [2]. Currently, there are two common classes of EGFR inhibitors, including
monoclonal antibodies (mAbs) targeting the extracellular domain of EGFR, such as cetuximab (Erbitux),
and small-molecule tyrosine kinase inhibitors (TKIs) targeting receptor’s catalytic domain of EGFR,
such as gefitinib (Iressa®) and erlotinib (Tarceva®) [3–5]. EGFR-directed TKIs have the following
mechanism: Upon binding of a specific ligand to EGFR’s binding domain, dimerization will occur
to form heterodimeric receptor. This will activate the receptor’s autophosphorylation through the
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cytoplasmic tyrosine kinase catalytic domain. This catalytic activity initiates downstream regulation of
many receptors’ signaling pathways, which are responsible for several critical processes including cell
proliferation and differentiation, tissue homeostasis and tumorigenesis. Correspondingly, this means
that they are responsible for cancer cell proliferation, arresting of the apoptosis process and stimulation
of metastasis. On the other hand, TKIs which are highly selective for EGFR tyrosine kinase can inhibit
autophosphorylation in a variety of EGFR-expressing human cancer cell lines. This inhibition takes
place by competing with adenosine triphosphate (ATP) for its binding site on the intracellular domain
of EGFR [6–11]. Thus, the development of small molecular compounds to inhibit EGFR is an important
therapeutic approach for treating variety of cancers. Therefore, small molecule-molecule inhibitors
that compete with either the ligand-binding domain or ATP binding pocket of the cytoplasmic tyrosine
kinase domain can act as anticancer drugs.

Several small molecules based on quinazoline derivatives—gefitinib, erlotinib, lapatinib (Tykerb®,
also known as GW-572016) and vandetanib (ZactimaTM)—were recently approved for the treatment of
breast cancer and non-small cell lung cancer (NSCLC) [9,10,12–19]. Although the therapeutic effect of
the current anticancer quinazoline-based agents on different cancers have been well established, many
side effects such as diarrhea, skin rashes, nausea, vomiting, hemorrhage and abnormal liver functions
were also reported [17,20,21].

Clearly, as an anticancer agent it is necessary to find drugs with minimum adverse effects
those provide more hope for patients. Hence, the use of chalcone derivatives was considered
for minimizing unwanted side effects [22–25]. In addition, several studies revealed the ability of
chalcone derivatives to become an important antimicrobial, antifungal, anti-mycobacterial, antimalarial,
antiviral, anti-inflammatory, antioxidant, antileishmanial anti-tumor, and anticancer agents [26–28].
Thus, in this study chalcones have been used as EGFR inhibitors [26–31]. As a result, novel chalcone
derivatives 1a–1g (as shown in Figure 1) along with TAK-285, a known inhibitor co-crystallized with
EGFR, have been proposed to be studied through computational docking and molecular dynamics
(MD) techniques. This proposition was assumed to examine the binding interactions and binding
energies within EGFR active site, expecting it to provide useful insights for designing effective drugs
to treat EGFR-related cancers.
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Figure 1. 2D Structures of TAK-285 and novel chalcone derivatives 1a–1g.
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2. Materials and Methodology

2.1. Overview

The use of computational modelling methods helps to increase the efficiency of the drug discovery
process as well as to reduce the experimental cost and time [32–34]. EGFR tyrosine kinase was selected
as a therapeutic target for novel chalcone derivatives since it is a known and validated anticancer drug
target. The X-ray crystallographic structure of EGFR kinase domain (PDB ID: 3POZ) with a resolution
of 1.5 Å was selected from Protein Data Bank (www.rcsb.org/pdb) [35]. AutoDock 4.2 (The Scripps
Research Institute, San Diego, CA, USA) was used to study the intermolecular interactions and binding
energies of the proposed compounds in order to select compounds for further investigation by MD
simulation using AMBER 14 (University of California, San Francisco, CA, USA) [36].

2.2. Software

The following software packages were used in the present research:

a) ACD/ChemSketch v. 2016.1.1 (www.acdlabs.com);
b) AutoDock 4.2 [37,38];
c) AMBER 14 [36].

2.3. Molecular Docking

All chalcone derivatives in Figure 1 have been drawn and saved as mol2 files by ChemSketch
software and then converted to pdb files. Ligand files in pdb format were prepared by AutoDockTools.
Once opened, charges were added, and all hydrogen atoms were merged. Molecular docking
simulations of compounds 1a–1g and TAK-285 (crystal structure) were performed against 3POZ
utilizing AutoDock 4.2. Both atomic charges were added, and hydrogen atoms were merged to new
chalcone derivatives and their targeted protein. Kollman and Gasteiger charges were added to protein
and chalcone derivatives respectively. A set of grid maps were created, using AutoGrid 4 (The Scripps
Research Institute, San Diego, CA, USA). A grid box was then utilized to select which area of the
protein structure to be mapped. The box size was set to 22.5, 22.5 and 22.5 Å (x, y and z, respectively).
Lamarckian genetic algorithm (LGA) was applied for energy optimization and minimization during
docking simulation.

2.4. Molecular Dynamics

In this work two ligands, 1a an 1d, were chosen according to the results obtained from AutoDock
4.2 for further investigation by MD simulation along with TAK-285 using AMBER 14 [36]. Throughout
a timescale of seven nanosecond (7 ns) for each system, these simulations were performed to study the
key interactions in the protein’s active site.

2.4.1. Model Setup

Three systems were prepared using crystal PDB structure (PDB ID: 3POZ). All hydrogen atoms
were added explicitly by LEAP module in AMBER 14 package [36]. Amber ff14SB [39] force field
was utilized for amino acids residues. General Amber force field (GAFF) [40] was used to describe
the ligands. Also, sodium counter ions were added to the most negative positions of the prepared
complexes to neutralize the systems [41]. the prepared complexes were immersed in TIP3P water
box [42].

2.4.2. Minimization

Each system minimization was initiated with 1000 steps of steepest decent method. That was
followed by 1000 steps of conjugate gradient. Afterward, each minimized system was hydrated

www.rcsb.org/pdb
www.acdlabs.com
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in a 10 Å truncated box of TIP3P water [42] and seven sodium ions were added for system charge
neutralization. Each solvated complex was minimized under the same aforementioned conditions.

2.4.3. Equilibration

Twenty picoseconds (ps) equilibration was performed for each system under full isotropic
NVT condition at 310 K. The aim of this step was to enable the system to evolve from the starting
configuration to reach equilibrium. Once equilibration was reached at 310 K, NPT condition was
switched to allow the system to adjust its density continuously and naturally (20 ps). SHAKE algorithm
was used to constrain all hydrogens in the system and the non-bonded interactions pair-list was
generated with a cut-off distance of 12 Å. Equilibration was allowed up to 1 ns per simulation.

2.4.4. Production Stage

Each simulation was performed for seven nanoseconds with constant pressure (NPT).
The Berendsen barostat method was employed to control the pressure of both systems at 1 bar
with an isotropic position scaling [43]. Furthermore, the temperature for each system was maintained
at 310 K utilizing the Langevin thermostat method [44].

2.4.5. MM-GBSA Calculation

The MMPBSA.py module of AMBER 14 and AmberTools 14 [36] were utilized to calculate
free energy components of each system. This script automatically performs all the necessary steps
to estimate the binding free energy of protein-ligand complexes utilizing the MM-PBSA method.
The molecular-mechanical energy contributions were calculated by pmemd integrated within the
AMBER software according to the force field where the topology files were created. By the following
equations, the overall energy of the binding (∆Gbind) was calculated:

∆Gbind = ∆H − T∆S ≈ ∆EMM + ∆Gsol − T∆S (1)

∆EMM = ∆Eint + ∆Eelecis + ∆Evdw (2)

∆Gsolv = ∆GGB + ∆GSA (3)

where, ∆H is the enthalpy, T is the temperature in Kelvin and S is the entropy. ∆EMM describes the
molecular mechanical (MM)energy change in the gas phase Which equals the sum of the following
energies the internal energy ∆Eint, the coulomb electrostatic term ∆Eelecis and the vander Waals
interaction term ∆Evdw respectively. ∆Gsolv is the solvation free energy, ∆GGB is the electrostatic
solvation energy (polar contribution) computed by both GB model and ∆GSA which describes the
non-electrostatic solvation component (nonpolar contribution).

3. Results and Discussion

All results were obtained from two molecular modelling techniques; molecular docking utilizing
AutoDock 4.2 and molecular dynamics simulations using AMBER 14.

3.1. Molecular Docking

Currently, AutoDock 4.2 was reported to be the most popular docking program. Its high accuracy
and versatility had expanded its application [45,46]. Proposed chalcone derivatives were successfully
docked against the 3POZ crystal structure, and the results are shown in Table 1. Based on the results
of dockings, most of the proposed chalcone derivatives have shown good binding energies ranges
(−9.36)–(−5.66) kcal/mol, as shown in Table 1. Compound 1f revealed the lowest binding energy
with −9.36 kcal/mol, while, 1g and TAK-285 showed −5.66 and −5.85 kcal/mol, respectively. It is
noteworthy that TAK-285 binding energy value is consistent with previous studies [47].
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The intermolecular interactions of the docked compounds are displayed in Figure 2. TAK-285
binds within ATP binding pocket of the catalytic tyrosine kinase domain competing with ATP.
The mechanism of inhibition is thought to be due to direct hydrogen bond interaction between
the pyrimidine ring nitrogen and MET 93 [35], which can be seen in all proposed chalcone derivatives
except 1c and 1g. Additionally, several amino acids performed conventional hydrogen bonds with
TAK-285 namely, ARG 41 and ASN 42, those match compound 1d hydrogen bond interactions. On the
other hand, compounds 1a, 1b, 1e and 1f have made 4, 1, 2 and 6 hydrogen bond interactions,
respectively, as shown in Table 1 and Figure 2.

Table 1. The lowest binding energies obtained from AutoDock 4.2 and interacting amino acids.

Compounds Lowest Binding Energy (kcal/mol) Interacting Amino Acids

TAK-285 −5.85 MET 93, ARG 41, ASN 42, LYS 45, LEU88, CYS 75
1a −8.49 MET 93, LYS 45, ASP 55, THR 54
1b −8.82 MET 93
1c −7.13 ARG 41, ASP 55, PHE 56, MET 66, LEU 18
1d −8.63 MET 93, ARG 41, ASN 42
1e −8.68 MET 93, LYS 45, MET 66, LEU 18
1f −9.36 MET 93, ARG 41, ASN 42, ASP 55, PHE 56, CYS 97
1g −5.66 CYS 75, LYS 45, LYS 52
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Figure 2. 2D intermolecular interactions between docked compounds (1a–1g and TAK-285) and 3POZ
protein. Green and Pink colored amino acids represent their contribution in hydrogen bond and
hydrophobic interactions, respectively.

Clearly, compound 1f performed better hydrogen bond interactions retaining the important amino
acids MET 93, ARG 41 and ASN 42. However, it was not selected for further investigation due to
possible environmental toxicity, carcinogenicity and mutagenicity of aromatic nitro compounds [48].

On the other hand, compounds 1a and 1d were nicely bound in the active site forming several
binding interactions with amino acids such as MET 93, THR 54, ASN 42, ARG 41, ASP 55, PHE 56, MET
66, LYS 45 including non-polar residues i.e., LEU 18, VAL 26 and PHE 56. These interactions match
previous reported results by Subrahmanyam et.al. [49]. Therefore, it was decided to perform molecular
dynamics simulation on compounds 1a and 1d, as well as, TAK-285 as a standard. Both compounds,
along with TAK-285, showed similar binding positions in the active site as presented in Figures 3 and 4.
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Figure 4. Solid ribbon representation of 3POZ docked with the crystal structure of TAK-285
(yellow color) and inhibitor 1d (colored) in the active site.

3.2. Molecular Dynamics

According to molecular docking results, two compounds, 1a and 1d, as well as TAK-285
were selected to further investigate the structural changes upon ligand binding and intermolecular
interactions using molecular dynamics (MD) simulations. Seven nanoseconds molecular dynamics
simulation have been carried out for each of the three systems and the last nanosecond was used to
calculate the free energy of ligand binding using MM-GBSA method. The stability of the systems
was examined by monitoring the thermodynamic properties, such as pressure, temperature, potential
energy and kinetic energy, as shown in Figures S1–S3 in the Supplementary Materials.

3.2.1. Root Mean Square Deviation (RMSD)

The main purpose of the MD studies was to investigate the positional and conformational changes
of inhibitor upon binding to the active site which provides an insight of the binding stability. For the
ease of comparison, the RMSD differences between the systems were evaluated for the ligands and
proteins separately. A plot of RMSD through time of crystal structure of TAK-285 and compounds 1a
and 1d is presented in Figure 5. RMSD analysis showed that compound 1a has the lowest RMSD value
(0.5 Å), while TAK-285 and compound 1d were 1.0 Å and 1.4 Å, respectively. Fluctuation of compound
1a is lower than compounds 1d and TAK-285 within the active site. On the other hand, the RMSD
analysis of the three systems were very close to each other with 1.7, 1.8, and 1.7 Å for 3POZ-TAK-285,
3POZ-1a, and 3POZ-1d, respectively as presented in Figure 6. It is worth to note that 3POZ crystal
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structure obtained from PDB is in the inhibited conformation since it is crystalized with TAK-285
inhibitor. All the three protein-ligand trajectories exhibit low backbone RMSD values, indicating the
EGFR inhibitor complexes are quite stable, which added an extra credibility of the docking results.
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3.2.2. Hydrogen Bonding Analysis

Hydrogen bonds formed between the protein and the ligands were mostly seen in the activation
loop region of the protein during the simulation. Thus, they may play an essential role in stabilizing
protein ligand complexes [50]. In this study, the hydrogen bonds that presents more than 80% during
the simulation will be considered as “strong hydrogen bonds”. Despite that, “medium hydrogen
bonds” are the hydrogen bonding that existed between 50–80% of the simulation time, while hydrogen
bonds that appear in 10–50% of the simulation time will be assigned as “weak hydrogen bonds” [51].

Selvaraj et. al. [52] revealed the importance of the presence of hydrogen bonds between EGFR
active site amino acid MET 93 and the hetero atom (nitrogen) within the inhibitor. In addition, amino
acid ASP 55 and LYS 45 were involved in the interaction. The same study found that dual inhibitor
TAK-285 binds with the ATP binding pocket of EGFR competing with ATP. They concluded that the
inhibition is due to direct hydrogen bond formation between pyrimidine ring nitrogen and MET 93,
which was found to be identical during the 7 ns trajectory in this study, thus enhancing the accuracy of
our results as presented in Table 2 and shown in Figure 7.

Upon extensive hydrogen bond analysis throughout 7ns simulation, TAK-285 was found to form
hydrogen bonds with MET 93 in 35.2% occurrence frequency, while it was 80.74% and 65.43% for 1a
and 1d, respectively. These results indicate the ability of the selected compounds to retain essential
hydrogen bonds for inhibition activity more than TAK-285.

Both TAK-285 and 1a formed more than one hydrogen bond with LYS 45, with the occurrence
frequency of 12.67% for TAK-285 and 4.54% for 1a, while it is absent in compound 1d. Additionally,
ASP 55 was found to form one hydrogen bond with TAK-285, 1d and two hydrogen bonds with 1a,
with very low occupancy. On the other hand, compound 1d shown to perform one hydrogen bond
with THR 90, with 52.83% which strengthen the interaction. Moreover, GLN 91 shown to perform
hydrogen bond interaction only with inhibitor 1d with 8.69% occurrence frequency. Furthermore, the
results of molecular dynamic study have also shown that proposed chalcone derivatives 1a and 1d
may have the ability to steadily anchor to kinase domain of EGFR to exert an inhibitory effect.

Table 2. Hydrogen Bonds Analysis with MD Simulation for the EGFR Inhibitors within the ATP
Active Site.

Inhibitor
H-Bond
Acceptor

(Atom@res)
DonorH Donor

Percentage
Occupancy

(%)

Average
Distance

(Angstrom)

Average
Angle

(Degree)

TAK-285 03P 318@N MET 93@H MET 93@N 35.2 2.9236 163.05
03P 318@O LYS 45@HZ2 LYS 45@NZ 12.67 2.8211 160.01
ALA 22@O 03P 318@H22 03P 318@O2 10.54 2.7619 160.63
SER 20@O 03P 318@H22 03P 318@O2 3.89 2.808 163.49

1a L1A 318@O4 MET 93@H MET 93@N 80.74 2.8447 161.96
L1A 318@O LYS 45@HZ2 LYS 45@NZ 4.54 2.8384 153.83

1d L1D 318@O4 MET 93@H MET 93@N 65.43 2.8655 161.95
L1D 318@O2 THR 90@HG1 THR 90@OG1 52.83 2.7757 160.93
L1D 318@O2 GLN 91@HE21 GLN 91@NE2 8.69 2.8898 153.39
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Figure 7. Stick representation of simulated compounds 1a (A), 1d (B) and TAK-285 (C) site forming
hydrogen bond (green dots) interactions with amino acid residues in the active. MET 93 amino acid
found to participate in the hydrogen bond interaction with the three simulated compounds.

3.2.3. Free Energy of Binding Calculation

The overall objective of the MM-PBSA method and its complementary MM-GBSA method is to
calculate the free energy difference between two states which most often represent the bound and
unbound state of two solvated molecules or alternatively to compare the free energy of two different
solvated conformations of the same molecule [53].

As shown in Table 3, Van der Waals and electrostatic energy values (intermolecular interaction)
performed by compound 1a were much higher than TAK-285 and 1d. This may indicate the ability
of TAK-285 and 1d to have higher affinity against the receptor than compound 1a. Accordingly,
these differences in energies could be related to the higher number of hydrogen bonds 4 and 3
formed by (TAK-285 and 1d) respectively in comparison to inhibitor 1a (2 hydrogen bonds) as
revealed in Section 3.2.3. Although the other energy component values seem close to each other,
a significant difference between the three ligands can be found in the electrostatic solvation energy
(polar contribution) calculated by GB model (∆GGB). Summation of the energies showed that inhibitor
1d had better binding energy, −56.62 kcal/mol, in comparison to 1a (−44.05 kcal/mol).
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Table 3. Total binding energy and its components of TAK-285, 1a and 1d complexes obtained
from MM-GBSA.

Energy Component TAK-285 1a 1d

VDWAALS −77.1403 −60.4638 −68.1365
EEL −24.8001 −20.18 −25.2256

∆Ggas (vdw + EEL) −101.9404 −80.6438 −93.3621
EGB 44.935 44.9765 45.7953

ESURF −9.173 −8.3796 −9.0521
∆Gsolv (EGB +ESURF) 35.762 36.5969 36.7432

∆GMMGBSA (∆Ggas +∆Gsolv) −66.1784 −44.0469 −56.6189

4. Conclusions

According to docking results, the proposed chalcone derivatives show good to moderate docking
energies that range from −9.36 to −5.66 kcal/mol, as stated in Table 1. After a careful analysis of
intermolecular interactions and docking energies for each compound, it was found that compounds
1a and 1d were nicely bound within the active site. These are compounds shown to match the
co-crystallised inhibitor (TAK-285) intermolecular interactions with MET 93, ARG 41 and ASN 42.
Both compounds displayed interaction with MET 93 which thought to be responsible for inhibition
mechanism according to previous studies. Moreover, compound 1d showed similar interactions with
TAK-285 by interacting with ARG 41 and ASN 42 amino acids, as shown in Figure 2. Thus, it was
suggested to proceed with compounds 1a and 1d for molecular dynamics simulation study.

Molecular dynamics simulations showed that the three simulated systems exhibited close RMSD
values to each other with 1.7, 1.8, and 1.7 Å for 3POZ-TAK-285, 3POZ-1a, and 3POZ-1d, respectively.
Moreover, the RMSD values shown low values, indicating good stability that may strengthen the
reliability of the docking results. Additionally, extensive hydrogen bond analysis throughout 7 ns
simulation revealed the ability of the proposed ligands to retain the essential interactions with MET 93,
LYS 45 and THR 90 amino acids. Still, the results of molecular dynamic study have also shown that
proposed chalcone derivatives 1a and 1d may have the ability to steadily anchor to kinase domain of
EGFR to exert an inhibitory effect.

Finally, MM-GBSA calculations highlight on the capability of the ligands to bind strongly
within the active site with binding energies of −44.04 and −56.6 kcal/mol for compounds 1a
and 1d, respectively. Compound 1d was shown to have a close binding energy with TAK-285
(−66.17 kcal/mol), which indicates a high chance for compound 1d to exhibit an inhibition activity,
thus to recommend synthesising it and perform biological activity studies.

Supplementary Materials: The following are available online, Figure S1: MD simulation: Temperature profile
during 7 ns for the (a) TAK-285, (b) 1a, (c) 1d; Figure S2: MD simulation: pressure profile during equilibration for
the (a) TAK-285, (b) 1a, (c) 1d; Figure S3: MD simulation: Energy profile for the (a) TAK-285, (b) 1a, (c) 1d, total
energy (grey color), potential energy (red color), kinetic energy (green color).
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