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Abstract: The nature of precursor phenomena in the paraelectric phase of ferroelectrics is one of the 
main questions to be resolved from a fundamental point of view. Barium titanate (BaTiO3) is one of 
the most representative perovskite-structured ferroelectrics intensively studied until now. The 
pretransitional behavior of BaTiO3 single crystal grown using a solid-state crystal growth (SSCG) 
method was investigated for the first time and compared to previous results. There is no melting 
process in the SSCG method, thus the crystal grown using a SSCG method have inherent higher 
levels of impurity and defect concentrations, which is a good candidate for investigating the effect 
of crystal quality on the precursor phenomena. The acoustic, dielectric, and piezoelectric properties, 
as well as birefringence, of the SSCG-grown BaTiO3 were examined over a wide temperature range. 
Especially, the acoustic phonon behavior was investigated in terms of Brillouin spectroscopy, which 
is a complementary technique to Raman spectroscopy. The obtained precursor anomalies of the 
SSCG-grown BaTiO3 in the cubic phase were similar to those of other single crystals, in particular, 
of high-quality single crystal grown by top-seeded solution growth method. These results clearly 
indicate that the observed precursor phenomena are common and intrinsic effect irrespective of the 
crystal quality. 

Keywords: barium titanate; BaTiO3; Brillouin spectroscopy; acoustic property; precursor 
phenomena 

 

1. Introduction 

Ferroelectricity is defined in terms of the appearance of the spontaneous polarization under a 
certain thermodynamic condition, which can be switched by applying an external electric field. 
Ferroelectric materials have been adopted in a wide range of applications, such as capacitors, 
memories, and piezoelectric devices. Among various ferroelectrics, perovskite-based oxide materials 
have attracted much attention due to their superior ferroelectric and electromechanical properties, 
and thus high potential in their applications. They are also promising materials from the viewpoint 
of fundamental physics because of their rich structural and dynamical properties during the 
ferroelectric phase transition [1,2]. 
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Barium titanate (BaTiO3) is one of the most well-known ferroelectrics, where the molecular unit 
BaTiO3 comprises the primitive unit cell in the paraelectric cubic phase. BaTiO3 exhibits successive 
phase transitions from cubic to tetragonal at TC ≈ 132 °C, tetragonal to orthorhombic, and 
orthorhombic to rhombohedral phase upon cooling [1]. There has been intense debate on the nature 
of the ferroelectric phase transition of BaTiO3, whether its mechanism is displacive or order–disorder 
type. It was originally thought to be a displacive ferroelectric where the lowest transverse optic (TO) 
mode plays a central role during the phase transition [3]. However, many experimental results on 
BaTiO3 were presented favoring the viewpoint of the order–disorder phase transition. Part of these 
reports include the observation of diffuse X-ray scattering [4], incomplete softening of the soft TO 
mode near TC [5], deviation of the refractive index from high-temperature linearity [6], and first-order 
Raman scattering in the cubic phase [7]. It is now widely accepted that both the order–disorder and 
the displacive components contribute to the ferroelectric phase transition of BaTiO3 [8,9]. 

Special attention has been paid to the pretransitional or precursor phenomena in the paraelectric 
cubic phase of BaTiO3. Diffuse X-ray scattering suggests off-centered motions of Ti atoms along the 
<111> direction [4,10]. Early neutron scattering experiment also suggested the existence of a critical 
polarization fluctuations in the cubic phase based on the observed quasi-elastic scattering [11]. Local 
rhombohedral distortions were revealed using X-ray absorption spectroscopic studies [12]. Burns and 
Dacol attributed the anomalous behavior of the refractive index to the existence of precursor local 
polarizations in the paraelectric phase [6]. Precursor polar clusters are randomly-oriented polar 
regions with local symmetry-breaking while the macroscopic cubic phase is preserved with inversion 
symmetry. The precursor polar clusters are expected to manifest relaxational motions at high 
temperatures, which were evidenced via hyper-Raman scattering [13], terahertz dielectric response 
[14], and central peaks observed by both Raman and Brillouin scattering [15–17]. Moreover, broken 
inversion symmetry in the precursor clusters could be investigated and confirmed by other various 
experimental techniques, such as piezoelectric constant [18], birefringence [19,20], photon correlation 
spectroscopy [21], Raman spectroscopy [7,22,23], second harmonic generation [24], speckle 
measurements using a pulsed X-ray technique [25], thermal expansion [26], and elastic properties 
[27,28]. Additional relaxation modes were observed in the THz range in the ferroelectric tetragonal 
phase [29,30]. 

The precursor dynamics of BaTiO3 shows similarity with relaxor ferroelectrics in which the 
appearance of polar nanoregions (PNRs) begins at the so-called Burns temperature (TB) [31]. The TB 
of BaTiO3 was found to be ≈280 °C as determined by acoustic emissions [32] or ≈313 °C via resonance 
ultrasonic spectroscopy (RUS) [28]. Aktas et al. suggested that a local piezoelectric effect persists up 
to ≈340 °C investigated in terms of the resonance piezoelectric spectroscopy [33]. The precursor 
polarization is considered to be one of the origins for the large flexoelectricity of BaTiO3 in the 
paraelectric phase [34,35]. 

In spite of these extensive studies, the origin of precursor polarizations in the paraelectric phase 
is still not clearly understood. The universal scenario for the polar clusters based on the coupling 
between short-range structural instabilities and long-wavelength polar soft modes was proposed as 
an intrinsic effect [36,37]. First-principle calculations suggested the formation of eight minima along 
the <111> directions in the local free energy, which persist up to (TC + 400) °C in the paraelectric phase 
[38]. Anharmonic potential for the Ti vibrations was also reported by other studies [25]. In addition 
to these theoretical and experimental works where the precursor phenomena are considered as an 
intrinsic effect, the possibility of an extrinsic effect on the precursor phenomena needs to be addressed 
because the effect of impurities on the phase transition [39] or defect contribution to the 
pretransitional anomaly has been other important issues. Dislocations, extended defects, or surfaces 
may be the favorable regions where polar clusters can be formed easily [40]. 

In this study, we focus on the precursor phenomena of BaTiO3 single crystals grown using a 
solid-state single crystal growth (SSCG) method [41,42] and compare the results with those of our 
previous results on BaTiO3 single crystals grown using a top-seeded solution growth (TSSG) method 
[17]. SSCG method is a unique growth technology where a melting process is not required during the 
crystal growing. It has originally been developed for low-cost mass production. Because of this 
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advantage and fast growth process, it has demerits such as relatively high level of defects, impurities, 
and air pores. Since the two kinds of crystals grown by different techniques exhibit substantial 
difference in the defect level (see Section 4. Materials and Method), systematic comparison between 
their properties is a good opportunity for investigating the effect of defect/impurities on the 
pretransitional phenomena of BaTiO3. 

In the present study, we focus on the acoustic and birefringence properties in order to investigate 
precursor phenomena of BaTiO3. The acoustic anomalies have been studied using several 
experimental techniques, such as the Brillouin light scattering [16,17,43,44] and ultrasonic techniques 
including RUS [28,45]. All these studies show that substantial softening of certain acoustic modes 
occurs in the paraelectric cubic phase. For example, the mode frequency of the longitudinal acoustic 
(LA) phonon showed a substantial decrease in the paraelectric phase upon cooling. The hypersonic 
damping shows a significant increase on approaching TC from the high-temperature side. These 
previous studies showed that acoustic investigation is a good experimental tool for studying the 
dynamics of precursor polar clusters. In order to investigate acoustic properties of SSCG-grown 
BaTiO3, we apply Brillouin spectroscopy, which is one of the inelastic light scattering techniques in 
the low-frequency range below 1 THz and is thus a complementary technique to Raman spectroscopy 
[46–48]. This technique is also complementary to other ultrasonic tools that are useful to study 
ferroelectric and piezoelectric properties of various perovskites [49]. In addition to the acoustic 
anomalies, birefringence is a direct method [50] for probing non-centrosymmetric polar regions in 
the centrosymmetric paraelectric phase because it should be zero in the cubic phase with inversion 
symmetry. These various anomalies associated with the precursor phenomena of SSCG-grown 
BaTiO3 single crystals will be compared to those of high-quality BaTiO3 single crystals in order to find 
out whether the precursor phenomena are common and intrinsic effect irrespective of the crystal 
quality. 

2. Results 

2.1. Dielectric Properties 
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Figure 1. Temperature dependence of the real part of the complex permittivity and its inverse shown 
on the left and right ordinate, respectively, which was measured at the probe frequency of 500 kHz 
upon cooling. The solid line is the best-fitted result for the inverse dielectric constant in the 
paraelectric phase obtained by using the Curie–Weiss law (see the text). 

Figure 1 shows the temperature dependence of the real part of the complex dielectric constant, 
ε, measured at the probe frequency of 500 kHz, the scale of which is shown on the left ordinate. The 
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right ordinate denotes the inverse of the permittivity. The permittivity shows a divergent behavior 
in the paraelectric phase upon cooling toward the Curie point (TC ≈ 136 °C). The ferroelectric phase 
transition is clearly perceived from the sharp cusp in the permittivity. The high-temperature data 
above ≈200 °C is linear and thus can be fitted by using the Curie–Weiss law, which is given by ε = 
C/(T − TCW) + ε∞. Here, T is temperature, C is the Curie constant, TCW is the Curie-Weiss temperature, 
and ε∞ is the high-frequency permittivity, respectively. The linear line in Figure 1 is the best-fitted 
result obtained by using the Curie–Weiss law resulting in C = 1.54 × 105 K, TCW = 402 K (129 °C), and 
ε∞ = 6. The measured dielectric constant exhibits a noticeable deviation from the Curie–Weiss law at 
temperatures below ≈200 °C consistent with previous results [18]. Especially, the deviation becomes 
substantial at temperatures below ≈180 °C. Similar dielectric behaviors are common in typical relaxor 
ferroelectrics such as Pb(Mg1/3Nb2/3)O3 [51]. In the case of relaxors, the permittivity deviates from the 
Curie–Weiss law at the Burns temperature, TB, where the PNRs begin to appear. The dipolar 
interaction among the PNRs is responsible for this deviation. In a similar context, the deviation 
observed in BaTiO3 can be attributed to the precursor polar clusters formed in the paraelectric phase 
and onset of dipolar interactions among them. The relation between this anomalous behavior and 
other pre-transitional phenomena will be discussed below in more detail. 

2.2. Brillouin Scattering Results 

2.2.1. Acoustic Phonon Modes 

Figure 2a and b show the temperature dependence of a Brillouin spectrum of BaTiO3 measured 
at the backward scattering geometry upon cooling and heating, respectively. The frequency range 
was ±66 GHz (±2.2 cm−1), which is suitable for observing Brillouin doublets caused by the acoustic 
phonon modes. The high-temperature spectra above TC consist of two Brillouin doublets located at 
≈53 GHz and 41 GHz, which correspond to the LA mode and the transverse acoustic (TA) mode, 
respectively. The phonon propagation direction was <100> in the cubic phase. The LA and the TA 
modes are related to the elastic constants C11 and C44, respectively, in the present scattering geometry. 
The changes in the mode frequency and the half width of the LA mode are substantial at temperatures 
near TC. The TA mode was very weak in the paraelectric phase. In principle, the TA mode was 
forbidden in the cubic phase according to the Brillouin selection rule [46], and its weak appearance 
seems to be due to the aperture broadening effect caused by the finite solid angle of the objective lens 
[17]. In the tetragonal ferroelectric phase, the acoustic modes, especially the TA mode, consisted of 
multiple peaks as can be seen from the spectra at 100 °C and 128 °C. This was mainly due to the 
formation of ferroelectric domains, each domain with different orientations contributing to the 
Brillouin scattering. 

  
(a) (b) 

Figure 2. Temperature dependence of the Brillouin spectrum of BaTiO3 measured at the backward 
scattering geometry upon (a) cooling and (b) heating. The phonon propagation direction was <100>. 



Molecules 2018, 23, 3171 5 of 14 

 

The LA and the TA mode indicate the longitudinal and the transverse acoustic mode, respectively. 
The ferroelectric phase transition temperature TC is indicated by a horizontal arrow. 

(a) (b) 

(c) (d) 

Figure 3. Temperature dependence of (a) the Brillouin shift of the LA mode, (b) the full width at half 
maximum (FWHM) of the LA mode, (c) the Brillouin shift of the TA mode, and (d) the Brillouin shift 
of the LA mode around the tetragonal–orthorhombic transition point. The two insets in (a) and (c) are 
the extended views of the data in the vicinity of TC. The temperature ranges given in numbers denote 
the phase transition temperatures. 

The Brillouin spectra were curve-fitted using the Voigt function, which is the convolution of the 
Lorentzian function and the Gaussian instrumental function. The width of the Gaussian function was 
fixed to the pre-determined instrumental function of the interferometer. The Brillouin frequency shift 
(νB) and the full width at half maximum (FWHM, ΓB) of the acoustic modes were derived from the 
curve-fitting procedure as a function of temperature. The νB and the ΓB are related to the sound 
velocity and the acoustic attenuation coefficient, respectively. Figures 3a and b show the temperature 
dependence of the νB and the ΓB, respectively, of the LA mode for both heating and cooling processes. 
The νB exhibited a monotonously increasing behavior upon cooling from the highest temperature, 
reached a maximum at ≈310 °C, and then decreased gradually upon further cooling. The 
discontinuous change in the νB in the vicinity of ≈132 °C indicates the ferroelectric phase transition 
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from cubic to tetragonal phase. The inset of Figure 3a shows an extended view of the νB near TC 
demonstrating the existence of thermal hysteresis in TC, thus revealing the first-order character of the 
phase transition of BaTiO3. The substantial change in the νB near TC was accompanied by the 
increasing ΓB, as can be seen in Figure 3b. The ΓB displayed a λ-type anomaly in the paraelectric phase 
close to TC. The significant increase in the acoustic attenuation along with the substantial mode 
softening above TC has been attributed to the polarization fluctuations in the paraelectric phase of 
BaTiO3 [16,17,44]. The formation of precursor polar clusters with local symmetry breaking (non-
centrosymmetric regions) in the ideal cubic phase causes the mode softening and the substantial 
acoustic damping (or attenuation) in the cubic phase [52]. 

Figure 3c shows the temperature dependence of the TA mode frequency. It was nearly 
temperature independent in the paraelectric phase, which means that the elastic constant C44 did not 
change appreciably in the cubic phase. The discontinuous change in the TA mode frequency at TC 
shows a thermal hysteresis consistent with the LA mode behavior. Figure 3d shows the change in the 
νB of the LA mode at low temperatures in the ferroelectric phase. The step-like change near 9 °C 
corresponds to the tetragonal–orthorhombic phase transition of BaTiO3.  

2.2.2. Quasi-Elastic Central Peaks 

Both polarized (VV) and the depolarized (VH) inelastic light scattering spectra of BaTiO3 were 
measured in a wider frequency range of ±540 GHz (±18 cm−1), but the intensity of the VH spectrum 
was stronger than that of the VV spectrum. Thus, we focused on the analysis of the VH spectrum as 
a function of temperature. Figure 4a shows the temperature dependence of the VH spectrum of 
BaTiO3. The high-temperature spectra were nearly flat without any contribution from the low-
frequency Raman modes because the low-lying optic phonons were located far above the present 
frequency range. In addition, the polarization of the incident beam was oriented long the cubic <110> 
direction, which is known to suppress the low-frequency Raman optic mode located at ≈50 cm−1 [53]. 
A quasi-elastic central peak grew as temperature decreased, especially as the sample cooled down 
toward TC. The intensity of the central peak decreased once the temperature passed TC and further 
decreased. The central peak could be fitted in terms of a single Lorentzian function superposed on a 
constant background with the solid lines in Figure 4a indicating the best-fitted results. It indicates 
that a single Debye-type relaxation process was responsible for the occurrence of the central peak. 
Considering the substantial changes in the acoustic phonon modes near TC, the growth of the central 
peak was related to the relaxational motion of precursor polar clusters and their growth in size upon 
cooling toward TC. 

 
 

(a) (b) 

Figure 4. Temperature dependence of (a) the depolarized (VH) spectrum and (b) the FWHM of BaTiO3 
measured in a wider frequency range of ±540 GHz (±18 cm−1). The inset shows the extended view of 
the FWHM near Tc. The solid line denotes the fitting result in terms of Equation (1).  
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The full width at half maximum of the central peak(ΓCP) is inversely proportional to the 
relaxation time of the polar clusters (τCP) via ΓCP = 1/(πτCP). It is assumed that there is no relaxation 
time distribution of the polar clusters, which may be justified at high temperatures above TC [54]. The 
obtained temperature dependence of the ΓCP is shown in Figure 4b. The relaxation time grows upon 
cooling toward TC, which indicates slowing-down of the relaxation process of the polar clusters. The 
linear decrease in the ΓCP in the paraelectric phase suggests that the formula describing the critical 
slowing-down behavior [2] given by Equation (1) may be used to fit the data shown in Figure 4b:  

0

0 0

1 1
CP

T
T Tπτ πτ

=
−

, (1)

where τ0 and T0 are fitting parameters. It has often been used to describe the order–disorder phase 
transition of ferroelectrics [2]. The solid line in Figure 4b denotes the best-fitted result, and the 
obtained fitting parameters are shown in Table 1. The general behavior of the slowing down process 
is similar to that of the TSSG-grown BaTiO3 [17].  

Table 1. The best-fitted parameters of BaTiO3 single crystals by using Equation (1). 

Fitted T Range 01/πτ  (GHz) T0 (°C) 

≈TC–TC + 60 °C 7374 103 

2.3. Birefringence and Piezo-Response 

The birefringence is in principle zero in the ideal centrosymmetric cubic phase of BaTiO3. 
However, local symmetry breaking in the pre-transitional polar clusters and the resulting symmetry 
lowering may contribute to the birefringence of cubic BaTiO3 even though its average symmetry is 
cubic. The colorless and transparent BaTiO3 single crystal grown using the TSSG method exhibited a 
weak birefringence over a certain temperature range above TC, which was clear evidence for the 
existence of non-centrosymmetric polar clusters in the nonpolar cubic phase [17,20]. 

(a) (b) (c) 

Figure 5. Maps of (a) the transmitted light intensity of 570 nm wavelength, (b) the |sinδ|, and (c) the 
angle φ measured for BaTiO3 single crystal at 250 °C, far above TC. The meaning of each symbol is 
described in the text. The rectangle visible in Figure (c) is the area of 160 × 100 µm2 for which the data 
shown in Figure 6a were calculated. Black points in Figure (a) are the air pores visible on the crystal 
surface. 

In the present study, we used a high-precision birefringence imaging system [50] to measure the 
plano-birefringence of the BaTiO3 single crystal grown by the SSCG method. It consisted of a 
polarizing microscope where the polarizer could be rotated to a fixed angle from a reference position. 
The intensity measured at a certain position on the crystal is given by the following equation:  

0 0 0
1 1 1sin cos 2 sin sin sin 2 cos
2 2 2

I I I Iδ ϕ τ δ ϕ τ= + − , (2)

where I0 is a constant value, ( )2 /nLδ π λ= Δ  is the phase difference between the two polarized 

light components, ϕ is the angle of an axis of the optical indicatrix of the specimen projected onto 



Molecules 2018, 23, 3171 8 of 14 

 

the image measured from a predetermined direction, and τ is ωt (ω is the angular frequency of the 
excitation light, and t the time.). Regarding δ, Δn is the plano-birefringence, L is the thickness of the 
sample and λ the laser wavelength. Figures 5a–c show false-color images of the intensity, |sinδ|, and 
ϕ , respectively, measured at 250 °C far above TC. In principle, the birefringence and the |sinδ| 
should be zero at this temperature if the crystal symmetry is strictly cubic with the center of 
symmetry. However, the |sinδ| and ϕ in Figure 5 show complex distributions over the sample area 
which is mainly due to defects, stacking faults, pores, and strains formed during the crystal growth. 
Some air pores and defects are clearly seen from Figure 5a. The distributions of the |sinδ| and ϕ  
measured at 250 °C did not change over a temperature range above 200 °C, thus this constant 
background distribution was subtracted from the birefringence measured at lower temperatures in 
order to track the net contribution due to the precursor polar clusters. 

The small rectangle in Figure 5 is the area of 160 × 100 µm2 where both |sinδ| and φ were 
relatively homogeneous, and the temperature dependence of the birefringence of this area is shown 
in Figure 6a. For comparison, the birefringence of the TSSG-grown BaTiO3 is also plotted with respect 
to T − TC [17]. Both crystals show negligible birefringence at temperatures above Tc + 60 °C and 
increasing behavior upon cooling. The reason for the growing birefringence on approaching TC is that 
sizes of polar regions grow with decreasing temperature. The closer to TC, the bigger the sizes of these 
regions were. Since these regions were non-centrosymmetric, the difference between the refractive 
indexes of polar regions grew, leading to an increase in birefringence. Moreover, they can locally self-
organize themselves, i.e., they become ordered and have a higher polarity. Birefringence values of 
both crystals show similar temperature dependences and are of similar order of magnitude (≈10−5) in 
spite of the significant difference in the optical quality and level of defects of the two crystals. The 
non-zero value of the birefringence clearly indicates the existence of the non-centrosymmetric polar 
clusters embedded in the cubic phase of BaTiO3. Moreover, the fact that the colorless TSSG-grown 
single crystal and the yellow-colored SSCG-grown single crystal caused by defects included during 
technological process exhibits birefringence of similar values suggests that the observed birefringence 
and the related precursor phenomena are intrinsic properties irrespectively of the defect levels. 
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(a) (b) 

Figure 6. (a) Temperature dependence of the birefringence of both BaTiO3 single crystals above TC. 
The data of the TSSG-grown BaTiO3 was taken from Reference [17]. (b) Local minimum of the phase 
shift of the admittance accompanying piezoelectric resonances measured in the paraelectric phase for 
the virgin crystal by means of dynamic method and presented at several temperatures. 

In order to corroborate the existence of the non-centrosymmetric polar regions in the paraelectric 
phase via an additional method, the piezoelectric activity of the sample was investigated by 
observing the piezoelectric resonances using a dynamic method described in Reference [55]. The total 
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admittance Y flowing through the sample is expressed as |Y|eiθ, where |Y| is the amplitude of the 
admittance, and θ is the phase shift between the voltage applied to the sample and measured |Y|. 
Figure 6b shows the frequency dependence of the θ at several temperatures above TC. It was striking 
that the piezoelectric activity above TC was observed for samples without prior poling caused by the 
d.c. electric field. This means that above TC, the polar regions existing in the paraelectric matrix could 
be large enough and ordered such that it gave a macroscopic piezoelectric effect. In the vicinity of the 
ideal piezoelectric resonance, the θ changes with frequency from the 1.57 rad (90°) to −1.57 rad (−90°), 
and then to 1.57 rad (90°), revealing a local minimum at θ equal to −1.57 rad (−90°). It meant that, on 
the one hand, the dip in θ in Figure 6b was clearly related to the appearance of piezoelectric activity 
in the sample; on the other hand, the very small changes in θ point to a very weak piezoelectric effect. 
However, the gradual disappearance of the dip in θ in Figure 6b and irregular runs of θ(f) suggest 
that the piezoelectric effect in the paraelectric phase of BaTiO3 came from the ordered polar regions 
interacting through the elastic paraelectric matrix, and became weaker while temperature rose. No 
dip in the θ(f) was observed at temperatures above 200 °C, which is consistent with the disappearance 
of the birefringence in the same temperature range. 

3. Discussion 

All physical properties investigated in this study show anomalous behaviors in the paraelectric 
phase of BaTiO3 single crystals grown using the SSCG method. The dielectric constant exhibits 
deviation from the Curie–Weiss law at temperatures below 200 °C. In the same temperature range, 
weak but clear piezoelectric signals and birefringence values were observed as shown in Figure 6. 
These results undoubtedly indicate the existence of non-centrosymmetric local regions because the 
birefringence and piezoelectricity should disappear in the centrosymmetric cubic phase. It also 
consists with the observation of the second harmonic generation signal in the cubic phase, which 
should be zero in a centrosymmetric system [24]. These regions of broken local symmetry were not 
static because the two properties grow in their intensities on approaching TC. These non-
centrosymmetric clusters should be polar as they affect the permittivity. The enhancement of dipolar 
interactions among the polar clusters near TC would decrease the permittivity, which is indeed 
observed as shown in Figure 1. Moreover, relaxational motions of the polar clusters induce quasi-
elastic central peaks in the inelastic light scattering spectrum (see Figure 4). These results are 
consistent with this suggestion and other numerous results reporting precursor phenomena of 
BaTiO3 in the paraelectric phase [4–28,31–33]. 

A nuclear magnetic resonance (NMR) study revealed that Ti off-centered motions are correlated 
to form nano-sized clusters in the paraelectric phase of BaTiO3 [8,9]. These correlated clusters have 
their inherent polarizations that would fluctuate resulting in no net macroscopic polarization. 
However, local, random polarizations exist and may couple to other physical properties. The 
longitudinal acoustic mode probed using Brillouin spectroscopy showed softening in its mode 
frequency, as shown in Figure 3a. The softening became more substantial with the decrease in 
temperature below 200 °C, which was accompanied by the significant increase in the half width of 
the LA mode. Electrostrictive coupling between the squared polarization and the strain caused by 
the LA waves is known to cause the decrease in the relevant sound velocity and the elastic constant 
[52]. In addition, polarization fluctuations in the paraelectric phase decreases the mode frequency 
and induces fluctuations damping near TC [52]. We cannot, however, exclude the possibility of 
piezoelectric coupling between the polarization in the polar clusters and the strain, especially near 
TC, because the piezoelectric activity persists in the temperature range of TC ~ 200 °C and the dynamics 
of the polar clusters become sluggish enough to assure the linear coupling between the polarization 
and the strain [44].  

It is interesting to note that the TA mode frequency does not change appreciably in the 
paraelectric phase. There are three eigen elastic constants in the cubic phase, which are C11 + 2C12, C11 
− C12, and C44. Among them, C11 − C12 and C44 correspond to tetragonal (or orthorhombic) and 
rhombohedral distortion, respectively [56]. The nearly constant C44 indicates that the structural 
instability induced by polar clusters was not rhombohedral. It may rather be tetragonal considering 



Molecules 2018, 23, 3171 10 of 14 

 

the low-temperature tetragonal phase below TC. This suggestion is supported by the NMR result 
where the Ti off-centered motions are correlated to form tetragonal nano-domains [9]. Therefore, we 
expect the elastic eigenvalue C11 − C12 may exhibit significant softening in the paraelectric phase, 
which should be confirmed by additional acoustic study.  

The most interesting result of this study is that the overall precursor phenomena of SSCG-grown 
BaTiO3 single crystals are similar to those of the TSSG-grown ones. As Figure 5 demonstrates, the 
SSCG-grown BaTiO3 single crystals exhibit inherent extended defects, impurities, and air pores due 
to the crystal growth condition where no melting process is included [41,42]. In spite of the static 
birefringence caused by these various faults of the SSCG-grown BaTiO3 single crystal, the 
birefringence caused by the precursor polar clusters exhibits nearly the same behavior to that of the 
TSSG-grown BaTiO3. In order to corroborate this suggestion, the dielectric permittivity and the LA 
mode properties were compared between the SSCG-grown and the TSSG-grown BaTiO3, which were 
shown in supplementary materials. The inverse of the dielectric permittivity exhibited the deviation 
from the Curie–Weiss law in nearly the same temperature range in both crystals. Moreover, the mode 
frequency and the half width of the LA mode of both crystals were indistinguishable from each other 
in the paraelectric phase. Grabovsky et al. investigated the specific heat of several BaTiO3 single 
crystals of different origin and found that the addition contribution to the specific heat exists in the 
paraelectric phase [57]. This anomalous high-temperature specific-heat existed up to TC + 60 K and 
was independent of the sample growth conditions. They attributed this universal behavior to the 
contribution from thermal fluctuations of the order parameter instead to the defect contributions. 
This study combined with the present results clearly suggests that the precursor phenomena of both 
BaTiO3 single crystals are associated with the order parameter fluctuations of precursor polar clusters 
and not strongly sensitive to the defect/impurity conditions. 

Finally, we would like to indicate two points. First, the difference in the birefringence between 
the two crystals becomes larger upon cooling toward TC. In the SSCG-grown single crystals, the 
density of defects was higher than in the TSSG-grown one. These defects may be extended defects of 
a much more complex geometrical structure, such as dislocations, rather than point defects. In the 
vicinity of such defects, a field of local stresses appears and produces unit cell deformation. The 
paraelectric matrix was highly polarizable and thus this stress field may induce additional polar 
regions, giving a contribution to the macroscopic birefringence. Second, although the present study 
unambiguously showed the universal behavior of precursor polar clusters irrespective of the crystal 
condition, the exact nature of these pretransitional regions need to be revealed at an atomic scale, 
which needs a more sophisticated approach, such as X-ray absorption near-edge structure 
measurements, in order to look into the change in local structures [58]. 

4. Materials and Methods 

4.1. Materials 

The BaTiO3 single crystals were grown using the solid-state crystal growth method [41,42]. Raw 
powders of BaCO3 and TiO2 were used to prepare polycrystalline ceramics via a general sintering 
process. After weighting the raw materials at the stoichiometric ratio, they were mixed for 24 h using 
a ball-milling process. It was calcined at 1000 °C, dried, and then subjected to the second ball-milling. 
It was then compressed into a ceramic plate form, dried, and then sintered. A small seed BaTiO3 
crystal was placed on the sintered body of the polycrystalline ceramics. The second heat treatment 
was carried out for 100 h for SSCG of BaTiO3 single crystal. In this process, the BaTiO3 seed crystal 
was continuously grown into the BaTiO3 single crystal larger than 25 mm × 25 mm × 5 mm. There 
was no melting process during the crystal growth, which resulted in no compositional gradient and 
high chemical homogeneity. The grown single crystals were cut into (100) platelets in the cubic 
coordinates and polished to optical quality. Figure 7 shows the grown single crystal in terms of the 
present SSCG method (right) along with the crystal grown by using the TSSG method (left). The 
extended view of the intensity of the plano-birefringence, as shown in Figure 5a, reveals pores and 
extended defects in the crystal. 
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Figure 7. The left and the right single crystals were grown in terms of TSSG and SSCG method, 
respectively. The TSSG-grown BaTiO3 single crystal was investigated in Reference [17]. 

4.2. Methods 

The crystal was put in a compact temperature controller (THMSE600, Linkam, Tadworth, U.K.), 
which was combined with a modified microscope (BX-41, Olympus, Tokyo, Japan) for backscattering 
measurements. The Brillouin spectrum was measured using a conventional tandem six-pass Fabry-
Perot interferometer (TFP-2, JRS Co., Zürich, Switzerland) and a diode-pumped solid-state laser 
(Excelsior 532-300, Spectra Physics, Santa Clara, CA, USA). The wavelength of the laser was 532 nm 
operated at the power of 16 mW. The free spectral range of the interferometer was set to be 75 GHz 
and 300 GHz for probing the acoustic modes and central peaks, respectively. A conventional photon-
counting system combined with a multichannel analyzer (1024 channels) was used to detect and 
average the signal. The details of the experimental setup can be found elsewhere [59,60].  

The birefringence was measured in terms of a birefringence imaging system (Metripol, Oxford 
Cryosystems, Oxford, U.K.). The sample was inserted in a high-precision temperature stage 
(TMSG600, Linkam, Tadworth, U.K.) where the temperature could be maintained within 0.1 K. The 
temperature was changed at a rate of 0.2 K/min. The Metripol system consisted of a polarizing 
microscope and a CCD camera. The microscope was equipped with a plane-polarizer, which could 
be rotated by means of a computer interface. The detailed description of this technique can be found 
elsewhere [50]. The dielectric and piezoelectric properties were investigated using the standard 
dielectric spectroscopy and dynamical method for piezoelectric activity, respectively. Dielectric 
measurements were performed at a temperature rate not faster than 1 K/min, but the piezoelectric 
response was measured at constant temperature through the measurement of admittance in a 
function of frequency. 

Supplementary Materials: The following are available online at www.mdpi.com/1420-3049/23/12/3171/s1. 
Figure S1: temperature dependence of the real part of the complex permittivity and its inverse of the SSCG-
grown and TSSG-grown BaTiO3 single crystals. Figure S2: temperature dependence of the Brillouin shift of the 
LA mode and the FWHM of the LA mode of both TSSG-grown and SSCG-grown BaTiO3 single crystals. 
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