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Abstract: With the in-depth study of posttranslational modification sites, protein ubiquitination
has become the key problem to study the molecular mechanism of posttranslational modification.
Pupylation is a widely used process in which a prokaryotic ubiquitin-like protein (Pup) is attached
to a substrate through a series of biochemical reactions. However, the experimental methods of
identifying pupylation sites is often time-consuming and laborious. This study aims to propose
an improved approach for predicting pupylation sites. Firstly, the Pearson correlation coefficient
was used to reflect the correlation among different amino acid pairs calculated by the frequency
of each amino acid. Then according to a descending ranked order, the multiple types of features
were filtered separately by values of Pearson correlation coefficient. Thirdly, to get a qualified
balanced dataset, the K-means principal component analysis (KPCA) oversampling technique was
employed to synthesize new positive samples and Fuzzy undersampling method was employed
to reduce the number of negative samples. Finally, the performance of our method was verified by
means of jackknife and a 10-fold cross-validation test. The average results of 10-fold cross-validation
showed that the sensitivity (Sn) was 90.53%, specificity (Sp) was 99.8%, accuracy (Acc) was 95.09%,
and Matthews Correlation Coefficient (MCC) was 0.91. Moreover, an independent test dataset was
used to further measure its performance, and the prediction results achieved the Acc of 83.75%,
MCC of 0.49, which was superior to previous predictors. The better performance and stability of our
proposed method showed it is an effective way to predict pupylation sites.

Keywords: fuzzy undersampling; machine learning; principal component analysis; protein pupylation;
sequence information

1. Introduction

Pupylation is a prokaryotic analog of ubiquitination whose prokaryotic ubiquitin-like protein
(Pup) separates intracellular proteins under the action of enzymes and specifically modifies the
target protein [1,2]. Its proteasome-independent functions help in the regulation of DNA repair
mechanisms, particularly recent advances on its regulatory role for careful series of functions that
gives rise to a therapeutic solution in cancer chemotherapy [3–5]. Pup is an identified posttranslational
small modifier in prokaryotes [1,2] that usually attaches to the substrate lysine via isopeptide bonds,
and this process is called pupylation. Although the functions of pupylation and ubiquitylation
are similar, the enzymologies involved in these processes are different [1,2,6]. Since experimental
methods are laborious, it is essential to improve the current computational methodologies to provide
direction for further research on intriguing research questions. An example of this is the works
on understanding the stability of ERCC1 DNA repair protein, a biomarker of several advanced
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cancer diseases. This protein functions in multiple DNA repair pathways and certain mutations
in this protein and its partner had drastic consequences for the protein complex stability [3–9].
Functional and structural studies have determined the significance of the complex integrity and
ubiquitination/deubiquitination events for controlling the function of the protein during DNA
damage response [1,2,6–8]. These findings persuade new therapeutic solution in cancer chemotherapy.
Thus, it is important to devise accurate computational methodologies for scientists to ultimately
predict the probability of different regulatory pathways that control protein function and disease
severities [6,8,9]. Several proteomics methods have been proposed for identifying pupylated proteins
and pupylation sites [10–17]. However, pupylation sites of many experimentally identified pupylated
proteins are still unknown. Accurate identification of pupylation sites is an essential first step to
better understand the mechanism underlying protein pupylation. A number of large-scale proteomics
techniques have been used for predicting pupylation sites, which are time-consuming and laborious.
Therefore, a series of other effective and accurate prediction methods have been proposed for predicting
pupylation sites.

The Group-based Prediction System was used by Lin to design the predictor of GPS-PUP
for predicting the pupylation sites [11]. The predictor iPup [12] was designed by combining the
composition of k-spaced amino acid pair (CKSAAP) feature and support vector machines (SVMs).
Zhao et al. [13] created a predictive model with five features and also adopted feature selection
methods to find the optimal feature set. Chen et al. [14] proposed a model PupPred, which was also an
SVM-based predictor. It used amino acid pair features to encode lysine central peptides and combined
a series of features to improve its predictive performance. Hasan et al. [15] constructed a predictor
called pbPUP that used the profile-based composition of k-spaced amino acid pairs (pbCKSAAP) to
represent the sequence information around the pupylation site. Jiang et al. [16] created a predictor
called PUL-PUP that combined the positive-unlabeled learning technique with CKSAAP to predict
pupylation sites. A structured and searchable database PupDB was used for integrating information
of pupylated proteins and sites, protein structures, and functional annotations for the management
and analysis of pupylation sites due to a large number of newly identified pupylated proteins and
sites [16]. Recently, Nan et al. [17] proposed the enhanced positive-unlabeled learning algorithm for
predicting pupylation sites.

In this study, the Pearson correlation coefficient was used to evaluate the relevance among amino
acid pairs based on amino acid composition information. Then, according to the descending order,
the amino acid pair features were added by a step of 20 to get the best prediction results by means
of jackknife test. Then the selected 320 amino acid pairs were combined with TOP-n-gram [18],
adapted normal distribution bi-profile Bayes (ANBPB) [19], and parallel correlation pseudo amino
acid composition (PC-PseAAC) [20] to construct a multiple feature vector for the query protein
peptide sequence. Because of the imbalance between the number of positive and negative samples
(183:2258), the K-means principal component analysis (KPCA) oversampling technique, firstly
proposed by Jia and Zuo [21], was applied on the positive training dataset for oversampling, and the
synthetic samples were added to the original positive training dataset as a new positive training dataset.
The fuzzy undersampling (FUS) method [21,22] was applied to the negative dataset to reduce noise
negative samples, and the selected negative samples were used as a new negative training dataset.
At last, the 377 pupylated sites (positive samples) and 365 non-pupylated lysine sites (negative
samples) were used to train and test our model. Moreover, the performance of our method was verified
by means of jackknife, 10-fold cross-validation test and an independent dataset. When compared with
other existing predictors, all of the results showed better performance and stability, proving as an
effective way to predict pupylation sites.
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2. Results and Discussion

2.1. Pearson Correlation Coefficient for Feature Selection

The Pearson Correlation Coefficient [23,24] is a measurement for the linear relationship among
distance variables. If a positive linear correlation exists between two variables, their metric
approaches 1. The Pearson Correlation Coefficient was used to find out the most closely related
amino acids. First, extracting amino acid composition (AAC) was used for feature extraction on the
training dataset. Second, the Pearson Correlation Coefficient was employed to calculate the correlation
coefficient among amino acids based on AAC values, and its values were sorted in a descending order.
Finally, the amino acid pair composition (AAPC) was selected according to the order. The value of
Pearson Correlation Coefficient was 1 for the amino acid pair AA, CC, ..., YY, and so these 20 amino acid
pairs of the same amino acid were reserved to combine with others. The prediction on the jackknife test
on the combination of 20, 40, ..., 380, and 400 features was performed by a step of 20, and the detailed
results are shown in Table S1. The best results were obtained when the first AAPC (320) features
were selected; sensitivity (Sn) was 81.42%, specificity (Sp) was 76.44%, accuracy (Acc) was 78.10%,
and Matthews Correlation Coefficient (MCC) was 0.55. However, the prediction results were not
monotonous; this might be due to the same parameter used for different dimension features.

2.2. Combination of KPCA and FUS for Training Set Balancing

As described in Section 2.1, the training dataset comprised 183 positive samples and 2258 negative
samples which is the same as [15,17] to guarantee the contrast of the experiment.

The ratio of positive and negative samples was 1:12, leading to biased results and inaccurate data.
The KPCA and fuzzy undersampling (FUS) oversampling and undersampling methods were first
proposed by Jia and Zuo [21]. They were effective in identifying protein O-GlcNAcylation sites.
Therefore, in this study, KPCA and FUS were also employed to solve the imbalance between
positive and negative training datasets. First, FUS was used to remove the redundant negative
samples, and the remaining 365 nonpupylation protein peptides were used as the new negative
training dataset. Then, KPCA was applied on the positive samples to divide them into three clusters
(k = 3). The experiment was repeated several times. The results of clustering were added to the
original positive samples so that the ratio of the positive samples and the negative samples was
approximately 1:1. The following results were obtained based on KPCA and FUS.

The performance illustrated that the results obtained from the original unbalanced training
dataset were biased toward the larger number of classes. For example, on the 320-dimensional selected
feature vector, Sn was 0 and Sp was 100%; it was the worst performance for the prediction model.
However, after using KPCA and FUS on the training dataset, Sn was 81.42% and Sp was 76.44% shown
in Table 1, indicating that the unbalanced data had a great influence on the experimental results.

Table 1. Comparison of original imbalance dataset and balanced dataset.

Method Sn (%) Sp (%) Acc (%) MCC

Without resampling 0 100 92.50 NaN
KPCA oversampling 25.54 99.87 92.67 0.33

KPCA oversampling and FUS undersampling 81.42 76.44 78.10 0.55

2.3. Predictive Performance Improvement

A variety of feature extraction methods can be found on the Web server (http://bioinformatics.
hitsz.edu.cn/Pse-in-One2.0/) [25]. After several trials, TOP-n-gram, ANBPB, and PC-PseAAC feature
extraction methods were used to combine with 320-dimensional features extracted by AAPC, and the
results are shown in Table 2.

http://bioinformatics.hitsz.edu.cn/Pse-in-One2.0/
http://bioinformatics.hitsz.edu.cn/Pse-in-One2.0/
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Table 2. Predictive performance of TOP-n-gram, adapted normal distribution bi-profile Bayes (ANBPB),
and parallel correlation pseudo amino acid composition (PC-PseAAC) using the jackknife test.

Feature Sn (%) Sp (%) Acc (%) MCC

AAPC(320) 81.42 76.44 78.1 0.55
AAPC(320) + TOP-n-gram 80.33 100 93.43 0.86

AAPC(320) + ANBPB 64.48 100 88.14 0.74
AAPC(320) + PC-PseAAC 84.15 72.60 76.46 0.54

AAPC(320) + TOP-n-gram + ANBPB 70.49 98.36 89.05 0.75
AAPC(320) + TOP-n-gram + PC-PseAAC 87.43 75.34 79.38 0.59

AAPC(320) + ANBPB + PC-PseAAC 75.41 100 91.79 0.82
AAPC(320) + TOP-n-gram + ANBPB + PC-PseAAC 94.54 100 98.18 0.96

The Pearson correlation coefficient was used to filter out the AAPC (320) dimension features
from the 400-dimensional features so as to remove the redundant information. Although the results
were improved, the value of MCC was slightly lower. AAPC (320) was combined with other
features to increase the value of MCC. When AAPC (320) was combined with TOP-n-gram and
ANBPB, Sn, Acc, and MCC improved greatly. Especially when AAPC (320) was combined with
TOP-n-gram, MCC increased by 0.3037, but Sn slightly reduced. When AAPC (320) was combined
with PC-PseAAC, Sn increased by 2.73%. Combining AAPC (320) with TOP-n-gram and PC-PseAAC,
Sn increased by 6.01%. After several experiments, AAPC (320) was combined with TOP-n-gram,
ANBPB, and PC-PseAAC, with the MCC of 0.96, which was higher by 0.41 than the previous
value of AAPC (320); the accuracy was 98.18%. Furthermore, Sn and Sp increased by 13.12%
and 23.56% compared with AAPC (320). The results indicated that the predictor achieved better
prediction performance.

2.4. Comparison between the Proposed Method and Other Prediction Methods

The proposed method was compared with other methods by tenfold cross-validation, including
EPuL [17], PUL-PUP [16], PSoL [26], and SVM balance [15] on the training dataset to evaluate the
effectiveness of the proposed method for pupylation site prediction. Table 3 presents the comparison
among EPuL, PUL-PUP, PSoL, and SVM balance.

Table 3. Comparison of the proposed method with EPuL, PUL-PUP, PSoL, and support vector machine
(SVM) balance on 10-fold cross-validation test.

Method Sn (%) Sp (%) Acc (%) MCC AUC

Proposed
method 90.53 99.8 95.09 0.91 0.96

* EPuL 84.21 95.45 90.24 0.81 0.93
* PUL-PUP 82.24 91.57 88.92 0.74 0.92

* PSoL 67.5 73.6 70.55 0.42 0.8
* SVM

balance 76.71 63.65 69.88 0.4 0.77

* The results of the comparison are from EPuL [17].

The SVM balance method can solve the imbalance of datasets, but its negative samples obtained
from unannotated lysine sites are inaccurate. PUL-PUP and PSoL use unreliable negative datasets,
whose features are not optimal. EPuL uses a series of options to obtain the reliably negative datasets;
however, its accuracy is low because it does not integrate other features and the imbalance dataset is
selected randomly. Figure 1 shows that the proposed method achieved a higher accuracy compared
with EPuL for running 10 times of tenfold cross-validation results, with Sn of 6.32% and Sp of
4.35%. Furthermore, the Acc and MCC of the proposed method were 95.09% and 0.9063, respectively,
which were 4.85% and 0.0963 higher than those of EPuL. For the EPuL web-server is unavailable,
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we listed the detailed 10-fold cross-validation results of our method, PUL-PUP, PSoL, and SVM in
Tables S2–S5.

2.5. Performance on the Independent Test Dataset

In this study, the proposed method achieved a better performance, indicating that the
Pearson correlation coefficient, KPAC, and FUS were effective in predicting the pupylation sites.
An independent test dataset containing 20 proteins, which included 29 experimentally validated
pupylation sites and 408 nonannotated pupylation sites, was selected to further verify the effectiveness
of the proposed method. Although the positive and negative datasets of the independent test dataset
were imbalanced, it was obtained from the real proteins and reflected the true distribution of pupylated
sites and nonpupylated sites. A comparison of results with those of the existing methods, including
the EPuL, PUL-PUP, PSoL, and SVM balance, is listed in Figure 1. The prediction results of PUL-PUP,
PSoL, and SVM-balance are directly from EPuL [17]. we listed results of our method, PUL-PUP, PSoL,
and SVM balance on the independent dataset in Table S6–S9.

The overall accuracy of the proposed method was the best among the five models.
Especially, Sn reached 100% and Acc was 24% higher than that of EPuL.
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Figure 1. Comparison of performance between our model, EPuL, PUL-PUP, PSoL, and SVM balance
on an independent test dataset.

3. Materials and Methods

This study involved the following steps: (1) extracting amino acid composition (AAC);
(2) calculating Pearson Correlation Coefficient and sorting the values; (3) selecting the top n
amino acid pair composition; (4) combining with other features; (5) balancing the training datasets;
and (6) verifying the model. The conceptual diagram of the pupylation site prediction model is shown
in Figure 2.
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3.1. Formatting of Mathematical Components

The training and test datasets constructed by Tung [12] and lately used by Nan et al. [17], were
also adopted in this study. The training dataset consisted of 183 experimentally validated pupylation
sites and 2258 artificially generated nonannotated lysine sites from 162 proteins of Mycobacterium
smegmatis (M. smegmatis), Mycobacterium tuberculosis (M. tuberculosis) and Escherichia coli (E. coli).
The independent test dataset contained 29 experimentally verified lysine pupylation sites and 408
nonannotated lysine sites from 20 proteins. As the independent test dataset was highly unbalanced,
it reflected the real effects of different methods [10–17]. Similar to the previous findings, the length
of each protein peptide was 21 in the training and test datasets. The training and test datasets are
available in the supplementary material.

3.2. Information from the Protein Peptide Sequence

3.2.1. Amino Acid Composition (AAC)

AAC [27] is a widely used method for feature extraction, varied protein sequence analysis,
and prediction. It was used to calculate the content of amino acids in the amino acid fragment. For a
given peptide fragment containing 20 natural amino acids and pseudo amino acids "X," only 20 natural
amino acids were used to construct the 20-dimensional feature vector of AAC for encoding because
the frequency of pseudo amino acid "X" always approached zero or equaled zero. AAC can be defined
as follows:

AAC = [ f1, f2, . . . , f20] (1)
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where fi where fi represents the frequency of the occurrence of the ith amino acid in the 20 natural
amino acids {A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y} and expressed as follows:

fi =
Ni

Ntotal
(2)

where Ni indicates the number of amino acid ith in the peptide fragment, and Ntotal indicates the total
length of the peptide fragment. The length of the amino acid peptide was 20 in the study.

3.2.2. Amino Acid Pair Composition

Amino acid pair composition (AAPC) [28] is generally used to obtain the correlation between one
amino acid and other amino acids in a protein sequence. In this study, it was used to calculate the
frequency of occurrence of amino acids in pupylation fragments. The AAPC feature vector is defined
as follows:

AAPC = [x1, x2, . . . , xi, . . . , x400]
T (0 < i ≤ 400) (3)

where xi indicates the occurrence correlation of the ith amino acid pairs with other amino acid pairs
(AA, AC, ..., YY).

xi =
nij

ntotal
(4)

where nij indicates the number of amino acid pair ijth in the peptide fragment, and ntotal indicates the
total number of amino acid pair. The length of the amino acid pair was 400 in the study.

3.2.3. Adapted Normal Distribution bi-profile Bayes

ANBPB [19] is a combination of bi-profile Bayes (BPB) [29,30] and the standard normal
distribution, which uses a probability vector to encode the peptide fragment.

Pj = [p1, p2, . . . , pn, pn+1, . . . , p2n]
T (5)

where Pj(j = 1, 2, . . . , n
)

is the posterior probability of each amino acid in the jth position of the
positive training dataset; Pj(j = n + 1, n + 2, . . . , 2n

)
is the posterior probability of each amino acid in

the jth position of the negative training dataset. The occurrence frequency of each amino acid at each
position is encoded as random variables Xij (i = 1, 2, . . . , 21; j = 1, 2, . . . , 21) , which are independent
and identically distributed in the binomial distribution b = (m, p) , in this study; m = 183/2258 is
the number of samples in the positive/negative dataset, p = 1/21 is the probability of occurrence of
each amino acid at each position. According to the Moivre–Laplace’s theorem, if m is large enough,

Xij − mp√
mp(1−p)

approximately obeys the standard normal distribution N(0, 1) . If Vj is used to represent

the standard deviation of the random variable Xij (i = 1, 2, . . . , 21) , the normalized variable of the
random variable Xij can be defined as follows:

X′ij =
Xij −mp√

Vj
. (6)

Therefore, pj (i = 1, 2, . . . n, n + 1, . . . , 2n) can be encoded by the adapted normal distribution
as follows:

pj = P
(
X ≤ Xij

)
= ϕ

(
X′ij
)

(7)

where the formula for ϕ(x) is given by ϕ(x) = 1√
2π

x∫
−∞

e−
t2
2 dt.
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3.2.4. TOP-n-gram

Top-n-gram [18], which includes the evolutionary information extracted from the frequency
profiles, can be viewed as a novel profile-based building block of proteins. The multiple sequence
alignments yielded by PSI-BLAST [31] are used to calculate the protein sequence frequency profiles,
which are combined with the n most frequent amino acids in each amino acid frequency profile, and the
frequency profiles are converted into Top-n-grams. The occurrence times of each TOP-n-gram are
used to convert protein fragments into fixed feature vectors, and then the corresponding vectors are
substituted into SVM. Several basic building blocks have been investigated as the words of "protein
sequence language," including Ngrams [29,32], patterns [33], motifs [34], and binary profiles [18].

3.2.5. Parallel Correlation Pseudo Amino Acid Composition

Parallel correlation pseudo amino acid composition (PC-PseAAC) was also considered to obtain
more order information for a fragment [20]. PC-PseAAC is an approach incorporating the contiguous
local sequence-order information and the global sequence-order information into the feature vector
of the protein sequence. Given a protein sequence P, the PC-PseAAC feature vector of P is defined
as follows [25]:

P = [x1 x2x3 . . . x20x21 . . . x20+λ ]T (8)

where

xu =


fu

∑20
i=1 fi+w ∑λ

j=1 Θj
(1 ≤ u ≤ 20)

wΘu−20

∑20
i=1 fi+w ∑λ

j=1 Θj
(20 + 1 ≤ u ≤ 20 + λ)

(9)

where fi (i = 1,2, . . . ,20) is the normalized occurrence frequency of the 20 amino acids in the protein
sequence P; the parameter λ is an integer, representing the highest counted rank (or tier) of the
correlation along a protein sequence; w is the weight factor ranging from 0 to 1; and θj (j = 1, 2, · · · , λ)
is called the j-tier correlation factor reflecting the sequence-order correlation between all the jth most
contiguous residues along a protein chain and defined as follows:

Θλ =
1

L− λ

L−λ

∑
i=1

Θ(Ri, Ri+λ)(0 < λ < 1) (10)

where the correlation function is given by:

Θ(Ri, Rj) =
1
3

{[
H1
(

Rj
)
− H1(Ri)

]2
+
[
H2
(

Rj
)
− H2(Ri)

]2
+
[
M
(

Rj
)
−M(Ri)

]2} (11)

where H1(Ri), H2(Ri), and M(Ri) are the hydrophobicity value, hydrophilicity value, and side-chain
mass of the amino acid Ri, respectively. Before substituting the values of hydrophobicity, hydrophilicity,
and side-chain mass into [18], they should all be subjected to a standard conversion as described by
the following equation [25]:

H1(i) =
H0

1(i) −∑20
i=1

H0
1 (i)
20√

∑20
i=1 [H

0
1 (i) −∑20

i=1
H0

1 (i)
20 ]

2

20

(12)

H2(i) =
H0

2(i) −∑20
i=1

H0
2 (i)
20√

∑20
i=1 [H

0
2 (i) −∑20

i=1
H0

2 (i)
20 ]

2

20

(13)

M(i) =
M0(i) −∑20

i=1
M0(i)

20√
∑20

i=1 [M0(i) −∑20
i=1

M0(i)
20 ]

2

20

(14)
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where H0
1(i) is the original hydrophobicity value of the ith amino acid; H0

2(i) is the corresponding
original hydrophilicity value; and M0(i) is the mass of the ith amino acid side chains.

3.3. Pearson Correlation Coefficient

As a measure of the variability among variables, the correlation coefficient can indicate a certain
correlation between two variables at the same time. The Pearson correlation coefficient [23,24] is used
to judge whether two datasets are on a line and measure the linear relationship according to distance.
For the Pearson correlation coefficient, if a positive linear correlation exists between two variables,
their metric value approaches 1. Similarly, if the two variables have a negative linear correlation, their
metric value approaches –1. Let (X, Y) be a two-dimensional random variable vector, and the Pearson
correlation coefficient is defined as follows:

ρ =
cov ( X, Y )√

var(X)
√

var(Y)
(15)

Let (Xi, Yi) (i = 1, 2 . . . n ) be a random sample of (X, Y) , and another form of the Pearson
correlation coefficient can be expressed as follows:

ρ =
∑n

i=1
(
Xi − X

)(
Yi −Y

)
[∑n

i=1
(
Xi − X

)2
∑n

i=1
(
Yi −Y

)2
]
1/2 (16)

where X is the mean of Xi, and Y is the mean of Yi, (i = 1, 2 . . . n) .
In this study, AAC was used for feature extraction on the training dataset, and the values of

Pearson Correlation Coefficients were sorted in a descending order. The positive and negative training
datasets were extracted in AAPC. The feature selection was performed on the 400-dimensional feature
vector, and the best results were obtained when the first AAPC (320) features were selected.

3.4. Processing of Positive and Negative Datasets

3.4.1. KPCA Oversampling Technique

The KPCA oversampling technique [21] is based on the K-means clustering algorithm and
principal component analysis (PCA) [35,36]. First, the initial clustering center K was formed by
randomly selecting class samples from the positive training dataset.

K(InitialCenter(j)), j = 1, 2, . . . n (17)

Second, the Euclidean distance was used to divide the positive training samples into k clusters,
defined as follows:

Ij =
∣∣∣∣∣∣K(j) − K (InitialCenter(n)) ||2 (18)

where K(j) represents j original positive training samples, and Ij is the distance between j original
positive training samples and n clusters.

Finally, the average values of all peptide fragments of the original positive training sample were
calculated in each cluster and then clustering centers were adjusted. The initial clustering center
K was not picked twice, and the process was performed iteratively. Next, each cluster of positive
training samples K = [k1, k2, . . . , km1]

T was normalized by K′ = ki−µ
σ to be K′ =

[
k′1, k′2, . . . , k′m1

]T .
Then, the covariance matrix R =

(
rij
)

m∗n o f K′ was obtained and the following equations were used
to add the synthesized positive samples to the positive training dataset.

K′ =
[
k′1, k′2, . . . , k′m1

]T (19)
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rij =

(
∑m

i=1 Xkj ∗ Xkj

)
(

∑m
k=1(Xki)

2 ∑m
k=1

(
Xkj

)2
) 1

2
(20)

Y = [y1, y2 , . . . , ym1]
T (21)

yi = (yi1, yi2, . . . yiDim ), i = 1, 2, . . ., Dim (22)

yij = k′i ∗ A(:, j), i = 1, 2, . . ., m1, j = 1, 2, . . ., Dim (23)

where m1 is the number of positive samples in the nth cluster, Dim is the number of features
in the positive samples, and A is the eigenvalue matrix of the covariance matrix arranged in a
descending order. In this study, the value of K was set to 3 and KPCA was used on the positive samples.
Finally, the experiment of clustering was repeated 4 times and their results were added to 183 positive
training datasets as the new positive training dataset, including 377 samples. The number of the new
positive training samples and that of the new negative training samples obtained from 365 samples
using the FUS approach 1:1.

3.4.2. Fuzzy Undersampling Method

The FUS method [22] uses the fuzzy membership function to extract the information hidden in
the training samples. In this study, the FUS approach was used to reduce the number of negative
training samples to keep the positive and negative datasets in balance.

First, the mean and standard deviation of each feature of the positive and negative training
samples were calculated as follows:

Cj
pos =

∑PosNum
i=1 Pos(i, j )

PosNum
, j = 1, 2, . . . , Dim (24)

Cj
Neg =

∑
NegNum
i=1 Neg(i, j )

NegNum
, j = 1, 2, . . . , Dim (25)

σ
j
Pos =

√√√√ 1
PosNum

PosNum

∑
i=1

(
Pos(i, j) − Cj

Pos

)2
, j = 1, 2, . . . , Dim (26)

σ
j
Neg =

√√√√ 1
NegNum

NegNum

∑
i=1

(
Neg(i, j) − Cj

Neg

)2
, j = 1, 2, . . . , Dim (27)

where PosNum is the number of positive training samples, NegNum is the number of negative training
samples, Pos(i, j ) is the value of the jth feature of the ith positive training sample, and Neg(i, j )
is the value of the jth feature of the ith negative training sample. Dim is the number of training
samples features.

Second, the mean and standard deviation of the positive and negative samples were used to
establish a membership function, defined as follows:

uj
Pos(i) = GaussMF

(
Data(i, j); Cj

Pos, σ
j
Pos

)
(28)

uj
Neg(i) = GaussMF

(
Data(i, j); Cj

Neg, σ
j
Neg

)
(29)

GaussMF(x; C, σ) = exp

(
−1

2
(

x− C
σ

)
2
)

(30)
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where Data(i, j) is the jth eigenvalue of the ith sample among the training samples
(i = 1, 2, . . . , PosNum, PosNum + 1, . . . , PosNum + NegNum, j = 1, 2, . . . , Dim) .

Fval(i, j) = uj
Pos(i) +

(
1− uj

Neg(i)
)

. (31)

Finally, all the positive training samples were saved and the negative training samples with high
scores were removed. The score function is defined as follows:

Score(i) =
Dim

∑
j=1

Fval(i, j), (i = PosNum + 1, . . . , PosNum + NegNum). (32)

Then, FUS was applied on the negative training samples, and the number of negative
training samples was reduced from 2258 to 365, which could decrease the inaccuracy caused by
imbalanced datasets.

3.5. SVMs Implementation and Parameter Selectiont

SVM is a supervised learning method, which applies statistical theory to complete classification
and regression in the area of bioinformatics [15,37–43]. In this study, the LibSVM package [43,44] was
used to establish and evaluate the performance of the prediction model. The kernel function used the

radial basis kernel function (RBF) K
(
Si, Sj

)
= e(−γ‖Si−Sj‖2), and a grid search strategy based on 10 times

of tenfold cross-validation and jackknife was employed to find the optimal parameters. The optimal
parameters of tenfold cross-validation and jackknife are C = 0.70711 and γ= 1.4142, respectively.

Four measurements, including sensitivity (Sn), specificity (Sp), accuracy (Acc), and Matthews
correlation coefficient (MCC), were used to evaluate the performance of the proposed predictor [44],
which are shown as follows:

Sn =
TP

TP + FN
(33)

Sp =
TN

TN + FP
(34)

Acc =
TP + TN

TP + TN + FP + FN
(35)

MCC =
TP × TN − FN × FP√

(TP + FN) × (TP + FP) × (TN + FP) × (TN + FN)
(36)

where TP, FP, TN, and FN are the number of true positives, false positives, true negatives, and false
negatives, respectively.

4. Conclusions

In this study, the Pearson correlation coefficient was used to evaluate the relevance between
any two amino acids, which were employed to obtain an optimal combination of amino acid pairs.
Then, the AAPC (320) information was combined with TOP-n-gram, ANBPB, and PC-PseAAC to
construct multiple feature vectors. Moreover, KPAC and FUS were used to solve the imbalance
between positive and negative datasets. Finally, tenfold cross-validation, jackknife test, and an
independent test were used to verify the proposed model. The prediction results showed that the
proposed method was more accurate than the previous methods in predicting the pupylation sites.
However, this study only considered the content of amino acids and neglected the location of amino
acids in pupylated proteins. Amino acid environment such as surface areas and buried residues should
be considered in future studies to explore the effects of amino acids at different positions. It should be
pointed out user-friendly and publicly accessible web-servers will significantly enhance their impacts,
we shall make efforts in our future work to provide a web-server for the prediction method presented
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in this paper. The MATLAB (matrix laboratory) package of our prediction method is available as
Supplementary material.

Supplementary Materials: The following are available online at http://www.mdpi.com/1420-3049/23/12/3097/
s1, Excel S1, the training and test datasets used in this study; Table S1: The results of 20, 40, ..., 380, 400 of
features by the 20 step length by jackknife test; Table S2: The prediction results of our method for the training
dataset; Table S3: The prediction results of PUL-PUP for the training dataset; Table S4: The 10-fold cross-validation
prediction results of PSoL on the training dataset; Table S5: The 10-fold cross-validation prediction results
of SVM balance on the training dataset; Table S6: The prediction results of our method for the test dataset;
Table S7: The prediction results of PUL-PUP for the test dataset; Table S8: The prediction results of PSoL for the
test dataset; Table S9. The prediction results of SVM_balance for the test dataset.
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Abbreviations

Pup prokaryotic ubiquitin-like protein
KPCA k-means principal component analysis oversampling technique
FUS fuzzy undersampling method
Sn sensitivity
Sp specificity
Acc accuracy
MCC Matthews correlation coefficient
CKSAAP composition of k-spaced amino acid pairs feature
pbCKSAAP profile-based composition of k-spaced amino acid pairs
AAC extracting amino acid composition
M. smegmatis Mycobacterium smegmatis
M. tuberculosis Mycobacterium tuberculosis
E. coli Escherichia coli
AAPC amino acid pair composition
ANBPB adapted normal distribution bi-profile Bayes
BPB bi-profile Bayes
PC-PseAAC parallel correlation pseudo amino acid composition
PCA principal component analysis
SVM support vector machine
RBF radial basis kernel function
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