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Abstract: Intracellular delivery is a critical step in biological discoveries and has been widely utilized
in biomedical research. A variety of molecular tools have been developed for cell-based gene
therapies, including FDA approved CAR-T immunotherapy, iPSC, cell reprogramming and gene
editing. Despite the inspiring results of these applications, intracellular delivery of foreign molecules
including nucleic acids and proteins remains challenging. Efficient yet non-invasive delivery
of biomolecules in a high-throughput manner has thus long fascinates the scientific community.
As one of the most popular non-viral technologies for cell transfection, electroporation has gone
through enormous development with the assist of nanotechnology and microfabrication. Emergence
of miniatured electroporation system brought up many merits over the weakness of traditional
electroporation system, including precise dose control and high cell viability. These new generation
of electroporation systems are of considerable importance to expand the biological applications of
intracellular delivery, bypassing the potential safety issue of viral vectors. In this review, we will go
over the recent progresses in the electroporation-based intracellular delivery and several potential
applications of cutting-edge research on the miniatured electroporation, including gene therapy,
cellular reprogramming and intracellular probe.
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1. Introduction

Cells are the basic building blocks of all living organisms, while molecules, as the currency
of information in cellular exchange, are responsible for the cellular structure and orienting cells
toward specific function. Many diseases such as immunodeficiencies [1], cancers [2], Parkinson’s
disease [3] and Alzheimer’s disease [4] are primarily triggered by the disorder and malfunction of
cells. To treat these diseases, introducing exogenous molecules and pertinent materials into cells
is an important strategy in deciphering cell function, guiding cell fates, and reprogramming cell
behaviors, which are expected to greatly contribute to the normal function of cells and recovery of
tissues. Recently, many molecular tools have been developed to modify genes for treatment of diseases
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and probe intracellular microenvironment, including nucleic acids (such as DNA plasmids, mRNA,
microRNA and siRNA) which can overexpress certain genes in cells for various function, inhibitor
proteins as drugs for anti-tumor treatment, molecular beacon probes and DNA origami enabling
investigation of intracellular environment and bio-sensors and nanodevices for manipulation at the
molecular level [4–6]. These molecular tools render intracellular delivery broad prospect not merely in
the biomedical field, in which cell-based therapies, regenerative medicines and early diagnosis are
introduced, but also in the bio-manufacturing and biological fundamental research where biomolecule
manufacture, gene editing and intracellular investigation are focused respectively (Figure 1).
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can achieve a high efficiency, it can inherently disrupt the immune system and thus consistently raise 
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Figure 1. Various applications in different fields benefit from the development of molecular tools for
intracellular delivery.

In the process of intracellular delivery, cargos and approaches for transportation are two key
elements. Cargos for delivery are highly variable in size, sources, organization and physicochemical
properties. Such diversity of cargo could make great impact on the delivery strategies and intracellular
applications. Based on the diverse properties and applications of cargos, current techniques for
intracellular delivery can be mainly categorized into two types: carrier-mediated delivery and
membrane-penetrating delivery. As illustrated in Figure 2, carrier-mediated delivery comprises various
biochemical assemblies, mostly of molecular to nanoscale dimensions, while membrane-disruption are
closely related to physical effect, involving the incorporation of transient discontinuities in the plasma
membrane via mechanical, electrical, thermal, optical or acoustics means.

When comes to the carrier-mediated delivery, biological and chemical strategies are principally
covered, which include extracellular vehicles (EVs), viral vectors and organized nanoparticles. Viral
vectors (e.g., retrovirus and lentivirus) containing packaged gene materials of interest inside can
effectively target host cells and release the genetic molecules consequently. While viral transduction can
achieve a high efficiency, it can inherently disrupt the immune system and thus consistently raise safety
issues in vivo. For the extracellular vesicles, especially exosomes, enthusiastic attention have been
concentrated on this biological field because of their important roles in cell-to-cell communication [7].
These vesicles not only provide new biomarkers for disease diagnosis [6,8–11], but also emerge as a
potent delivery agent [12–15]. Despite enormous potential, the underlying mechanism of EVs delivery
remains to be unveiled before widely used and extended to clinical application. Furthermore, chemical
methods were developed for the delivery of sensitive genetic cargoes and drugs toward specific target,
which are designed to be enclosed in liposome- or polymer-based nanocarriers that can be uptaken
by cells via endocytosis [16–21]. Tremendous efforts have been made to develop novel nanoparticle
formations and their therapeutic applications particularly in drug delivery [22–31]. Yet limitations
to their successful intracellular delivery, a poor understanding of their interaction with biological
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environments, highly stochastic dosage in delivery vesicles and the toxicity issues related to these
novel materials have retarded their deployment inside the cell [32].

Molecules 2018, 23, x 3 of 19 

 

in drug delivery [22–31]. Yet limitations to their successful intracellular delivery, a poor 
understanding of their interaction with biological environments, highly stochastic dosage in delivery 
vesicles and the toxicity issues related to these novel materials have retarded their deployment inside 
the cell [32]. 

 
Figure 2. General classification of popular intracellular delivery platforms: carrier-mediated delivery 
strategies (blue background) and popular physical membrane-penetrating delivery methods (green 
background). 

Membrane-disruption modalities are primarily physical methods, which can be classified as 
direct penetration modalities and permeabilization. Direct penetration employs a solid conduit or 
vehicle to concurrently penetrate the membrane and introduce cargo. Prevalent samples here are 
mechanical cell membrane penetration (micro- and nano-injection) [33] and gene gun with ballistic 
particles [34] as shown in Figure 2. Unlike carrier-based delivery, active external force is utilized for 
puncturing the cell membrane to obtain access in direct penetration, where the target cell must 
respond to repair damage sustained to the plasma membrane or other cellular structures. 
Alternatively, permeabilization strategies aim to make a cell become permeable to a substance when 
disruptions in the membrane are of sufficient size to allow “package” through the membrane. Almost 
all the permeabilization strategies need apply specific conditions, such as temperature, electric field 
and buffer composition, to initially motive permeabilization and delivery and subsequently facilitate 
cell recovery. Common commercialized tools for permeabilization are laser-based delivery and bulk 
electroporation. Comparing to the direct penetration strategies, permeabilization strategies enable 
better control of membrane disruption effect with the regulation of parameters in different 
conditions. Generally, a balance of the membrane disruption effect need to be found in effective 
permeabilization strategies, optimizing both the membrane damage and cell treatment conditions. 

Among several choices in permeabilization-based disruption delivery, electroporation has 
already been an established technique in medical field, but many of its biotechnological applications, 
especially intracellular delivery did not start to emerge until 1980s [35]. Due to its feasible control and 
efficiency in cell transfection and desirable delivery for a huge variety of cargos from small molecules 
to larger proteins/antibodies, electroporation has been deemed as one of the most promising methods 
and widely utilized for intracellular delivery. Although widespread applications, some challenges, 
such as precise dose control and cell viability remains to be demonstrated. In recent years, with the 
development of nanotechnology and microfabrication, lab-on-chip, microfluidic, and 

Figure 2. General classification of popular intracellular delivery platforms: carrier-mediated
delivery strategies (blue background) and popular physical membrane-penetrating delivery methods
(green background).

Membrane-disruption modalities are primarily physical methods, which can be classified as
direct penetration modalities and permeabilization. Direct penetration employs a solid conduit or
vehicle to concurrently penetrate the membrane and introduce cargo. Prevalent samples here are
mechanical cell membrane penetration (micro- and nano-injection) [33] and gene gun with ballistic
particles [34] as shown in Figure 2. Unlike carrier-based delivery, active external force is utilized
for puncturing the cell membrane to obtain access in direct penetration, where the target cell must
respond to repair damage sustained to the plasma membrane or other cellular structures. Alternatively,
permeabilization strategies aim to make a cell become permeable to a substance when disruptions
in the membrane are of sufficient size to allow “package” through the membrane. Almost all the
permeabilization strategies need apply specific conditions, such as temperature, electric field and
buffer composition, to initially motive permeabilization and delivery and subsequently facilitate
cell recovery. Common commercialized tools for permeabilization are laser-based delivery and bulk
electroporation. Comparing to the direct penetration strategies, permeabilization strategies enable
better control of membrane disruption effect with the regulation of parameters in different conditions.
Generally, a balance of the membrane disruption effect need to be found in effective permeabilization
strategies, optimizing both the membrane damage and cell treatment conditions.

Among several choices in permeabilization-based disruption delivery, electroporation has
already been an established technique in medical field, but many of its biotechnological applications,
especially intracellular delivery did not start to emerge until 1980s [35]. Due to its feasible control
and efficiency in cell transfection and desirable delivery for a huge variety of cargos from small
molecules to larger proteins/antibodies, electroporation has been deemed as one of the most promising
methods and widely utilized for intracellular delivery. Although widespread applications, some
challenges, such as precise dose control and cell viability remains to be demonstrated. In recent
years, with the development of nanotechnology and microfabrication, lab-on-chip, microfluidic, and
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nanotechnological systems have emerged for the revolution of miniatured electroporation, which to
great extent addressed the challenges in permeabilizing cells initiated by electric field.

This review will mostly focus on the electroporation-based intracellular delivery, especially
the combination with novel technologies, extended miniatured electroporation and its potential
applications in clinic. We will first cover the brief history and mechanisms of electroporation. These
include an overview of development of electroporation and principles of traditional electroporation
system, as these characteristics are inextricably linked to the deficiencies and challenges involved
in intracellular delivery. We then survey some of the most promising technical improvement in
electroporation, especially in miniaturized electroporation. Technical advances will be compared with
traditional electroporation system and potential clinical applications will be introduced.

2. Overview of Electroporation

2.1. Brief History of Electroporation

The interest of people in applying electricity in human and animal bodies could date back to 1700s,
and it was found that electric field caused damage to the tissues presumably due to the irreversible
electroporation [36]. Systematic study of electroporation at the cellular level, however, did not begin
until 1980s. In nucleated mammalian cells, Neumann and his colleagues published a groundbreaking
report in 1982, which demonstrated that electroporation could give rise to the efficient transfection
of plasmid DNA in mouse lyoma cells [35]. This study also pioneered electroporation theory by
introducing a novel model to simulate the extent of permeabilization in an electroporated cell with
a generalized van’t Hoff relationship, whereby poration phenomena could be viewed as structural
rearrangements of lipids and water. In 1990s, Tsong published a series of research papers which were
considered milestones in understanding the fundamental biophysics of electroporation technology
and its applications. The definition of electroporation given by Tsong which is still widely accepted
now is that electroporation is the transient loss of semi-permeability of cell membranes subject to the
electric pulses, thus leading to “ion leakage, escape of metabolites, and increased uptake by cells of
drugs, molecular probes, and DNA” [37,38]. After entering the 21st centuries, electroporation has been
one of the most popular non-viral cell transfection methods both in vitro and in vivo, which could be
attributed to the maneuverability of the system and its versatility in terms of transfection cell types.
Due to the prominent advantages of electroporation in cell transfection, such technology has been
applied in biomanufacture, and common commercial electroporation systems are listed for instance in
Figure 3.
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2.2. Physical Principles of Electroporation

Cell membrane is known to be basically composed of a lipid bilayer with thickness about 5 nm,
which functions as a barrier to the cellular components from extracellular environment. As an electrical



Molecules 2018, 23, 3044 5 of 19

insulator exhibiting excellent dielectric property in normal physiological conditions, it maintains the
electric potential (~ 0.07 V) across the membrane due to significant difference of ion concentration
between cytosol and the fluid in extracellular microenvironment. Theoretically, electroporation is an
effective strategy to form pores in cell membrane by the application of a potential difference across that
membrane. When the potential difference reaches a specific magnitude of voltage, the probability of
electroporation taking place on cell membrane drastically increases. In actual, the electric breakdown
of cell membrane happens when the transmembrane potential across the lipid bilayer ∆m reaches a
threshold, reportedly a critical value about 1 V [37], because the lipid molecules within the membrane
re-orient to form small hydrophilic openings (“aqueous pathways”) on the cell membrane, which
is otherwise hydrophobic in the undisturbed state (as shown in Figure 4). This breakdown can be
either reversible or irreversible, depending on the electric pulse intensity and duration as well as the
cell types.
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bilayer during electroporation. From left to right (A) the intact bilayer, (B) a few water molecules enter
the lipid regime, starting to form a “water path”, and (C) the neighbouring lipids reorient, stabilizing
the “water pore” and allowing the ions to enter. Reprinted with permission from ref. [39] Copyright ©
2012, IEEE.

A variety of factors have been studied to model the transmembrane potential ∆m Schwan equation
is one of the most widely-used models to calculate ∆m, as shown below:

∆m = − f ·E(t)·R·cosθ·
(

1 − e−
t
τ

)
(1)

where f is the cell-shape factor (1.5 for spherical cells), E is the applied external electric field, R is the
radius of the cell, θ is the polar angle between the direction of E and the specific location on the cell
membrane, t is the time, and τ is the time constant of the cell membrane “capacitor” (characteristic
charging time ~ 1 µs). Therefore, in the steady-state condition, τ � t, and the equation above can be
simplified into:

∆m = 1.5·E·R·cosθ (2)

This equation is feasible for the estimation of ∆m for the electroporation in different cell types.
Recently, with the rapid development of numerical simulation, sophisticated models with a much larger
set of parameters were developed to more accurately predict the electric field distribution and ∆m on
single cells [40–42]. In addition to the transmembrane potential associated with electrical conductance,
physicochemical, thermal, and electromechanical membrane deformation effects may also contribute
electroporation. The application of mechanical tension has been demonstrated to significantly abate
the electric voltage threshold required for membrane disruption. This could be ascribed to the bias of
energy landscape when defect forms. Similar with the effect of mechanical tension, lower temperatures
are reported to increase the electric field strength required for electroporation and further slow the
kinetics of resealing of cell membrane. Although many of mathematical descriptions and simulated
models have been developed to assess the effect of external parameters mentioned above on the
deformation of cell membrane, challenges are remained to verify in actual application.
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2.3. Bulk Electroporation in Cell Suspensions

Electroporation has been widely applied to deliver a diverse range of cargo molecules and
materials of interest into the intracellular space. Conventional electroporation technique for the
intracellular is done in cuvette-style parallel plate setups, where the cell suspension and molecules
to-be-delivered are mixed together in the conducting buffer solution between two electrodes connected
to a generator of high electric voltage, and thus it is called bulk electroporation (BEP). In such a
BEP setup (Figure 5), an approximately homogeneous electric field could be obtained across the
cell suspension. From the aspect of suspended cells in the cuvette, upon application of voltage,
different region of the plasma membrane of cells could reach the trans-membrane threshold potentials
with different time, which results in growth of a heterogeneous distribution of pores over the cell
surface. Due to the inherent negative potential of cells, permeabilization tends to occur first at
the hyperpolarized side of the cell facing the positive electrode with more numerous pores over
membrane of the cells, while the pores of cells formed on the depolarized side may carry larger pores
in diameter but with less amount [43,44]. Generally, the coverage area of the permeabilization in
bulk electroporation is primarily controlled by pulse strength, while the overall pore size is more
associated with the pulse duration [43]. Based on such heterogeneous permeabilization, the concrete
response within different cell populations various with properties of cells such as cell size, membrane
composition and physiological condition, as well as variances of applied electric filed as mentioned.
These factors have been investigated in detail by artificial model and theoretical calculation because of
the significance of cell viability after electroporation-based intracellular delivery. However, lack of
experimental methods to measure the realistic effect has made that still challenging to validate [45].
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On the strength of permeabilization triggered by electric filed, bulk electroporation has been used
to deliver a diverse range of cargo molecules and materials of interest to the intracellular space. These
cargos range from small molecules to proteins and macromolecules, including dyes, impermeable
drugs, molecular beacons, proteins, siRNA, DNA plasmid and nanoparticle. As expected, intracellular
delivery mediated by bulk electroporation is influenced by not merely the pore diameter, but also
the cargo dimensions as well as the charge of the cargo molecule. For small molecules, diffusion
across concentration gradient throughout the duration of a pore’s lifetime is the main route [46].
If the molecules are charged, such as propidium iodide, which carries two positive charges, there
is an added electrophoretic component that can augment delivery during the pulse [47,48]. As for
the proteins and macromolecules, these larger molecules exhibit a narrow window of opportunity
to enter cells when comparing to the small molecules [43]. In this process, large pores may shrink
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almost instantly after turning off the electric filed while the small pores may linger in the plasma
membrane for minutes [48]. Thus, pulse timing, especially longer pulse duration is more efficient
strategy for the intracellular delivery of larger molecule. In addition to the cargo size, charge of the
cargo molecule also plays a key role in influx mechanisms of electroporation. Unlike the diffusion of
small molecules, the mechanisms of large molecules in the electroporation-based delivery, particularly
charged macromolecules such as nucleic acid, are regarded to be almost entirely dependent upon
electrophoretic forces provided during the pulse [43,46,49]. In general, longer pulse durations, more
prominent aggregation of charged molecules around cell membrane, and higher delivery and cell
transfection efficiency could be eventually achieved.

Taken together, BEP in cell suspension is mainly determined by the pore diameter and the cargo
properties. During BEP, transient electrical pulses are applied to create intense electric field across
cell membrane and induce the permeabilization of cell membranes. Meanwhile, the biomolecules are
simultaneously delivered inside (or extracted from) the cells. For a portion of cells, because they are
inevitably exposed to an extremely high electric field, the membrane disruption become irreversible
which gives rise to the failure of membrane repair or prolonged apoptotic responses. Apart from
damage to the cell, delivery mechanisms of BEP are diffusion dominated, and for large transfection
agents such as nucleic acids, entry into the cytosol is affected through an electrophoretic aggregation
and further attachment onto the outside of the cell membrane followed by an endocytosis-like process,
which to some extent renders BEP low efficiency in intracellular delivery. Nevertheless, it is worth
noting that precise dose control has not been demonstrated using BEP.

3. Miniaturized Electroporation

The early generation of electroporation system, especially BEP, has been widely applied in
intracellular delivery because of its technical simplicity, fast delivery and almost no limitation on cell
type and size. However, the cuvette bulk style with cargo suspension has its problems. As mentioned
above, sharp reduction in cell mortality caused by large uncontrollable membrane disruption greatly
impairs the efficiency of intracellular delivery. Moreover, this cuvette style electroporation is difficult
to gain command of the precise dose of cargo delivered into target cells, which to some extent hampers
the future clinical application of intracellular delivery. With the development of nanotechnology and
microfluidic fabrication, electroporation is moving toward the concept of miniaturization, which largely
solves the challenges in conventional electroporation. Below we will discuss the innovations that have
been developed in the field of miniaturized electroporation, including micro-/nanoelectroporation
and microfluidic-based electroporation.

3.1. Microeletroporation (MEP) and Nanoelectroporation (NEP)

Recent years have witnessed a rapid progress on the development of microscale platforms for
achieving electroporation at single cell level. The original MEP raised by Kurosawa’s group [50] aimed
to investigate single cell response to external stimuli. It was reported that MEP showed significant
advantage over BEP in terms of controllable feeding of foreign substance into a cell at a controlled
timing to virtually any cells (Figure 6A). Out of the more controllable delivery, researches began to
concentrate on the gene transfection as well as drug delivery in a large batch. Lee’s group [51] utilized
the concept of MEP to design a membrane sandwich electroporation system through a well-defined
micronozzle array, and they found higher efficiency of delivery, more uniform gene transfection and
better cell viability than conventional BEP. In such MEP systems (Figure 6B), since the electric field is
precisely controlled and focused in the microscale channels, individual cells that are trapped within
the micro-aperture or that are flowing through the microchannel can be electroporated using a much
lower voltage. Taking advantages of microchannel of MEP systems, a series of MEP-based systems of
intracellular delivery have been extended. With the aid of microfluidic, Jensen’s group [51,52] created
devices of MEP for improving the delivery of siRNA and proteins into HeLa cells and B cells. A novel
high-throughput magnetic tweezers-based three-dimensional MEP system was also designed by Lee’s
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group [53]. Combination with the weak external magnetic fields, such MEP system was supposed to
realize high throughput transfection and retention of cell viability. Despite the several benefits of MEP
systems mentioned above, precision dosage control has not been achieved yet as it shares the similar
delivery mechanism with BEP which is based on diffusion and endocytosis-like uptake.
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Inspired by the deficiencies in early works on micro-scale electroporation, Lee’s group further
introduced the concept of nanochannel electroporation [56]. As shown in Figure 7A, by scaling
the aperture size down to about 90 nm, the membrane disruption effect of electroporation could
be concentrated onto a very small region on the cell surface. A significant claim of this strategy is
precise dose control and high cell viability, which have not been achieved by any other methods.
Such nanochannel-based electroporation also appears to introduce agents faster and deeper into the
cytoplasm. Compared to conventional electroporation (BEP and MEP) and other branch forms of
electroporation, it is proposed that the nanochannel delivery mechanism was based on electrophoretic
forces rather than diffusion and/or endocytosis. One weakness of the method, however, is the low
throughput nature of the technique, in which cell to be transfected need to be positioned in one
microchannel using optical tweezers. For this shortcoming, a silicon-based high-throughput NEP
device was developed for high-throughput precise and benign NEP cell transfection (Figure 7B). This
NEP-based biochip is capable of simultaneous transfection of ~1 million cells per cm2 for a single
batch. Semiconductor cleanroom micro-/nano-fabrication techniques are used for engineering the
nanochannel array in the z-direction of the silicon wafer. The potential biomedical applications of
high-throughput NEP platform also have been demonstrated in following practical use, such as
cancer cell intracellular biomarker measurement, anti-tumor drug screening, cell reprogramming,
etc. In addition to the NEP platform system, there are also other forms of nanoscale electroporation
such as nanopillar [57], nanostraws [58] and nanofountain probe (NFP) [59]. As for the nanopillar
(Figure 7C), Cui’s group introduced a novel nanoscale system based on vertical nanopillar electrodes,
which can not only record both the extracellular and intracellular action potentials of cultured cell with
excellent signal strength and quality, but also repeatedly switch between extracellular and intracellular
recording by nanoscale electroporation and resealing processes. Notably, subtle changes in action
potentials induced by drugs that target ion channels also can be detect by these vertical nanopillar
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electrodes, which is very promising in the application of cell screening when targeted cells are under
external stimuli. Another form of nanoscale electroporation takes the form of so-called nanostraws
(Figure 7D). Unlike the NEP system mentioned before, nanoscale aperture of nanostraws protrudes
into the target cell as a hollow nanoneedle, which reveals that active forces, such as optical tweezers
or dielectrophoresis, are probably not required to establish optimal contact between cells and the
nanostraw. Moreover, Espinosa’s group introduced a scanning probe-based approach for localized
electroporation, termed nanofountain probe electroporation (Figure 7E). An atomic force microscope
cantilever engineering with a hollow channel for fluid flow was designed. By coordinating the
movement of the tip and the flow of fluid, molecules of interest could be delivered into cells with high
transfection efficiency (over 95%), qualitative dosage control, and very high viability (over 90%) of
transfected cells.
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for cell loading. Reprinted with permission from ref. [56]. (B) Motivated by limited throughput
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3.2. Microfabrication of Miniatured Electroporation Device

As discussed in previous section, novel miniatured electroporation devices are basically
micro/nanoscale lab-on-a-chip platforms, which largely relies on nanotechnology, microfluidic and
microfabrication techniques. The fabrication of these micro/nanoscale electroporation devices often
involves the standard semiconductor cleanroom-based wafer process steps, i.e., lithography, etching,
deposition, etc. In many cases, the small features created in silicon master were replicated or transferred
to polymer-based elastomeric materials, most notably polydimethylsiloxane (PDMS). Taking the
fabrication of high-throughput 3D NEP chip for instance [60], the nanochannel array on the silicon
substrate of the NEP platform was fabricated in a class 100 cleanroom following the protocol in
Figure 8A. After a pre-preparation of wafer, optical lithography was used to print the nanopore
array from the pre-designed micropore pattern on a photomask. Basically, as illustrated in Figure 8C,
contact/proximity lithography imprinted equal proportion of the pattern size on the photomask into
the sample, while projection lithography reduced the pattern on the photomask (or reticle) by adding
an objective lens below and projecting the pattern on a small portion of the sample known as “die”.
Multiple exposure is usually needed in projection lithography to cover the entire wafer with an array
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of dies. For the structured nanochannel in 3D NEP system, a deep silicon structure etching method,
deep RIE (DRIE) “Bosch Process”, was utilized to etch a high-aspect ratio (>20:1) nanochannel array
(10 µm nanochannel in depth). An alternating sequence of the etching processes (SF6 gas) and the
sidewall passivation steps (C4F8) enables fast etch rate, a nearly 90◦ sidewall profile, and high-aspect
ratio features (Figure 8B). After the fabrication of nanochannel array, a backside microchannel array
was then made for the connection of nanochannel, which allowed for the function of 3D NEP. In such
microfabrication of miniaturized electroporation chip, pertinent parameters, including exposure time
for optical lithography and cycle of etching, are critical to achieve a well functional miniaturized
electroporation system. By regulating these parameters and sequence of microfabrication procedure,
various styles of lab-on-chip could be designed for the development of miniaturized electroporation in
disparate applications.
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3.3. Cell Manipulation Techniques for Miniaturized Electroporation

Since the electric field in electroporation, which accelerates the charged transfection agents and
prorates the cell membrane, could diminish exponentially outside nanochannels, it is critical to achieve
close contact between the to-be-transfected individual cells and the corresponding nanochannels.
A variety of cell manipulation techniques were integrated with miniaturized electroporation system to
achieve accurate cell trapping against nanochannel. Optical tweezer (OT) is a precision instrument in
which a focused laser beam can manipulate the dielectric microscopic particle by a piconewton-level
force. Owing to the conservation of momentum, the refraction of light path across the particle which
essentially is equivalent to the change of the momentum of photons, will in return provide a force
on the particle. OT has been broadly used in biophysics research for force-extension measurement of
biomolecules. As a particle manipulation tool, OT has been proven to be successfully implemented
with the first-generation NEP device (Figure 7A) and it can achieve position of the cell against the
nanochannel under the microscope for NEP transfection in a precise manner [56]. Even though OT can
achieve uncoupled nanoscale displacement and positioning accuracy in all three x-y-z-directions, most
OT systems provide only one laser beam and thus it can only manipulate one cell at a time. The cell
loading time in the OT platform is proportional to the cell number, considering the operation of each
cell is fixed. In addition, there is a upper limit of the cell number, because the previous loaded cells will
gradually drift away from the nanochannel after a certain amount of time without exerted pushing
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force. Therefore, OT is only appropriate for low-throughput platform in which <20 cells can be carried
in one batch due to the throughput limit.

To meet the cell number requirement for clinical applications, the high-throughput electroporation
system requires parallel cell manipulation technique. Dielectrophoresis (DEP)-assisted cell loading
method was utilized to integrate with miniaturized electroporation platform. Lee’s group [53] has
demonstrated that positive DEP can parallelly translocate single cells to the nanochannel outlets in a
high-throughput manner (>60,000 cells/cm2). In such DEP-NEP platform system, an alternating
current (AC) field was used for DEP force generation which was uncoupled with AC-induced
electrophoresis in NEP process. In another work of Lee and his colleagues [55], magnetic tweezer-based
cell manipulation was reported to efficiently position the single cells for MEP system as shown in
Figure 6E. As mentioned above, the cells labelled with magnetic micro-beads via antibody-antigen
bonding can be moved to the microchannel outlet by controlled the magnetic field ready for
electroporation. In addition to electromagnetic forces, cell trapping can also be achieved by the
utilization of microstructure on the chip and hydrodynamic force. Recently, a simple “dipping-trap”
massive cell trapping approach has been developed for high-efficiency NEP transfection, in which
individual cells were mechanically trapped within the micro-trap unit. Comparing to the OT used for
single-cell manipulation, techniques for high-throughput electroporation system successfully achieve
mass parallelism for the intracellular delivery. In light of undesirable cell viability due to the additional
requirements, such as buffer solution for dielectrophoresis [61], however, the choice of auxiliary for
cell manipulation in miniaturized electroporation may need to be revised in future versions of theses
combination techniques.

4. Potential Applications of Miniaturized Electroporation

4.1. Gene Therapy

Gene therapy is a simple yet revolutionary concept that treating a disease by modifying the
problematic gene. Despite its potential of radically curing otherwise highly lethal disease at gene level,
intracellular gene delivery strategy is one of the biggest hurdles. Miniaturized electroporation is a
competitive physical gene delivery candidate, with the benefits of instantaneous delivery process,
well-defined delivery dosage, high transfection efficiency, minimal cell damage and being viral-free,
circumventing the inherited safety concerns posted by viral vectors [62]. Below is the discussion of
electroporation-based intracellular delivery in gene therapy applications.

4.1.1. Ex Vivo Adoptive Immunotherapy

Genetic engineering of immune cells (e.g., T cells, NK cells) is prerequisite for adoptive
immunotherapy which harnesses the patient’s own immune system to combat diseases [63,64].
As shown in Figure 9, in CAR-T therapy, patient’s T cells are transgenically engineered ex vivo,
and thus express tumor-associated antigen receptors which enable the targeting of specific cancer cells
in vivo [65], as illustrated in Figure 8.

However, current technical challenge of such applications lies in the limited number of “trained”
immune cells due to low yielding of plasmids transfection using conventional non-viral methods
such as traditional BEP and nanocarriers [66–69]. In a recent Dielectrophoresis-assisted 3D NEP
(pDEP-NEP) [61] platform was implemented for non-viral immune cell (NK-92 cell) engineering
by intracellular delivery of chimeric antigen receptor (CAR) encoding plasmids and transfection
efficiencies of >70% was achieve, compared with BEP with only <30%. In addition, more uniformly
engineered cells (minimum cell-to-cell variability) could be provided by NEP-based transfection for
potential clinical trials. Since adoptive immunotherapy requires permanent transfection of immune
cells, the applicability of non-viral transient transfection methods remains a challenge. Use of less
toxic yet more stably-expressed genome editing vectors [70] instead of plasmids delivered by the



Molecules 2018, 23, 3044 12 of 19

nanotechnology-enabled non-viral electroporation platform could solve this problem but it requires
further studies. More about genome editing technology will be discussed in Section 4.1.3.
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4.1.2. RNA Interference (RNAi)-Based Therapy

Specific knockdown of oncogene or proto-oncogene messenger RNA (mRNA) by small
non-coding RNA, e.g., small interfering RNA (siRNA) and microRNA (miRNA) has been proven an
effective and secure RNAi therapeutics by a set of clinical trials including the first treatment of an RNAi
therapeutic targeting VEGF and KSP in liver cancer patient [71]. Delivery of siRNA or miRNA is key to
successful RNAi [71]. In previous research, lipid nanoparticles-based delivery system has been widely
adopted for its good transfection efficiency, biocompatibility and ease of production [72,73]. However,
it inevitably suffers from non-uniform delivery due to its stochastic process in nature. Comparing to
the nanoparticles-based delivery, nanochannel electroporation (NEP)-based oligonucleotide delivery
has been proven an unprecedented deterministic cell transfection method and thus a perfect technique
for RNAi-based therapy which requires precision dosage control [74]. The ability to deliver siRNAs in
a dose- and time-controlled manner at the single cell level allowed for the determination of optimum
pro-apoptotic strategies for the potential treatment of various tumors and targeting of therapy resistant
cancer stem cells (CSCs).

4.1.3. Genome Editing

Manipulating the genome of the living cells by efficiently adding, deleting, or changing the DNA
sequence has long fascinated biology community. In recent decades, the concept of “gene editing”
has become a research “hot spot”, fueled by the breakthrough in the development of novel editing
tools such as engineered nucleases. The CRISPR (Clustered Regularly Interspaced Short Palindromic
Repeats)—Cas9 (CRISPR-associate protein) technology is the most widely-used platform available for
gene editing because it has enormous potential to boost the development of molecular therapeutics
against a variety of diseases [75].

Electroporation, as a common membrane-disrupted intracellular cargo molecule delivery method,
has been reported to be utilized for delivering the CRISPR/Cas9 gene editing materials and thus play
a profound role in gene editing [70,76–78]. Miniaturized electroporation (e.g., nanoelectroporation),
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as next-generation electroporation with the advantages over conventional bulk electroporation, is
believed to potentially further spur the development of genome editing, by improving the delivery
efficiency of novel gene editing molecular agents into difficult-to-transfect cell types such as immune
cells and stem cells. It is recently reported that a CRISPR-Cas9 genome-targeting system by simple
bulk electroporation (BEP) method has successfully reprogrammed human T cells and can rapidly and
efficiently insert >1 kbp DNA sequences at specific sites in the genomes of primary human T cells while
maintaining good cell viability and functionality [70]. Together with more powerful miniaturized
electroporation intracellular delivery system, genome editing could open a new door for the next
generation of cell-based therapies.

4.2. Regenerative Medicine and Cell Reprogramming

Cell reprogramming can be performed on either readily available somatic cells (such as skin
cells) or induced Pluripotent Stem Cells (iPSCs) [79]. Since the dosage of reprogramming factors
delivered in individual cell is critical, development of the relevant tool capable of gene delivery in a
deterministic manner is crucial. Lee and his group reported that an efficient reprogramming of mouse
embryonic fibroblasts (MEFs) to functional neuron by a combination of three transcription factors:
Brn2, Ascl1 and Myt1l (BAM), can be successfully achieved via a novel nanochannel electroporation
(NEP)-based platform [80]. The induced neuronal (iN) cells generated by NEP-delivered factors could
have profound effect on the future of regenerative medicine, because NEP-based iN cells could be
provided fast and efficiently in a namely unlimited source of patient-specific cells of interest without
the introduction of tumorigenic viral vectors. Most recently, this non-viral NEP approach (Figure 10)
was implemented in vivo to topically and controllably deliver well-established and newly developed
reprogramming vectors of induced neurons and endothelium (Etv2, Foxc2 and Fli1 (EFF)), respectively
to tissues. The utility of this NEP based tissue nano-transfection (TNT) technology was successfully
validated by rescuing necrotizing tissues and whole limbs using two murine models of injury-induced
ischemia [81].Molecules 2018, 23, x 14 of 19 
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Molecules 2018, 23, 3044 14 of 19

disseminating cells undergoing a variety of physically, physiologically, or pharmacologically induced
events [82,83] that remains elusive using conventional cell analysis methods that are based on bulk
assays and cell lysis [84]. Novel micro-/nanoelectroporation technologies enable real-time living cell
measurement at single-cell level. For example, molecular beacons (MB), pre-designed oligonucleotide
hybridization probes, are frequently used in intracellular cell marker detection. A nanochannel
electroporation-based MB delivery platform was introduced by Zhao et at. (Figure 11A), which was
used to analyze the DNMT3A/B mRNA levels of acute myeloid leukemia (AML) cells following miR-29
upregulation [85]. Giraldo-Vela et al. also used MBs, transfected into living cells by nanofountain-based
electroporation, for mRNA detection at the single-cell level (Figure 11B) [86]. In vitro AXL and
PDGFRα mRNA Detection by Nanochannel Electroporation (NEP)-delivered Molecular Beacon (MB)
Probes was also implemented to investigate the plasticity of glioblastoma stem cells [87].
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5. Concluding Remarks and Future Perspectives

Electroporation can deliver various range of molecular cargos into a wide variety of cell types
with the precise control of pulse parameters. In this review, recent advance in electroporation-based
intracellular drug delivery technology is presented with potential applications in clinic. Miniaturized
electroporation, as a promising non-viral transfection method, starts to play an ever-increasingly
important role in a variety of fundamental scientific research and translational clinical trials. Spatial
confinement in micro-/nanoscale electroporation provides numerous benefits over conventional bulk
electroporation, including rapid cargo uptake, precision dosage control and minimum cell disturbance.

Although the new generation of electroporation platforms exhibited unprecedented transfection
capabilities, a large number of challenges remains to be solved. Current miniaturized electroporation
still cannot transfect large enough cell population comparable to the conventional delivery methods.
In other side, the transfected cells require accurate targeting to reach the disease sites in vivo
for nucleic acid therapy with minimal side effects. Special expertise in micro-fabrication and
instrumental operation is indispensable for the following applications. It also cannot be ignored
that micro/nanoscale of the miniaturized electroporation system leads to high demand of robust
fabrication protocols, which is a great challenge to biomanufacture. In view of these problems, such
novel strategies have not yet been demonstrated to supersede the basic cuvette-style electroporation in
clinical use.

The challenges of current electroporation systems notwithstanding, for many applications
the merits outweigh the weaknesses. Instrumental progress in electroporation, together with



Molecules 2018, 23, 3044 15 of 19

newly-developed molecular tools, will certainly boost biomedical research from biomanufacture and
clinical trials of cancer immunotherapy to ex vivo cell-based gene therapy and regenerative medicine.
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