Supplementary Material

QSAR and Molecular Docking Studies of the Inhibitory Activity of Novel Heterocyclic GABA Analogues over GABA-AT

Josué Rodríguez-Lozada¹, Erika Tovar-Gudiño¹, Juan Alberto Guevara-Salazar², Rodrigo Said Razo-Hernández³, Ángel Santiago³, Nina Pastor³, Mario Fernández-Zertuche^{1*}

Table of Contents

NMR Data for analogues 7, 8 and 9 Computational Details	08 24
NMR Data for analogues 7, 8 and 9	
Figure 1S . ¹ H NMR (200 MHz, CD ₃ OD) of 4-(thiazolidin-3-yl)butanoic acid (7a)	06
Figure 2S . ¹³ C NMR (50 MHz, CD ₃ OD) of 4-(thiazolidin-3-yl)butanoic acid (7a)	06
Figure 3S . ¹ H NMR (400 MHz, CD ₃ OD) of 4-(piperidin-1-yl)butanoic acid (7b).	07
Figure 4S . ¹³ C NMR (400 MHz, CD ₃ OD) of 4-(piperidin-1-yl)butanoic acid (7b).	07
Figure 5S . ¹ H NMR (400 MHz, D ₂ O) of 4-(3-methylpiperidin-1-yl)butanoic acid (7c)	07
Figure 6S . ¹³ C NMR (100 MHz, D2O) of sodium 4-(3-methylpiperidin-1-yl)butanoic acid (7c).	08
Figure 7S . ¹ H NMR (400 MHz, CD ₃ OD) of 4-(4-methylpiperidin-1-yl)butanoic acid (7d).	08
Figure 8S . ¹³ C NMR (100 MHz, CD ₃ OD) of 4-(4-methylpiperidin-1-yl)butanoic acid (7d).	08
Figure 9S . ¹ H NMR (400 MHz, CD ₃ OD) of 4-morpholinobutanoic acid (7e).	09
Figure 10S . ¹³ C NMR (100 MHz, CD ₃ OD) of	09

4-morpholinobutanoic acid (7e).

Figure 11S. ¹ H NMR (400 MHz, CD ₃ OD) of 4-thiomorpholinobutanoic acid (7f).	09
Figure 12S . ¹³ C NMR (100 MHz, CD ₃ OD) of 4-thiomorpholinobutanoic acid (7f).	10
Figure 13S . ¹ H NMR (400 MHz, CD ₃ OD) of 5-methyl-3-(thiazolidin-3-ylmethyl)hexanoic acid (8a).	10
Figure 14S . ¹³ C NMR (100 MHz, CD ₃ OD) of 5-methyl-3-(thiazolidin-3-ylmethyl)hexanoic acid (8a).	10
Figure 15S . 2D NMR (HETCOR 400 MHz, CD ₃ OD) of 5-methyl-3-(thiazolidin-3-ylmethyl)hexanoic acid (8a).	11
Figure 16S . ¹ H NMR (400 MHz, CD ₃ OD) of 5-methyl-3-(piperidin-1-ylmethyl)hexanoic acid (8b).	11
Figure 17S. ¹³ C NMR (100 MHz, CD ₃ OD) of 5-methyl-3-(piperidin-1-ylmethyl)hexanoic acid (8b).	12
Figure 18S . 2D NMR (HETCOR 400 MHz, CD ₃ OD) of 5-methyl-3-(piperidina-1-ylmethyl) hexanoic acid (8b).	12
Figure 19S. ¹ H NMR (400 MHz, CD ₃ OD) of 5-methyl-3-((3-methylpiperidin-1 yl)methyl)hexanoic acid (8c).	13
Figure 20S. ¹³ C NMR (100 MHz, CD ₃ OD) of 5-methyl-3-((3-methylpiperidin-1-yl)methyl)hexanoic acid (8c).	13
Figure 21S. 2D NMR (HETCOR 400 MHz, CD ₃ OD) of 5-methyl-3-((3-methylpiperidin-1-yl)methyl)hexanoic acid (8c).	14
Figure 22S. ¹ H NMR (400 MHz, CD ₃ OD) of 5-methyl-3-((4-methylpiperidin-1-yl)methyl)hexanoic acid (8d).	14
Figure 23S. ¹³ C NMR (100 MHz, CD ₃ OD) of 5-methyl-3-((4-methylpiperidin-1-yl)methyl)hexanoic acid (8d).	15
Figure 24S. 2D NMR (HETCOR 400 MHz, CD ₃ OD) of	16

5-methyl-3-((4-methylpiperidin-1-yl)methyl)hexanoic acid (**8d**).

Figure 25S. ¹ H NMR (400 MHz, CD ₃ OD) of 5-methyl-3-(morpholinomethyl)hexanoic acid (8e).	16
Figure 26S. ¹³ C NMR (100 MHz, CD ₃ OD) of 5-methyl-3-(morpholinomethyl)hexanoic acid (8e).	17
Figure 27S. ¹ H NMR (400 MHz, CD ₃ OD) of 5-methyl-3-(thiomorpholinomethyl)hexanoic acid (8e).	17
Figure 28S. ¹³ C NMR (100 MHz, CD ₃ OD) of 5-methyl-3-(thiomorpholinomethyl)hexanoic acid (8f).	18
Figure 29S . ¹ H NMR (400 MHz, CD ₃ OD) of 3-(4-chlorophenyl)-4-(piperidin-1-yl)butanoic acid (9b).	18
Figure 30S. ¹³ C NMR (100 MHz, CD ₃ OD) of 3-(4-chlorophenyl)-4-(piperidin-1-yl)butanoic acid (9b) .	18
Figure 31S. ¹ H NMR (400 MHz, CD ₃ OD) of 3-(4-chlorophenyl)-4-(3-methylpiperidin-1-yl)butanoic acid (9c).	19
Figure 32S. ¹³ C NMR (100 MHz, CD ₃ OD) of 3-(4-chlorophenyl)-4-(3-methylpiperidin-1-yl)butanoic acid (9c).	19
Figure 33S . ¹ H NMR (400 MHz, CD ₃ OD) of 3-(4-chlorophenyl)-4-(4-methylpiperidin-1-yl) butanoic acid (9d).	19
Figure 34S. ¹³ C NMR (100 MHz, CD ₃ OD) of 3-(4-chlorophenyl)-4-(4-methylpiperidin-1-yl) butanoic acid (9d).	20
Figure 35S. 2D NMR (HETCOR 400 MHz, CD3OD) of 3-(4-chlorophenyl)-4-(4-methylpiperidin-1-yl)butanoic acid (9d).	20
Figure 36S. ¹ H NMR (400 MHz, CD ₃ OD) of 3-(4-chlorophenyl)-4-morpholinobutanoic acid (9e).	21
Figure 375. ¹³ C NMR (100 MHz, CD ₃ OD) of 3-(4-chlorophenyl)-4-morpholinobutanoic acid (9e).	21
Figure 38S. ¹ H NMR (400 MHz, CD ₃ OD) of 3-(4-chlorophenyl)-4-thiomorpholinobutanoic acid (9f).	22
Figure 39S. ¹³ C NMR (100 MHz, CD ₃ OD) of 3-(4-chlorophenyl)-4-thiomorpholinobutanoic acid (9f).	22
Figure 40S. 2D NMR (HETCOR 400 MHz, CD ₃ OD) of 3-(4-chlorophenyl)-4-thiomorpholinobutanoic acid (9f).	23

Figure 41S. Alignment of pseudomonas fluorencens (PF), 24 human (HS), E. coli (EC) and wild boar (JB). Red and blue color letters corresponds to the residues of the chain A and chain B respectively, that interact with vigabatrin in the 10hv crystal structure Figure 42S. Validation of the molecular docking calculation 25 for the pseudomonas model. Ligand in the PDB:ID 3r4t crystal structure was reproduced with a RMSD of 1.7 Å. Ligand experimental (opaque color) and calculated conformation (shiny color) are displayed as sticks representation respectively. Residues within 4.0 Å of both ligands are shown as thin sticks Figure 43S. Validation of the molecular docking calculation 25 for the human model. Ligand in the PDB:ID 10hw crystal structure was reproduced with a RMSD of 1.3 Å. Ligand experimental (opaque color) and calculated conformation (shiny color) are displayed as sticks representation respectively. Residues within 4.0 Å of both ligands are shown as thin sticks. Figure 44S. Validation of the molecular docking calculation for the 26 human model. Ligand in the PDB:ID 10hy crystal structure was reproduced with a RMSD of 1.8 Å. Ligand experimental (opaque color) and calculated conformation (shiny color) are displayed as sticks representation respectively. Residues within 4.0 Å of both ligands are shown as thin sticks. Figure 45S. Optimized structures of all GABA analogues, 27 VPNa and VGB. Figure 46S. Interactions between GABA analogues 7 and 30 Pseudomonas fluorescens GABA-AT. a) 7a, b) 7b, c) 7c, d) 7d, e) 7e and f) 7f. PLP prosthetic group is showed as Van der Waals spheres and each protein chain is colored in green and cyan. Residues at 4 Å of each analogue are indicated. Hydrogen bonds are shown as orange dashed lines. Figure 47S. Interactions between GABA analogues 8 and Pseudomonas 31 fluorescens GABA-AT. a) (S)-8a, b) (R)-8a, c) (S)-8b, d) (R)-8b, e) (S)-8c and f) (R)-8c, g) (S)-8d, h) (R)-8d, i) (S)-8e, j) (R)-8e, k) (S)-8f, l) (R)-8f. PLP prosthetic group is showed as Van der Waals spheres and each protein chain is colored in green and cyan. Residues at 4 Å of each analogue are indicated. Hydrogen bonds are shown as orange dashed lines. 33 Figure 48S. Interactions between GABA analogues 9 and Pseudomonas fluorescens GABA-AT. a) (S)-9c, b) (R)-9c, c) (S)92d and d) (R)-9d, e) (S)-9e, f) (R)-9e, g) (S)-9f, h) (R)-9f. PLP prosthetic group is showed as Van der Waals spheres and each protein chain is colored in green and cyan. Residues at 4 Å of

each analogue are indicated. Hydrogen bonds are shown as orange dashed lines.

Table 1S. Energy interactions values obtained from the docking calculations of all GABA derivatives and *pseudomonas* GABA-AT model. All the values are in kcal/mol.

Figure 49S. Interactions between GABA analogues 7 and *Human* GABA-AT. a) **7a**, b) **7b**, c) **7c**, d) **7d**, e) **7e** and f) **7f**. PLP prosthetic group is showed as Van der Waals spheres and each protein chain is colored in yellow and red. Residues at 4 Å of each analogue are indicated. Hydrogen bonds are shown as orange dashed lines.

Figure 50S. Interactions between GABA analogues 8
and *Human* GABA-AT. a) (S)-8a, b) (R)-8a, c) (S)-8b,
d) (R)-8b, e) (S)-8c and f) (R)-8c, g) (S)-8d, h) (R)-8d,
i) (S)-8e, j) (R)-8e, k) (S)-8f, l) (R)-8f. PLP prosthetic
group is showed as Van der Waals spheres and each protein
chain is colored in yellow and red. Residues at 4 Å of each
analogue are indicated. Hydrogen bonds are shown as orange dashed lines.

Figure 51S. Interactions between GABA analogues **9** and *Human* GABA-AT. a) (*S*)-**9b**, b) (*R*)-**9b**, c) (*S*)-**9c** and d) (*R*)-**9c**, e) (*S*)-**9d**, f) (*R*)-**9d**, g) (*S*)-**9e**, h) (*R*)-**9e**, i) (*S*)-**9f**, j) (*R*)-**9f**. PLP prosthetic group is showed as Van der Waals spheres and each protein chain is colored in yellow and red. Residues at 4 Å of each analogue are indicated. Hydrogen bonds are shown as orange dashed lines.

Figure 52S. Backbone structural alignment of GABA-AT
structures. a) GABA-AT human model in cyan color. 10hv, 10hw
and 10hy Sus scrofa crystal structures in red (RMSD=0.35), gray
(RMSD=0.36) and orange (RMSD=0.40) color respectively.
b) GABA-AT Pseudomonas fluorescens model in shiny red color,
1sf2 E. coli estructure in shiny yellow color (RMSD= 0.52).
Fe2S2 (yellow/pink color) and PLP from human model in VDW representation.

Table 2S. Energy interactions values obtained from thedocking calculations of all GABA derivatives and *human*GABA-AT model. All the values are in kcal/mol.

Table 3S. Values of the experimental (Y_{Exp}), calculated (Y_{Cal}) and predicted42(Y_{Pred}) percent of inhibition of the GABA derivatives. Compounds that were42considered form the test validation are marked with a script symbol.42

35

34

37

5

10

39

40

41

NMR Spectra of compounds.

Figure 1S. ¹H NMR (200 MHz, CD₃OD) of 4-(thiazolidin-3-yl)butanoic acid (7a).

Figure 2S. ¹³C NMR (50 MHz, CD₃OD) of 4-(thiazolidin-3-yl)butanoic acid (7a)

Figure 3S. ¹H NMR (400 MHz, CD₃OD) of 4-(piperidin-1-yl)butanoic acid (7b).

Figure 4S. ¹³C NMR (400 MHz, CD₃OD) of 4-(piperidin-1-yl)butanoic acid (7b).

Figure 5S. ¹H NMR (400 MHz, D₂O) of 4-(3-methylpiperidin-1-yl)butanoic acid (7c).

Figure 6S. ¹³C NMR (100 MHz, D₂O) of sodium 4-(3-methylpiperidin-1-yl)butanoic acid (7c).

Figure 7S. ¹H NMR (400 MHz, CD₃OD) of 4-(4-methylpiperidin-1-yl)butanoic acid (7d).

Figure 8S. ¹³C NMR (100 MHz, CD₃OD) of 4-(4-methylpiperidin-1-yl)butanoic acid (7d).

Figure 9S. ¹H NMR (400 MHz, CD₃OD) of 4-morpholinobutanoic acid (7e).

Figure 10S. ¹³C NMR (100 MHz, CD₃OD) of 4-morpholinobutanoic acid (7e).

Figure 11S. ¹H NMR (400 MHz, CD₃OD) of 4-thiomorpholinobutanoic acid (7f).

Figure 12S. ¹³C NMR (100 MHz, CD₃OD) of 4-thiomorpholinobutanoic acid (7f).

Figure 13S. ¹H NMR (400 MHz, CD₃OD) of 5-methyl-3-(thiazolidin-3-ylmethyl)hexanoic acid (8a).

Figure 14S. ¹³C NMR (100 MHz, CD₃OD) of 5-methyl-3-(thiazolidin-3-ylmethyl)hexanoic acid (8a).

Figure 15S. 2D NMR (HETCOR 400 MHz, CD₃OD) of 5-methyl-3-(thiazolidin-3-ylmethyl)hexanoic acid (8a).

Figure 16S. ¹H NMR (400 MHz, CD₃OD) of 5-methyl-3-(piperidin-1-ylmethyl)hexanoic acid (8b).

Figure 17S. ¹³C NMR (100 MHz, CD₃OD) of 5-methyl-3-(piperidin-1-ylmethyl)hexanoic acid (8b).

Figure 18S. 2D NMR (HETCOR 400 MHz, CD₃OD) of 5-methyl-3-(piperidina-1-ylmethyl) hexanoic acid (8b).

Figure 19S. ¹H NMR (400 MHz, CD₃OD) of 5-methyl-3-((3-methylpiperidin-1 yl)methyl)hexanoic acid (8c).

Figure 20S. ¹³C NMR (100 MHz, CD₃OD) of 5-methyl-3-((3-methylpiperidin-1-yl)methyl)hexanoic acid (8c).

Figure 21S. 2D NMR (HETCOR 400 MHz, CD₃OD) of 5-methyl-3-((3-methylpiperidin-1-yl)methyl)hexanoic acid (8c).

Figure 22S. ¹H NMR (400 MHz, CD₃OD) of 5-methyl-3-((4-methylpiperidin-1-yl)methyl)hexanoic acid (8d).

Figure 23S. ¹³C NMR (100 MHz, CD₃OD) of 5-methyl-3-((4-methylpiperidin-1-yl)methyl)hexanoic acid (8d).

Figure 24S. 2D NMR (HETCOR 400 MHz, CD₃OD) of 5-methyl-3-((4-methylpiperidin-1-yl)methyl)hexanoic acid (**8d**).

Figure 25S. ¹H NMR (400 MHz, CD₃OD) of 5-methyl-3-(morpholinomethyl) hexanoic acid (8e).

Figure 26S. ¹³C NMR (100 MHz, CD₃OD) of 5-methyl-3-(morpholinomethyl)hexanoic acid (8e).

Figure 27S. ¹H NMR (400 MHz, CD₃OD) of 5-methyl-3-(thiomorpholinomethyl)hexanoic acid (8e).

Figure 28S. ¹³C NMR (100 MHz, CD₃OD) of 5-methyl-3-(thiomorpholinomethyl)hexanoic acid (8f).

Figure 29S. ¹H NMR (400 MHz, CD₃OD) of 3-(4-chlorophenyl)-4-(piperidin-1-yl)butanoic acid (9b).

Figure 30S. ¹³C NMR (100 MHz, CD₃OD) of 3-(4-chlorophenyl)-4-(piperidin-1-yl)butanoic acid (9b).

Figure 31S. ¹H NMR (400 MHz, CD₃OD) of 3-(4-chlorophenyl)-4-(3-methylpiperidin-1-yl)butanoic acid (9c).

Figure 32S. ¹³C NMR (100 MHz, CD₃OD) of 3-(4-chlorophenyl)-4-(3-methylpiperidin-1-yl)butanoic acid (9c).

Figure 33S. ¹H NMR (400 MHz, CD₃OD) of 3-(4-chlorophenyl)-4-(4-methylpiperidin-1-yl) butanoic acid (9d).

Figure 34S. ¹³C NMR (100 MHz, CD₃OD) of 3-(4-chlorophenyl)-4-(4-methylpiperidin-1-yl) butanoic acid (9d).

Figure 35S. 2D NMR (HETCOR 400 MHz, CD₃OD) of 3-(4-chlorophenyl)-4-(4-methylpiperidin-1-yl)butanoic acid (**9d**).

Figure 36S. ¹H NMR (400 MHz, CD₃OD) of 3-(4-chlorophenyl)-4-morpholinobutanoic acid (9e).

Figure 37S. ¹³C NMR (100 MHz, CD₃OD) of 3-(4-chlorophenyl)-4-morpholinobutanoic acid (9e).

Figure 38S. ¹H NMR (400 MHz, CD₃OD) of 3-(4-chlorophenyl)-4-thiomorpholinobutanoic acid (9f).

Figure 39S. ¹³C NMR (100 MHz, CD₃OD) of 3-(4-chlorophenyl)-4-thiomorpholinobutanoic acid (9f).

Figure 40S. 2D NMR (HETCOR 400 MHz, CD₃OD) of 3-(4-chlorophenyl)-4-thiomorpholinobutanoic acid (9f).

Computational Details

PF EC HS JB	MSNKTNASLMKRREAAVPRGVGQIHP-IFAESAKNATVTDVEGREFID NSNKELMQRRSQAIPRGVGQIHPI-FADRAENCRVWDVEGREYLD -FDYDGPLMKTEVPGPRSQELMKQLNIIQNAEAVHFFCNYEESRGNYLVDVDGNRMLD -FDYDGPLMKTEVPGPRSRELMKQLNIIQNAEAVHFFCNYEESRGNYLVDVDGNRMLD
PF	FAGGIAVLNTGHLHPKIIAAVTEQLNKLTHTCFQVLAYEPYVELCEKVNAK-VPGDF
EC	FAGGIAVLNTGHLHPKVVAAVEAQLKKLSHTCFQVLAYEPYLELCEI-MNQKVPGDF
HS	LYSQ <mark>I</mark> SSVPIGYSHPALLKLIQQPQNASMFVNRPALGILPPENFVEKLRQSLLSVAPKGM
JB	LYSQISSIPIGYSHPALVKLVQQPQNVSTFINRPALGILPPENFVEKLRESLLSVAPKGM
DE	AKKTLLVTTGSEAVENAVKIARATTGRAGVIAFT
PF EC	AKKILLVIIGSEAVENAVKIAKAIIGKAGVIAFI AKKTLLVTTGSEAVENAVKIARAATKRSGTIAFS
HS	-SQLITMACGSCSNENALKTIFMWYRSKERGQRGFSQEELETCMINQAPGCPDYSILSFM
п5 JB	-SQLITMACGSCSNENALKTIFMWYRSKERGESAFSKEELETCMINQAFGCFDYSILSFM
JD	-3QLIIMACG5C5NENAFKIIFMW IK5KEKGE5AF5KEELEICMINQAFGCFDI5IL5FM
PF	GAYHGRTMMTLGLTGKVVPYSAGMGLMP-GGIFRALYPNELHGVS-VDDSIAS-I
EC	GAYHGRTHYTLALTGKVNPYSAGMGLMPGHVYRALYPCPLHGISEDDAIASI-
HS	GAFHGRTMGCLATTHSKAIHKIDIPSFDWPIAPFPRLKYPLEEFVKENQQEEARCLEEVE
JB	GAFHGRTMGCLATTHSKAIHKIDIPSFDWPIAPFPRLKYPLEEFVKENQQEEARCLEEVE
PF	ERIFKNDAEPRDIAAIIIEPVQG <mark>E</mark> GGFYVAPKAFMKRLRELCDKHGILLIADEV <mark>Q</mark> TGAGR
EC	HRIFKNDAAPEDIAAIVIEPVQG <mark>E</mark> GGFYASSPAFMQRLRALCDEHGIMLIADEV <mark>Q</mark> SGAGR
HS	DLIVKYRKKKKTVAGIIVEPIQS <mark>E</mark> GGDNHASDDFFRKLRDIARKHGCAFLVDEV <mark>Q</mark> TGGGC
JB	DLIVKYRKKKKTVAGIIVEPIQS <mark>E</mark> GGDNHASDDFFRKLRDISRKHGCAFLVDEVQTGGGS
PF	TGTFFAMEQMGVAADLTTFA <mark>K</mark> SI-AGGFPLAGVCGKAEYMDAIAPGGL <mark>GGT</mark> YAGSPIA
EC	TGTLFAMEQMGVAPDLTTFAKSI-AGGFPLAGVTGRAEVMDAVAPGGLGGTYAGNPIA
HS	TGKFWAHEHWGLDDPADVMTFSKKMMTGGFFHK-EEFRPNAPYRIFNTWLGDPSK
JB	TGKFWAHEHWGLDDPADVMTFSKKMMTGGFFHK-EEFRPNAPYRIFNTWLGDPSK
<u> </u>	
PF	CAAALAVMEVFEEEHLLDRCKAVGERLVTGLKAIQAKYPVI-GEVRALGAMIALELFEDG
EC	CVAALEVLKVFEQENLLQKANDLGQKLKDGLLAIAEKHPEI-GDVRGLGAMIAIELFEDG
HS	NLLLAEVINIIKREDLLNNAAHAGKALLTGLLDLQARYPQFISRVRGRGTFCSFDT
JB	NLLLAEVINIIKREDLLSNAAHAGKVLLTGLLDLQARYPQFISRVRGRGTFCSFDT
DE	DSHKPNAAAVASVVAKARDKGLILLSCGTYGNVLRVLVPLTSPDEQLDKGLAIIEECFSEL-
PF FC	DSHKPNAAAVASVVAKARDKGLILLSCGI YGNVLKVLVPLISPDEQLDKGLAIIEECFSEL- DHNKPDAKLTAEIVARARDKGLILLSCGPYYNVLRILVPLTIEDAQIRQGLEIISQCFDEAK
EC LIC	PDDSIRNKLILIARNKGVVLGGCGDKSIRFRPTLVFRDHHAHLFLNIFSDILADFK
HS IB	PDESIRNKLILIAKNKGVVLGGCGDKSIRFRPTLVFRDHHAHLFLNIFSDILADFK
עו	

JB ----PDESIRNKLISIARNKGVMLGGCGDKSIRFRPTLVFRDHHA--HLFLNIFSDILADFK

Figure 41S. Alignment of *pseudomonas fluorencens* (**PF**), *human* (HS), *E. coli* (EC) and *wild boar* (JB). Red and blue color letters correspond to the residues of the chain A and chain B respectively, that interact with VGB **3** in the 10hv crystal structure.

Figure 42S. Validation of the molecular docking calculation for the pseudomonas model. Ligand in the PDB:ID 3r4t crystal structure was reproduced with a RMSD of 1.7 Å. Ligand experimental (opaque color) and calculated conformation (shiny color) are displayed as sticks representation respectively. Residues within 4.0 Å of both ligands are shown as thin sticks.

Figure 43S. Validation of the molecular docking calculation for the *human* model. Ligand in the PDB:ID 10hw crystal structure was reproduced with a RMSD of 1.3 Å. Ligand experimental (opaque color) and calculated conformation (shiny color) are displayed as sticks representation respectively. Residues within 4.0 Å of both ligands are shown as thin sticks.

Figure 44S. Validation of the molecular docking calculation for the *human* model. Ligand in the PDB:ID 10hy crystal structure was reproduced with a RMSD of 1.8 Å. Ligand experimental (opaque color) and calculated conformation (shiny color) are displayed as sticks representation respectively. Residues within 4.0 Å of both ligands are shown as thin sticks.

7f

7d

7e

(S)-8b

(S)-8a

Figure 45S. Optimized structures of all GABA analogues, VPNa and VGB.

(R)-8c

(R)-8d

(S)-8d

(R)-8f

(S)-8f

(R)-9b

(S)-9b

(R)-9c

(S)-9c

Figure 45S. Optimized structures of all GABA analogues, VPNa and VGB. Continuation

(R)-9d

Figure 45S. Optimized structures of all GABA analogues, VPNa and VGB. Continuation

Figure 46S. Interactions between GABA analogues 7 and *Pseudomonas fluorescens* GABA-AT. a) **7a**, b) **7b**, c) **7c**, d) **7d**, e) **7e** and f) **7f**. PLP prosthetic group is showed as Van der Waals spheres and each protein chain is colored in green and cyan. Residues at 4 Å of each analogue are indicated. Hydrogen bonds are shown as orange dashed lines.

Figure 47S. Interactions between GABA analogues **8** and *Pseudomonas fluorescens* GABA-AT. a) (*S*)-**8a**, b) (*R*)-**8a**, c) (*S*)-**8b**, d) (*R*)-**8b**, e) (*S*)-**8c** and f) (*R*)-**8c**, g) (*S*)-**8d**, h) (*R*)-**8d**, i) (*S*)-**8e**, k) (*S*)-**8f**, l) (*R*)-**8f**. PLP prosthetic group is showed as Van der Waals spheres and each protein chain is colored in green and cyan. Residues at 4 Å of each analogue are indicated. Hydrogen bonds are shown as orange dashed lines.

Figure 48S. Interactions between GABA analogues **9** and *Pseudomonas fluorescens* GABA-AT. a) (*S*)-**9c**, b) (*R*)-**9c**, c) (*S*)-**9d** and d) (*R*)-**9d**, e) (*S*)-**9e**, f) (*R*)-**9e**, g) (*S*)-**9f**, h) (*R*)-**9f**. PLP prosthetic group is showed as Van der Waals spheres and each protein chain is colored in green and cyan. Residues at 4 Å of each analogue are indicated. Hydrogen bonds are shown as orange dashed lines.

Ligand	MolDock Score	Electro	HBond
7a	-73.1062	-7.11035	-2.65911
7b	-69.4043	-3.21553	-7.4961
7c	-63.4051	-8.18821	-3.26379
7d	-88.9465	-5.28229	-5.17495
7e	-81.1331	-10.6664	-5.7402
7f	-82.0854	-9.3513	-8.95745
(S)- 8a	-88.4367	-7.59611	-2.37557
(R)- 8a	-80.2747	-4.34932	-1.54938
(S)- 8b	-95.13	-3.82411	-3.42391
(R)- 8b	-82.2497	-1.10123	-9.99797
(S)- 8c	-106.003	-11.4722	-6.60934
(R)- 8c	-84.4955	-2.78647	-5.59387
(S)- 8d	-102.496	-12.1057	-7.491
(R)- 8d	-79.0166	-7.77168	-3.27213
(S)- 8e	-97.1576	-7.49549	-4.62095
(R)- 8e	-85.5462	-5.56573	-1.57816
(S)-8f	-110.456	-9.48398	-2.62015
(R)- 8f	-80.3773	-1.33976	-5.50014
(S)- 9b	-94.5623	-5.33333	-7.63276
(R)- 9b	-82.3833	-8.45774	-4.99611
(S)- 9c	-105.201	-4.4125	-6.8652
(R)- 9c	-92.4029	0.375594	-4.915
(S)- 9d	-93.087	-3.43971	-3.94599
(R)- 9d	-102.403	-5.70107	-3.30324
(S)- 9e	-97.4871	-4.61057	0
(<i>R</i>)-9e	-90.7655	-4.02959	-8.75642
(S)- 9f	-92.252	-4.16681	-2.49799
(R)- 9f	-83.726	-0.300184	0
VPNa	-64.703	-5.43962	-6.16675

Table 1S. Energy interactions values obtained from the docking calculations of all GABA derivatives and *pseudomonas* GABA-AT model. All the values are in kcal/mol.

Figure 49S. Interactions between GABA analogues 7 and *Human* GABA-AT. a) **7a**, b) **7b**, c) **7c**, d) **7d**, e) **7e** and f) **7f**. PLP prosthetic group is showed as Van der Waals spheres and each protein chain is colored in yellow and red. Residues at 4 Å of each analogue are indicated. Hydrogen bonds are shown as orange dashed lines.

Figure 50S. Interactions between GABA analogues **8** and *Human* GABA-AT. a) (*S*)-**8a**, b) (*R*)-**8a**, c) (*S*)-**8b**, d) (*R*)-**8b**, e) (*S*)-**8c** and f) (*R*)-**8c**, g) (*S*)-**8d**, h) (*R*)-**8d**, i) (*S*)-**8e**, j) (*R*)-**8e**, k) (*S*)-**8f**, l) (*R*)-**8f**. PLP prosthetic group is showed as Van der Waals spheres and each protein chain is colored in yellow and red. Residues at 4 Å of each analogue are indicated. Hydrogen bonds are shown as orange dashed lines.

Figure 51S. Interactions between GABA analogues **9** and *Human* GABA-AT. a) (*S*)-**9b**, b) (*R*)-**9b**, c) (*S*)-**9c** and d) (*R*)-**9c**, e) (*S*)-**9d**, f) (*R*)-**9d**, g) (*S*)-**9e**, h) (*R*)-**9e**, i) (*S*)-**9f**, j) (*R*)-**9f**. PLP prosthetic group is showed as Van der Waals spheres and each protein chain is colored in yellow and red. Residues at 4 Å of each analogue are indicated. Hydrogen bonds are shown as orange dashed lines.

Figure 52S. Backbone structural alignment of GABA-AT structures. a) GABA-AT human model in cyan color. **10hv**, **10hw** and **10hy** Sus scrofa crystal structures in red (RMSD=0.35), gray (RMSD=0.36) and orange (RMSD=0.40) color respectively. b) GABA-AT Pseudomonas fluorescens model in shiny red color, **1sf2** E. coli estructure in shiny yellow color (RMSD= 0.52). Fe₂S₂ (yellow/pink color) and PLP from human model in VDW representation.

Ligand	MolDock Score	Electro	HBond
7a	-73.7827	-11.6791	-6.37482
7b	-90.0906	-14.3794	-2.70548
7c	-87.1437	-4.79249	-4.66131
7d	-93.3451	-16.3569	-7.2265
7e	-101.729	-10.9936	-4.12353
7f	-83.6899	-11.9784	-3.44067
(S)- 8a	-112.119	-7.99459	-3.85277
(R)- 8a	-97.5094	-6.93326	-3.08695
(S)- 8b	-98.5854	-11.0659	-5.84991
(R)- 8b	-93.2925	-12.0228	-1.80199
(S)- 8c	-113.181	-7.06026	-2.5
(R)-8c	-89.7572	-13.2412	-3.34681
(S)- 8d	-107.919	-2.81265	-4.36016
(R)- 8d	-93.1624	-5.66396	-2.5
(S)- 8e	-111.347	-2.23916	-0.215018
(R)- 8e	-103.812	-14.4581	-3.64372
(S)-8f	-105.834	-13.386	-2.83697
(R)- 8f	-89.8468	-13.3805	-2.49901
(S)- 9b	-100.144	-8.84278	-3.14615
(R)- 9b	-95.7124	-11.0181	-2.4786
(S)- 9c	-105.791	-11.6063	-2.11356
(R)- 9c	-91.5724	-8.52886	-3.78333
(S)- 9d	-107.209	-10.6489	-2.5
(R)-9d	-98.4869	-10.3527	-3.17113
(S)- 9e	-109.605	-9.38255	-2.5
(R)- 9e	-112.69	-10.5368	-8.05182
(S)- 9f	-122.362	-10.3354	-2.5
(R)- 9f	-103.599	-9.33766	-2.4934
VPNa	-73.7153	-7.61745	0

Table 2S. Energy interactions values obtained from the docking calculations of all GABA derivatives and *human* GABA-AT model. All the values are in kcal/mol.

Table 3S. Values of the experimental (Y_{Exp}), calculated (Y_{Cal}) and predicted (Y_{Pred}) percent of inhibition of the GABA derivatives. Compounds that were considered form the test validation are marked with a script symbol.

Mol	Y _{Calc1}	YPred1	Y _{Calc2}	YPred2	Y _{Calc3}	YPred3	Y _{Calc4}	YPred4	Y _{Calc5}	YPred5	Y _{Calc6}	YPred6	Y _{Calc7}	YPred7	YCalc8	YPred8	YCalc9	YPred9	YCalc10	YPred10	YExp
7a	25.68	26	-	26.91	25.79	26.19	-	26.18	24.28	23.97	23.71	23.19	25.33	25.52	-	25.84	-	27.67	-	25.35	24.9
7b	19.65	18.12	20.76	19.59	20.43	19.15	20.19	19.06	19.9	18.33	21.19	20.34	20.47	19.07	20.67	19.4	21.29	19.88	20.11	18.62	24.9
7c	20.39	20.7	21.49	22.13	-	21.14	20.78	21.14	20.59	21.01	21.92	22.54	21.14	21.73	21.39	22.03	-	22.05	20.8	21.27	19.4
7d	-	21.45	22.55	22.42	22.17	21.92	21.65	21.28	-	21.59	22.99	23.01	-	22.12	22.42	22.25	23.16	23.29	-	21.8	22.9
7e	19.65	20.05	20.76	21.45	20.43	21.04	20.19	20.64	19.9	20.41	21.19	21.85	20.47	21.15	-	20.67	21.29	22.46	20.11	20.67	18.3
7f	28.54	29.91	-	29.8	28.51	29.96	28.67	30.88	26.79	27.01	26.08	25.8	27.87	28.87	28.54	30.86	-	30.67	27.99	29.65	26.5
8a	0.81	4.52	2.05	5.81	1.59	5.43	-	5.91	-	0.95	-1.26	1.59	2.39	6.86	1.52	5.24	1.82	5.33	1.9	5.54	-3.5
8b	0.16	-0.12	1.27	1.47	1.46	1.66	4.29	5.94	1.62	2	1.62	1.91	2.49	3.11	1.61	1.85	1.03	1.1	1.73	2.06	0.84
8c	5.87	5.85	-	6.97	7.01	7.22	8.95	9.64	6.97	7.19	7.35	7.63	7.75	8.17	7.19	7.41	6.96	7.14	-	7.11	5.96
8d	6.93	7.88	8.03	9.08	8.04	9.03	-	9.81	7.96	9	-	8.41	-	8.73	8.22	9.18	8.06	8.97	8.11	9.2	2.64
8e	-	0.16	1.27	-0.99	1.46	-0.06	4.29	3.39	1.62	-0.64	1.62	-0.09	2.49	1.08	1.61	0.17	1.03	-0.9	1.73	0.06	6.2
8f	9.05	5.27	10.31	5.81	9.54	5.85	12.78	9.08	-	8.5	-	6.51	9.89	6.39	9.48	5.49	10.4	5.94	9.61	6.31	16.8
9b*	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	73
9c	-	26.19	27.89	25.5	27.99	12.55	27.69	20.73	28.12	31.25	28.07	52.09	28.17	35.81	-	28.34	27.9	25.78	27.98	27.46	28
9d	9.21	18.37	8.87	9.17	-	7.64	8.12	7.55	9.23	10.15	-	11.64	9.26	10.4	9.08	16.37	8.96	9.38	8.94	9.34	8.6
9e	5.14	3.56	5.21	4.03	-	4.45	5.95	5.37	6	5.48	7.43	8.27	6.16	5.54	5.63	4.41	4.99	3.68	5.71	5	7
9f	15.45	18.65	15.83	17.97	14.21	29.61	16.04	17.9	14.45	14.81	13.7	13.01	-	15.13	15.09	17.44	15.94	18.12	15.17	16.05	14.2
VPNa *	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	40

* Molecules considered as outliers.

- Compounds considered for the test validation.