QSAR and Molecular Docking Studies of the Inhibitory Activity of Novel Heterocyclic GABA Analogues over GABA-AT

Josué Rodríguez-Lozada ${ }^{1}$, Erika Tovar-Gudiño ${ }^{1}$, Juan Alberto Guevara-Salazar ${ }^{2}$, Rodrigo Said Razo-Hernández ${ }^{3}$, Ángel Santiago ${ }^{3}$, Nina Pastor ${ }^{3}$, Mario Fernández-Zertuche ${ }^{1^{*}}$

Table of Contents
NMR Data for analogues 7,8 and $9 \quad 08$
Computational Details 24
NMR Data for analogues 7, 8 and 9
Figure 1S. ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of 4-(thiazolidin-3-yl)butanoic acid (7a)

Figure 2S. ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of 4-(thiazolidin-3-yl)butanoic acid (7a)

Figure 3S. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of 06 07 4-(piperidin-1-yl)butanoic acid (7b).

Figure 4 S . ${ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of 4-(piperidin-1-yl)butanoic acid (7b).

Figure 5S. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) of
4-(3-methylpiperidin-1-yl)butanoic acid (7c)
Figure 6S. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) of sodium 4-(3-methylpiperidin-1-yl)butanoic acid (7c).

Figure 7S. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of 08
4-(4-methylpiperidin-1-yl)butanoic acid (7d).

Figure 8S. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of
08
4-(4-methylpiperidin-1-yl)butanoic acid (7d).

Figure 9S. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of
4-morpholinobutanoic acid (7e).

Figure 10S. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of
09

4-morpholinobutanoic acid (7e).

Figure 11S. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of
4-thiomorpholinobutanoic acid (7f).

Figure 12S. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of 4-thiomorpholinobutanoic acid (7f).

Figure 13S. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of
5-methyl-3-(thiazolidin-3-ylmethyl)hexanoic acid (8a).

Figure 14S. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of

5-methyl-3-(thiazolidin-3-ylmethyl)hexanoic acid (8a).

Figure 15S. 2D NMR (HETCOR $400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of
5-methyl-3-(thiazolidin-3-ylmethyl)hexanoic acid (8a).

Figure 16S. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of
5-methyl-3-(piperidin-1-ylmethyl)hexanoic acid (8b).

Figure 17S. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of 5-methyl-3-(piperidin-1-ylmethyl)hexanoic acid (8b).

Figure 18S. 2D NMR (HETCOR $400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of 5-methyl-3-(piperidina-1-ylmethyl) hexanoic acid (8b).

Figure 19S. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of
5-methyl-3-((3-methylpiperidin-1 yl)methyl)hexanoic acid (8c).

Figure 20S. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of
5-methyl-3-((3-methylpiperidin-1-yl)methyl)hexanoic acid (8c).

Figure 21S. 2D NMR (HETCOR $400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of
5-methyl-3-((3-methylpiperidin-1-yl)methyl)hexanoic acid (8c).

Figure 22S. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of
5-methyl-3-((4-methylpiperidin-1-yl)methyl)hexanoic acid (8d).

Figure 23S. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of
5-methyl-3-((4-methylpiperidin-1-yl)methyl)hexanoic acid (8d).

Figure 24S. 2D NMR (HETCOR $400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of
5-methyl-3-((4-methylpiperidin-1-yl)methyl)hexanoic acid (8d).

Figure 25S. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of
5-methyl-3-(morpholinomethyl)hexanoic acid (8e).

Figure 26S. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of
5-methyl-3-(morpholinomethyl)hexanoic acid (8e).

Figure 27S. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of
5-methyl-3-(thiomorpholinomethyl)hexanoic acid (8e).

Figure 28S. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of
5-methyl-3-(thiomorpholinomethyl)hexanoic acid (8f).

Figure 29S. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of
3-(4-chlorophenyl)-4-(piperidin-1-yl)butanoic acid (9b).

Figure 30S. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of
3-(4-chlorophenyl)-4-(piperidin-1-yl)butanoic acid (9b).

Figure 31S. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of
19
3-(4-chlorophenyl)-4-(3-methylpiperidin-1-yl)butanoic acid (9c).

Figure 32S. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of
3-(4-chlorophenyl)-4-(3-methylpiperidin-1-yl)butanoic acid (9c).

Figure 33S. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of
3-(4-chlorophenyl)-4-(4-methylpiperidin-1-yl) butanoic acid (9d).

Figure 34S. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of
3-(4-chlorophenyl)-4-(4-methylpiperidin-1-yl) butanoic acid (9d).
Figure 35S. 2D NMR (HETCOR $400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of 20

3-(4-chlorophenyl)-4-(4-methylpiperidin-1-yl)butanoic acid (9d).
Figure 36S. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of 21 3-(4-chlorophenyl)-4-morpholinobutanoic acid (9e).

Figure 37S. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of 21 3-(4-chlorophenyl)-4-morpholinobutanoic acid (9e).

Figure 38S. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of
3-(4-chlorophenyl)-4-thiomorpholinobutanoic acid (9f).
Figure 39S. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of 22 3-(4-chlorophenyl)-4-thiomorpholinobutanoic acid (9f).

Figure 40S. 2D NMR (HETCOR $400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of
23 3-(4-chlorophenyl)-4-thiomorpholinobutanoic acid (9f).

Figure 41S. Alignment of pseudomonas fluorencens (PF),
human (HS), E. coli (EC) and wild boar (JB). Red and
blue color letters corresponds to the residues of the chain A and chain B respectively, that interact with vigabatrin in the 1ohv crystal structure

Figure 42S. Validation of the molecular docking calculation for the pseudomonas model. Ligand in the PDB:ID 3r4t crystal structure was reproduced with a RMSD of $1.7 \AA$. Ligand experimental (opaque color) and calculated conformation (shiny color) are displayed as sticks representation respectively. Residues within $4.0 \AA$ of both ligands are shown as thin sticks

Figure 43S. Validation of the molecular docking calculation for the human model. Ligand in the PDB:ID 1ohw crystal structure was reproduced with a RMSD of 1.3 Å. Ligand experimental (opaque color) and calculated conformation (shiny color) are displayed as sticks representation respectively. Residues within $4.0 \AA$ of both ligands are shown as thin sticks.

Figure 44S. Validation of the molecular docking calculation for the human model. Ligand in the PDB:ID 1ohy crystal structure was reproduced with a RMSD of $1.8 \AA$. Ligand experimental (opaque color) and calculated conformation (shiny color) are displayed as sticks representation respectively. Residues within $4.0 \AA$ of both ligands are shown as thin sticks.

Figure 45S. Optimized structures of all GABA analogues, VPNa and VGB.

Figure 46S. Interactions between GABA analogues 7 and
Pseudomonas fluorescens GABA-AT. a) 7a, b) 7b, c) 7c, d) 7d, e) 7e and f) 7 f . PLP prosthetic group is showed as Van der Waals spheres and each protein chain is colored in green and cyan. Residues at $4 \AA$ of each analogue are indicated. Hydrogen bonds are shown as orange dashed lines.

Figure 47S. Interactions between GABA analogues 8 and Pseudomonas and f) $(R)-8 \mathbf{c}, \mathrm{~g})(S)-8 \mathbf{d}, \mathrm{~h})(R)-8 \mathbf{d}, \mathrm{i})(S)-8 \mathbf{e}, \mathrm{j})(R)-8 \mathbf{e}, \mathrm{k})(S)-8 \mathrm{f}, \mathrm{l})$ $(R)-8 f$. PLP prosthetic group is showed as Van der Waals spheres and each protein chain is colored in green and cyan. Residues at $4 \AA$ of each analogue are indicated. Hydrogen bonds are shown as orange dashed lines.

Figure 48S. Interactions between GABA analogues 9 and

Table 1S. Energy interactions values obtained from the docking calculations of all GABA derivatives and pseudomonas GABA-AT model. All the values are in $\mathrm{kcal} / \mathrm{mol}$.

Figure 49S. Interactions between GABA analogues 7 and
Human GABA-AT. a) 7a, b) 7b, c) $\mathbf{7 c}$, d) $\mathbf{7 d}$, e) $\mathbf{7 e}$ and f) $\mathbf{7 f}$. PLP prosthetic group is showed as Van der Waals spheres and each protein chain is colored in yellow and red. Residues at $4 \AA$ of each analogue are indicated. Hydrogen bonds are shown as orange dashed lines.

Figure 50S. Interactions between GABA analogues 8
and Human GABA-AT. a) (S)-8a, b) (R)-8a, c) (S)-8b, d) $(R)-\mathbf{8 b}, \mathrm{e})(S)-8 \mathbf{c}$ and f) $(R)-\mathbf{8 c}, \mathrm{g})(S)-\mathbf{8 d}, \mathrm{h})(R)-\mathbf{8 d}$, i) $(S)-8 \mathbf{e}, \mathrm{j})(R)-8 \mathbf{e}, \mathrm{k})(S)-8 \mathrm{f}, \mathrm{l})(R)-8 \mathrm{f}$. PLP prosthetic group is showed as Van der Waals spheres and each protein chain is colored in yellow and red. Residues at $4 \AA$ of each analogue are indicated. Hydrogen bonds are shown as orange dashed lines.

Figure 51S. Interactions between GABA analogues 9
and Human GABA-AT. a) (S)-9b, b) (R)-9b, c) (S)-9c and
d) $(R)-9 \mathbf{c}, \mathrm{e})(S)-9 \mathbf{d}, \mathrm{f})(R)-9 \mathbf{d}, \mathrm{~g})(S)-9 \mathbf{e}, \mathrm{~h})(R)-9 \mathbf{e}$, i) $(S)-9 \mathrm{f}$, j) (R)-9f. PLP prosthetic group is showed as Van der Waals spheres and each protein chain is colored in yellow and red. Residues at $4 \AA$ of each analogue are indicated. Hydrogen bonds are shown as orange dashed lines.

Figure 52S. Backbone structural alignment of GABA-AT structures. a) GABA-AT human model in cyan color. 1ohv, 1ohw and 1ohy Sus scrofa crystal structures in red (RMSD=0.35), gray (RMSD $=0.36$) and orange ($\mathrm{RMSD}=0.40$) color respectively.
b) GABA-AT Pseudomonas fluorescens model in shiny red color, 1sf2 E. coli estructure in shiny yellow color (RMSD=0.52). $\mathrm{Fe}_{2} \mathrm{~S}_{2}$ (yellow/pink color) and PLP from human model in VDW representation.

Table 2S. Energy interactions values obtained from the docking calculations of all GABA derivatives and human GABA-AT model. All the values are in $\mathrm{kcal} / \mathrm{mol}$.

Table 3S. Values of the experimental ($\mathrm{Y}_{\mathrm{Exp}}$), calculated ($\mathrm{Y}_{\mathrm{Cal}}$) and predicted (Yred) percent of inhibition of the GABA derivatives. Compounds that were considered form the test validation are marked with a script symbol.

NMR Spectra of compounds.

Figure 1S. ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of 4-(thiazolidin-3-yl)butanoic acid (7a).

Figure 2S. ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of 4-(thiazolidin-3-yl)butanoic acid (7a)

Figure 3S. ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right)$ of 4-(piperidin-1-yl)butanoic acid (7b).

Figure 4S. ${ }^{13} \mathrm{C}$ NMR (400 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right)$ of 4-(piperidin-1-yl)butanoic acid (7b).

Figure 5S. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) of 4-(3-methylpiperidin-1-yl)butanoic acid (7c).

Figure $6 \mathbf{S}$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) of sodium 4-(3-methylpiperidin-1-yl)butanoic acid (7c).

Figure 7S. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of 4-(4-methylpiperidin-1-yl)butanoic acid (7d).

Figure 8S. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of 4-(4-methylpiperidin-1-yl)butanoic acid (7d).

Figure 9S. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of 4-morpholinobutanoic acid (7e).

Figure 10S. ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right)$ of 4-morpholinobutanoic acid (7e).

Figure 11S. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of 4-thiomorpholinobutanoic acid (7f).

Figure 12S. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of 4-thiomorpholinobutanoic acid (7f).

Figure 13S. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of 5-methyl-3-(thiazolidin-3-ylmethyl)hexanoic acid (8a).

Figure 14S. ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CD}_{3} \mathrm{OD}$) of 5-methyl-3-(thiazolidin-3-ylmethyl)hexanoic acid (8a).

Figure 15S. 2D NMR (HETCOR $400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of 5-methyl-3-(thiazolidin-3-ylmethyl)hexanoic acid (8a).

Figure 16S. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of 5-methyl-3-(piperidin-1-ylmethyl)hexanoic acid (8b).

Figure 17S. ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CD}_{3} \mathrm{OD}$) of 5-methyl-3-(piperidin-1-ylmethyl)hexanoic acid (8b).

Figure 18S. 2D NMR (HETCOR $400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of 5-methyl-3-(piperidina-1-ylmethyl) hexanoic acid (8b).

Figure 19S. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of 5-methyl-3-((3-methylpiperidin-1 yl)methyl)hexanoic acid (8c).

Figure 20S. ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right)$ of 5-methyl-3-((3-methylpiperidin-1-yl)methyl)hexanoic acid (8c).

Figure 21S. 2D NMR (HETCOR $\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ of 5-methyl-3-((3-methylpiperidin-1-
yl)methyl)hexanoic acid (8c).

Figure 22S. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of 5-methyl-3-((4-methylpiperidin-1-yl)methyl)hexanoic acid (8d).

Figure 23S. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of 5-methyl-3-((4-methylpiperidin-1-yl)methyl)hexanoic acid (8d).

Figure 24S. 2D NMR (HETCOR $\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ of 5-methyl-3-((4-methylpiperidin-1yl)methyl)hexanoic acid (8d).

Figure 25S. ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right)$ of 5-methyl-3-(morpholinomethyl) hexanoic acid (8e).

Figure 26S. ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CD}_{3} \mathrm{OD}$) of 5-methyl-3-(morpholinomethyl)hexanoic acid (8e).

Figure 27S. ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{CD}_{3} \mathrm{OD}$) of 5-methyl-3-(thiomorpholinomethyl)hexanoic acid (8e).

Figure 28S. ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CD}_{3} \mathrm{OD}$) of 5-methyl-3-(thiomorpholinomethyl)hexanoic acid (8f).

Figure 29S. ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{CD}_{3} \mathrm{OD}$) of 3-(4-chlorophenyl)-4-(piperidin-1-yl)butanoic acid (9b).

Figure 30S. ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right)$ of 3-(4-chlorophenyl)-4-(piperidin-1-yl)butanoic acid (9b).

Figure 31S. ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{CD}_{3} \mathrm{OD}$) of 3-(4-chlorophenyl)-4-(3-methylpiperidin-1-yl)butanoic acid (9c).

Figure 32S. ${ }^{13} \mathrm{C}$ NMR (100 MHz, CD3OD) of 3-(4-chlorophenyl)-4-(3-methylpiperidin-1-yl)butanoic acid (9c).

Figure 33S. ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right)$ of 3-(4-chlorophenyl)-4-(4-methylpiperidin-1-yl) butanoic acid (9d).

Figure 34S. ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CD}_{3} \mathrm{OD}$) of 3-(4-chlorophenyl)-4-(4-methylpiperidin-1-yl) butanoic acid (9d).

Figure 35S. 2D NMR (HETCOR $400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of 3-(4-chlorophenyl)-4-(4-methylpiperidin-1yl)butanoic acid (9d).

Figure 36S. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of 3-(4-chlorophenyl)-4-morpholinobutanoic acid (9e).

Figure 37S. ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CD}_{3} \mathrm{OD}$) of 3-(4-chlorophenyl)-4-morpholinobutanoic acid (9e).

Figure 38S. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of 3-(4-chlorophenyl)-4-thiomorpholinobutanoic acid (9f).

Figure 39S. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of 3-(4-chlorophenyl)-4-thiomorpholinobutanoic acid (9f).

Figure 40S. 2D NMR (HETCOR $400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of 3-(4-chlorophenyl)-4-thiomorpholinobutanoic acid (9f).

Computational Details

```
PF -----------MSNKTNASLMKRREAAVPRGVGQIHP-IFAESAKNATVTDVEGREFID
EC --------------NSNKELMQRRSQAIPRGVGQIHPI-FADRAENCRVWDVEGREYLD
HS -FDYDGPLMKTEVPGPRSQELMKQLNII--QNAEAVHFFCNYEESRGNYLVDVDGNRMLD
JB -FDYDGPLMKTEVPGPRSRELMKQLNII--QNAEAVHFFCNYEESRGNYLVDVDGNRMLD
PF FAGGIAVLNTGHLHPKIIAAVTEQLNKLTH---TCFQVLAYEPYVELCEKVNAK-VPGDF
EC FAGGIAVLNTGHLHPKVVAAVEAQLKKLSH---TCFQVLAYEPYLELCEI-MNQKVPGDF
HS LYSQISSVPIGYSHPALLKLIQQPQNASMFVNRPALGILPPENFVEKLRQSLLSVAPKGM
JB LYSQISSIPIGYSHPALVKLVQQPQNVSTFINRPALGILPPENFVEKLRESLLSVAPKGM
PF AKKTLLVTTGSEA------------------------------VENAVKIARATTGRAGVIAFT
```



```
HS -SQLITMACGSCSNENALKTIFMWYRSKERGQRGFSQEELETCMINQAPGCPDYSILSFM
JB -SQLITMACGSCSNENAFKTIFMWYRSKERGESAFSKEELETCMINQAPGCPDYSILSFM
PF GAYHGRTMMTLGLTGKVVPYSAGMGLM--P-GGIFRALYPNELHGVS-V---DDSIAS-I
EC GAYHGRTHYTLALTGKVNPYSAGMGL---MPGHVYRALYPCPLHGI----SEDDAIASI-
HS GAFHGRTMGCLATTHSKAIHKIDIPSFDWPIAPFPRLKYPLEEFVKENQQEEARCLEEVE
JB GAFHGRTMGCLATTHSKAIHKIDIPSFDWPIAPFPRLKYPLEEFVKENQQEEARCLEEVE
PF ERIFKNDAEPRDIAAIIIEPVQGEGGFYVAPKAFMKRLRELCDKHGILLIADEVQTGAGR
EC HRIFKNDAAPEDIAAIVIEPVQGEGGFYASSPAFMQRLRALCDEHGIMLIADEVQSGAGR
HS DLIVKYRKKKKTVAGIIVEPIQSEGGDNHASDDFFRKLRDIARKHGCAFLVDEVQTGGGC
JB DLIVKYRKKKKTVAGIIVEPIQSEGGDNHASDDFFRKLRDISRKHGCAFLVDEVQTGGGS
PF TGTFFAMEQMGVAA--DLTTFAKSI-AGGFPLAGVCGKAEYMDAIAPGGLGGTYAGSPIA
EC TGTLFAMEQMGVAP--DLTTFAKSI-AGGFPLAGVTGRAEVMDAVAPGGLGGTYAGNPIA
HS TGKFWAHEHWGLDDPADVMTFSKKMMTGGFFH-----K-EEFRPNAPYRIFNTWLGDPSK
JB TGKFWAHEHWGLDDPADVMTFSKKMMTGGFFH-----K-EEFRPNAPYRIFNTWLGDPSK
PF CAAALAVMEVFEEEHLLDRCKAVGERLVTGLKAIQAKYPVI-GEVRALGAMIALELFEDG
EC CVAALEVLKVFEQENLLQKANDLGQKLKDGLLAIAEKHPEI-GDVRGLGAMIAIELFEDG
HS NLLLAEVINIIKREDLLNNAAHAGKALLTGLLDLQARYPQFISRVRGRGTFCSFDT----
JB NLLLAEVINIIKREDLLSNAAHAGKVLLTGLLDLQARYPQFISRVRGRGTFCSFDT----
PF DSHKPNAAAVASVVAKARDKGLILLSCGTYGNVLRVLVPLTSPDEQLDKGLAIIEECFSEL-
EC DHNKPDAKLTAEIVARARDKGLILLSCGPYYNVLRILVPLTIEDAQIRQGLEIISQCFDEAK
HS ----PDDSIRNKLILIARNKGVVLGGCGDKSIRFRPTLVFRDHHA--HLFLNIFSDILADFK
JB ----PDESIRNKLISIARNKGVMLGGCGDKSIRFRPTLVFRDHHA--HLFLNIFSDILADFK
```

Figure 41S. Alignment of pseudomonas fluorencens (PF), human (HS), E. coli (EC) and wild boar (JB). Red and blue color letters correspond to the residues of the chain A and chain B respectively, that interact with VGB 3 in the 1ohv crystal structure.

Figure 42S. Validation of the molecular docking calculation for the pseudomonas model. Ligand in the PDB:ID 3r4t crystal structure was reproduced with a RMSD of $1.7 \AA$. Ligand experimental (opaque color) and calculated conformation (shiny color) are displayed as sticks representation respectively. Residues within $4.0 \AA$ of both ligands are shown as thin sticks.

Figure 43S. Validation of the molecular docking calculation for the human model. Ligand in the PDB:ID 1ohw crystal structure was reproduced with a RMSD of $1.3 \AA$. Ligand experimental (opaque color) and calculated conformation (shiny color) are displayed as sticks representation respectively. Residues within $4.0 \AA$ of both ligands are shown as thin sticks.

Figure 44S. Validation of the molecular docking calculation for the human model. Ligand in the PDB:ID 1ohy crystal structure was reproduced with a RMSD of $1.8 \AA$. Ligand experimental (opaque color) and calculated conformation (shiny color) are displayed as sticks representation respectively. Residues within $4.0 \AA$ of both ligands are shown as thin sticks.

$7 a$

7b

$7 f$

(R)-8a

(R)-8c

(S)-8c

Figure 45S. Optimized structures of all GABA analogues, VPNa and VGB.

(R)-8d

(S)-8e

(S)-8d

(R)-8f

(S)-9b
(R)-9c

(S)-9c

(R)-9d

(S)-9d

Figure 45S. Optimized structures of all GABA analogues, VPNa and VGB. Continuation

(R)-9e

(S)-9f

(S)-9e
(R)-9f

VGB
VPNa

Figure 45S. Optimized structures of all GABA analogues, VPNa and VGB. Continuation

Figure 46S. Interactions between GABA analogues 7 and Pseudomonas fluorescens GABA-AT. a) 7a, b) 7b, c) $7 \mathbf{c}, d) 7 d, e) 7 e$ and f) 7 f . PLP prosthetic group is showed as Van der Waals spheres and each protein chain is colored in green and cyan. Residues at $4 \AA$ of each analogue are indicated. Hydrogen bonds are shown as orange dashed lines.

Figure 47S. Interactions between GABA analogues 8 and Pseudomonas fluorescens GABA-AT. a) (S)-8a, b) $(R)-8 \mathbf{a}, \mathrm{c})(S)-\mathbf{8 b}, \mathrm{d})(R)-\mathbf{8 b}, \mathrm{e})(S)-8 \mathbf{c}$ and f) $(R)-8 \mathbf{c}, \mathrm{~g})(S)-8 \mathbf{d}, \mathrm{~h})(R)-\mathbf{8 d}, \mathrm{i})(S)-\mathbf{8 e}, \mathrm{j})(R)-8 \mathbf{e}, \mathrm{k})(S)-8 \mathbf{f}, \mathrm{l})(R)-8 \mathbf{f}$. PLP prosthetic group is showed as Van der Waals spheres and each protein chain is colored in green and cyan. Residues at $4 \AA$ of each analogue are indicated. Hydrogen bonds are shown as orange dashed lines.

Figure 48S. Interactions between GABA analogues 9 and Pseudomonas fluorescens GABA-AT. a) (S)-9c, b) $(R)-9 \mathrm{c}, \mathrm{c})(S)-9 \mathbf{d}$ and d) $(R)-9 \mathbf{d}, \mathrm{e})(S)-9 \mathbf{e}, \mathrm{f})(R)-\mathbf{9 e}, \mathrm{g})(S)-9 \mathrm{f}, \mathrm{h})(R)-9 \mathrm{f}$. PLP prosthetic group is showed as Van der Waals spheres and each protein chain is colored in green and cyan. Residues at $4 \AA$ of each analogue are indicated. Hydrogen bonds are shown as orange dashed lines.

Table 1S. Energy interactions values obtained from the docking calculations of all GABA derivatives and pseudomonas GABA-AT model. All the values are in $\mathrm{kcal} / \mathrm{mol}$.

Ligand	MolDock Score	Electro	HBond
7 a	-73.1062	-7.11035	-2.65911
7b	-69.4043	-3.21553	-7.4961
7c	-63.4051	-8.18821	-3.26379
7d	-88.9465	-5.28229	-5.17495
7 e	-81.1331	-10.6664	-5.7402
7 f	-82.0854	-9.3513	-8.95745
(S)-8a	-88.4367	-7.59611	-2.37557
(R)-8a	-80.2747	-4.34932	-1.54938
$(S)-8 \mathbf{b}$	-95.13	-3.82411	-3.42391
$(R)-\mathbf{8 b}$	-82.2497	-1.10123	-9.99797
$(S)-8 \mathbf{c}$	-106.003	-11.4722	-6.60934
(R)-8c	-84.4955	-2.78647	-5.59387
(S)-8d	-102.496	-12.1057	-7.491
(R)-8d	-79.0166	-7.77168	-3.27213
(S)-8e	-97.1576	-7.49549	-4.62095
(R)-8e	-85.5462	-5.56573	-1.57816
(S)-8f	-110.456	-9.48398	-2.62015
(R)-8f	-80.3773	-1.33976	-5.50014
(S)-9b	-94.5623	-5.33333	-7.63276
(R)-9b	-82.3833	-8.45774	-4.99611
(S)-9c	-105.201	-4.4125	-6.8652
(R)-9c	-92.4029	0.375594	-4.915
(S)-9d	-93.087	-3.43971	-3.94599
(R)-9d	-102.403	-5.70107	-3.30324
(S)-9e	-97.4871	-4.61057	0
(R)-9e	-90.7655	-4.02959	-8.75642
(S)-9f	-92.252	-4.16681	-2.49799
(R)-9f	-83.726	-0.300184	0
VPNa	-64.703	-5.43962	-6.16675

Figure 49S. Interactions between GABA analogues 7 and Human GABA-AT. a) 7a, b) 7b, c) 7c, d) 7d, e) $\mathbf{7 e}$ and f) 7f. PLP prosthetic group is showed as Van der Waals spheres and each protein chain is colored in yellow and red. Residues at $4 \AA$ of each analogue are indicated. Hydrogen bonds are shown as orange dashed lines.

Figure 50S. Interactions between GABA analogues $\mathbf{8}$ and Human GABA-AT. a) (S)-8a, b) (R)-8a, c) (S)-8b, d) $(R)-\mathbf{8 b}, \mathbf{e})(S)-8 \mathbf{c}$ and f) $(R)-8 \mathbf{c}, \mathrm{~g})(S)-8 \mathbf{d}, \mathrm{~h})(R)-\mathbf{8 d}, \mathrm{i})(S)-\mathbf{8 e}, \mathbf{j})(R)-8 \mathbf{e}, \mathrm{k})(S)-\mathbf{8 f}, \mathrm{l})(R)-8 \mathbf{f}$. PLP prosthetic group is showed as Van der Waals spheres and each protein chain is colored in yellow and red. Residues at $4 \AA$ of each analogue are indicated. Hydrogen bonds are shown as orange dashed lines.

Figure 51S. Interactions between GABA analogues 9 and Human GABA-AT. a) (S)-9b, b) (R)-9b, c) (S)-9c and d) $(R)-9 \mathbf{c}, \mathrm{e})(S)-9 \mathrm{~d}, \mathrm{f})(R)-\mathbf{9 d}, \mathrm{g})(S)-9 \mathrm{e}, \mathrm{h})(R)-9 \mathrm{e}, \mathrm{i})(S)-9 \mathrm{f}, \mathrm{j})(R)-9 \mathrm{f}$. PLP prosthetic group is showed as Van der Waals spheres and each protein chain is colored in yellow and red. Residues at $4 \AA$ of each analogue are indicated. Hydrogen bonds are shown as orange dashed lines.

Figure 52S. Backbone structural alignment of GABA-AT structures. a) GABA-AT human model in cyan color. 1ohv, 1ohw and 1ohy Sus scrofa crystal structures in red (RMSD=0.35), gray ($\mathrm{RMSD}=0.36$) and orange (RMSD=0.40) color respectively. b) GABA-AT Pseudomonas fluorescens model in shiny red color, 1sf2 E. coli estructure in shiny yellow color (RMSD=0.52). $\mathrm{Fe}_{2} \mathrm{~S}_{2}$ (yellow/pink color) and PLP from human model in VDW representation.

Table 2S. Energy interactions values obtained from the docking calculations of all GABA derivatives and human GABA-AT model. All the values are in kcal/mol.

Ligand	MolDock Score	Electro	HBond
7 a	-73.7827	-11.6791	-6.37482
7b	-90.0906	-14.3794	-2.70548
7c	-87.1437	-4.79249	-4.66131
7d	-93.3451	-16.3569	-7.2265
7 e	-101.729	-10.9936	-4.12353
7 f	-83.6899	-11.9784	-3.44067
(S)-8a	-112.119	-7.99459	-3.85277
(R)-8a	-97.5094	-6.93326	-3.08695
(S)-8b	-98.5854	-11.0659	-5.84991
$(R)-8 \mathbf{b}$	-93.2925	-12.0228	-1.80199
(S)-8c	-113.181	-7.06026	-2.5
(R)-8c	-89.7572	-13.2412	-3.34681
(S)-8d	-107.919	-2.81265	-4.36016
(R)-8d	-93.1624	-5.66396	-2.5
(S)-8e	-111.347	-2.23916	-0.215018
$(R)-8 \mathbf{e}$	-103.812	-14.4581	-3.64372
$(S)-8 \mathbf{f}$	-105.834	-13.386	-2.83697
(R)-8f	-89.8468	-13.3805	-2.49901
(S)-9b	-100.144	-8.84278	-3.14615
(R)-9b	-95.7124	-11.0181	-2.4786
(S)-9c	-105.791	-11.6063	-2.11356
(R)-9c	-91.5724	-8.52886	-3.78333
(S)-9d	-107.209	-10.6489	-2.5
(R)-9d	-98.4869	-10.3527	-3.17113
(S)-9e	-109.605	-9.38255	-2.5
(R)-9e	-112.69	-10.5368	-8.05182
$(S)-\mathbf{9 f}$	-122.362	-10.3354	-2.5
(R)-9f	-103.599	-9.33766	-2.4934
VPNa	-73.7153	-7.61745	0

Table 3S. Values of the experimental ($\mathrm{Y}_{\text {Exp }}$), calculated ($\mathrm{Y}_{\text {cal }}$) and predicted ($\mathrm{Y}_{\text {Pred }}$) percent of inhibition of the GABA derivatives. Compounds that were considered form the test validation are marked with a script symbol.

Mol	Y Calce	YPredi	YCalc2	YPred2	Yalas	YPred3	YCalcs	Ypred 4	Ycald	YPreds	YCalc6	YPred6	Ycalc7	$\mathrm{Y}_{\text {Pred7 }}$	Yalas	Ypreds	YCale	YPred9	Ycalco	YPredio	YExp
7 a	25.	26	-	2.91	25.79	26.19	-	18	24.28	23.97	23.71	23.19	25.33	25.52		25.84		27.67		25.35	4.9
7b	19.6	18.12	20.76	19.59	20.43	19.15	20.19	19.06	19.9	18.33	21.19	20.34	20.47	19.07	20.67	19.4	21.29	19.8	20.1	18.6	24.9
7c	20.39	20.7	21.49	22.13		21.14	20.78	21.14	20.59	21.01	21.92	22.54	21.14	21.73	21.39	22.03		22.05	20.8	21.2	9.4
7d		21.45	22.5	22.4	22.17	21.9	5	21.2		21.59	22.99	23.01		22.12	22.42	22.25	23.16	23.2		21.8	22.9
7 F	19.65	20.05	20.76	21.45	20.43	21.04	20.19	20.64	19.9	20.41	21.19	21.85	20.47	21.15		20.67	21.29	22.46	20.11	0.6	8.3
7 f	28.54	29.1		29.8	28.51	29.96	28.6	30.88	26.79	27.01	26.08	25.8	27.87	28.87	28.54	30.		30	27.9	29.65	26.5
8 a	0.81	4.52	2.05	5.81	. 59	. 43		5.91		0.95	-1.26	1.59	2.39	6.86	1.52	24	1.82	5.33	1.9	. 54	3.5
8b	0.16	-0.12	1.27	1.47	1.46	1.66	4.29	5.94	1.62	2	1.62	1.9	2.49	3.11	1.61	1.85	1.03	1.1	1.73	2.06	0.84
8 c	5.87	5.85		6.97	7.01	7.22	8.95	9.64	6.97	7.19	7.35	7.63	7.75	8.17	7.19	7.41	6.96	7.14		7.11	. 96
8 d	6.93	7.88	8.03	9.08	8.04	9.03		9.81	7.96	9		8.41		8.73	8.22	9.18	8.06	8.97	8.11	9.2	2.64
8 e		0.16	1.27	-0.99	1.46	-0.06	4.29	3.39	1.62	-0.64	1.62	-0.09	2.49	1.08	1.61	0.17	1.03	-0.9	1.73	0.06	6.2
8 f	9.05	5.27	10.31	5.81	9.54	5.85	12.78	9.08		8.5		6.51	9.89	6.39	9.48	5.49	10.4	5.94	9.61	6.31	16.8
9b*	-														-					-	73
9c	-	26.19	27.89	25.5	27.99	12.55	27.6	20.73	28.12	31.25	28.07	52.09	28.17	35.81	-	28.3	27.9	25.78	27.98	27.4	28
9d	9.21	18.37	8.87	9.17		7.64	. 12	7.55	9.23	10.15		11.64	9.26	10.4	9.08	16.37	8.9	9.3	8.94	9.34	8.6
9 e	5.14	3.5	5.21	4.03		4.45	5.95	5.37	6	5.48	7.43	8.27	6.16	5.54	5.63	4.41	4.99	3.68	5.71	5	7
9 f	15.45	18.65	15.83	17.97	14.21	29.61	16.04	17.9	14.45	14.81	13.7	13.01		15.13	15.09	17.44	15.94	18.12	15.17	16.05	14.2
VPNa																					40

* Molecules considered as outliers.
- Compounds considered for the test validation.

