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Abstract: Super-paramagnetic iron oxide nanoparticles (SPIONs)/gelatin (gel)/polyvinyl alcohol (PVA)
nanoparticles were designed and synthesized by the co-precipitation method and further modified with
gel and PVA. These nanoparticles were used for the removal of Cu(II) and Zn(II) from aqueous solutions.
The adsorbents were rich in different functional groups for chemisorption and showed effective adsorption
properties. The adsorption of Cu(II) and Zn(II) on the SPIONs/gel and SPIONs/gel/PVA materials were
investigated with respect to pH, adsorption kinetics, and adsorption isotherms. The adsorption data
was fitted to the Langmuir, Freundlich, and Sips models at the optimum pH 5.2 (±0.2) over 60 min;
SPIONs/gel showed maximum adsorption capacities of 47.594 mg/g and 40.559 mg/g for Cu(II) and
Zn(II); SPIONs/gel/PVA showed those of 56.051 mg/g and 40.865 mg/g, respectively. The experimental
data fitted the pseudo-second-order model, indicating that the process followed chemical monolayer
adsorption. In addition, the SPIONs/gel/PVA showed better stability and Cu(II) adsorption efficiency
than SPIONs/gel.
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1. Introduction

In the past decade, toxic heavy metal ion pollution has had the harmful effects on the environment.
Heavy metal ions such as Pb, Cu, Ni, Zn, Cd, and Cr are toxic to humans, animals, and plants even
at low concentrations [1]. The accumulation of Cu(II) in living organisms can cause liver and brain
damage, heart disease, skin conditions, and pancreas issues [2]. Zn(II) poisoning in humans causes
nausea, dizziness, and dehydration [3]. Many technologies have been developed for the removal of
heavy metal ions from water, such as chemical precipitation, electrochemical reduction, ion exchange,
membrane separation, solvent extraction, coagulation, and adsorption [4]. However, the technologies
have their own disadvantages as known as ineffective at lower heavy metal ions concentration, are not
economical, and have specific working conditions [5]. Among these technologies, the adsorption
process is attractive because of its low cost and high efficiency. Widely used adsorbents include
carbonaceous materials, clays, zeolites, composite materials, biomass, nanomaterials, and polymeric
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materials [6–8]. The efficiency of adsorbents depends on their specific surface areas and their chemical
stabilities [9]. Therefore, the choice of suitable materials for the adsorption of heavy metal ions from
wastewater is very important.

The use of nanoparticle materials offers many advantages because of their small sizes and
interesting physical properties. The use of magnetic nanoparticles is greatly interesting, especially
in wastewater treatment. Magnetic sorbents could be easily separated by an external magnetic
field from the liquid phase, which would assist in removing organic and inorganic pollutants using
these materials [10]. The adsorptive removal of heavy metals, including those in aqueous solutions,
by magnetic nanoparticles has been reported [8,11–13].

Gelatin is a natural water-soluble biopolymer with a variety of advantages such as environmental
friendliness, biodegradability, biocompatibility, and low cost. It is feasible to use gelatin as an
adsorbent material for various ionic species because of its abundant –OH, –NH2, and –COOH
groups [14,15]. Therefore, gelatin coated on the surfaces of magnetic nanoparticles could enhance their
adsorption capacity for heavy metal ions through the reactivity of its own functional groups [16–18].
Magnetic nanoparticles modified by gelatin have been reported in use for scavenging U(VI) under
a series of environmental conditions [14]. However, the drawbacks of gelatin include its poor
mechanical properties and rapid degradation in wet conditions [19–21]. The blending of gelatin
with other polymers is one effective strategy to improve the physical performance [22], such as
adsorption efficiency and reusability.

Poly (vinyl alcohol) (PVA) is a widely used polymer with good biocompatibility, non-toxicity,
high mechanical strength, thermal stability, pH stability, and low cost. Composite materials of gelatin
and PVA have good adsorption capacities for heavy metals [23,24]. Hui et al. [6] prepared PVA/gelatin
hydrogel beads for Pb(II) removal, and the maximum adsorption capacity of Pb(II) was 211.86 mg/g
and the adsorption capacity remained stable in four sequential adsorption–desorption cycles. Hence,
coating PVA on the surface of gelatin-modified magnetic nanoparticles might reduce the aggregation of
magnetic nanoparticles and provide good adsorption properties for heavy metals. A SPIONs/gelatin
composite material has already been synthesized for drug delivery, chemotherapy, and the cleansing of
radionuclide-bearing effluents, but not for the removal of Cu(II) and Zn(II). Moreover, SPIONs/gelatin
and SPIONs/gelatin/PVA composite materials are reported for the first time here in the removal of
heavy metal ions from aqueous solution.

In this work, gelatin/PVA-modified super-paramagnetic iron oxide nanoparticles (SPIONs) were
prepared by the co-precipitation of Fe(II) and Fe(III) ions in an ammonia solution, and then treated
with gelatin and PVA, characterized, and evaluated for adsorption of Cu(II) and Zn(II) from aqueous
solutions. The objective of this work was to explore the feasibility of SPIONs/gelatin (SPIONs/gel) and
SPIONs/gelatin/poly (vinyl alcohol) (SPIONs/gel/PVA) composites and to use them for removing
Cu(II) and Zn(II) from aqueous solutions.

2. Results and Discussion

2.1. Characterization of the Adsorbents

The surface functional groups on the modified magnetic nanoparticles were determined by
FTIR analysis; the spectra are shown in Figure 1. The Fe–O bond stretching at 566–575 cm−1 can
be found in all samples [25,26]. Gelatin has functional groups such as –OH and –NH groups
(between 3200–3500 cm−1), –CH2 group (asymmetric C–H stretching vibration 2946 cm−1 and
symmetric C–H stretching vibration 2870 cm−1), amide group (1648 cm−1 and 1534 cm−1) [14,16,27].
PVA has functional groups such as –OH group (3200–3500 cm−1), –CH2 groups (2866 cm−1), C–O–C
groups (1090 cm−1 stretching vibration) [6,7,28].

The FTIR results of gelatin, PVA, SPIONs/gel, and SPIONs/gel/PVA showed the carboxyl and amide
groups at the range of 1632–1648 cm−1 and hydroxyl group at 1335–1396 cm−1. Moreover, as can be seen
from FTIR results of SPIONs/gel and SPIONs/gel/PVA, the PVA and gelatin layers cannot be observed
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easily because the gelatin and PVA showed similar functional groups in their spectra, and small signals of
the amide bands and C–O stretching vibrations were observed from the SPIONs/gel and SPIONs/gel/PVA.
These functional groups are favorable for the adsorption of heavy metal ions.
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Figure 1. The FTIR spectra of (a) poly vinyl acetate (PVA), gelatin (gel), (b) Super-paramagnetic iron
oxide nanoparticles (SPIONs), SPIONs/gel and SPIONs/gel/PVA.

The TEM images of SPIONs (a), SPIONs/gel (b), and SPIONs/gel/PVA (c) are shown in
Figure 2. The TEM images showed that SPIONs, SPIONs/gel, and SPIONs/gel/PVA particles are
quasi-spherical in shape with rough surfaces. The sizes of SPIONs, SPIONs/gel, and SPIONs/gel/PVA
were measured to be approximately 14.02 nm, 22.63 nm, and 18.6 nm, respectively, from their
TEM images. Furthermore, the DLS measurement showed the sizes of SPIONs, SPIONs/gel,
and SPIONs/gel/PVA were with 15.2 nm, 22.47 nm, and 17.74 nm, respectively. The size of the
magnetic nanoparticles results from TEM and DLS were identical.
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Figure 2. The TEM images and Dynamic Light Scattering (DLS) of (a) SPIONs, (b) SPIONs/gel,
and (c) SPIONs/gel/PVA.

Figure 3 showed XRD diffraction patterns of SPIONs, SPIONs/gel, and SPIONs/gel/PVA.
The diffraction pattern for SPIONs had eight broad peaks at 31.249◦, 36.820◦, 38.524◦, 44.762◦,

55.622◦, 59.303◦, 65.185◦, and 77.249◦, corresponding to the (220), (311), (222), (400), (422), (511),
(440), and (533) planes, respectively [7,29]. All of the observed diffraction peaks were indexed by the
structure of the Fe3O4. Meanwhile, the peaks of SPIONs/gel and SPIONs/gel/PVA showed a highly
crystalline nature.

The magnetization values of the pure SPIONs/gel and SPIONs/gel/PVA were 56.382 and
57.765 emu/g, respectively. Figure 4 showed that the magnetization properties of these two materials
were very similar, the modified layers should not influence the magnetization efficiency of the
nanoparticles, since the SPIONs/gel and SPIONs/gel/PVA have very thin modified layers of gelatin
and PVA. This results are consistent with the TGA results of the nanoparticles. It is clear that
SPIONs/gel and SPIONs/gel/PVA samples can be easily separated from aqueous solution by applying
an external magnetic field [14,30].
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Figure 3. XRD spectra of SPIONs, SPIONs/gel and SPIONs/gel/PVA.
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Figure 4. Magnetization curve of SPIONs/gel and SPIONs/gel/PVA; the magnetization responds to
the external magnetic field of magnetic adsorbents.

The TGA curves of SPIONs, SPIONs/gel, and SPIONs/gel/PVA at the temperature range
50–800 ◦C are shown in Figure 5. The samples were subjected to heating to 800 ◦C at a heating rate
of 10 ◦C/min. The Figure 5 showed that the mass of the materials was reduced to some extent at the
temperature range of 50–200 ◦C, indicating the removal of adsorbed water and some oxygen-containing
functional groups at this temperature range. At the first stage, the mass losses of SPIONs/gel and
SPIONs/gel/PVA at temperatures below 150 ◦C were 0.75% and 1.92%, respectively. In the second
stage, when the temperature was between 150 and 250 ◦C, the mass losses of SPIONs/gel and
SPIONs/gel/PVA were 0.87% and 2.58%, respectively. In the third stage, when the temperature was
between 250 and 470 ◦C, the mass losses of the SPIONs/gel and SPIONs/gel/PVA were 9.85% and
9.42%, respectively. It was observed that the SPION/gel had a total weight loss of approximately
11.47% and SPIONs/gel/PVA had a total weight loss of approximately 13.92%. Therefore, the weight
fraction of gelatin in the SPIONs/gel composite is approximately 10.72% and the weight fraction of
PVA in the SPIONs/gel/PVA composite is approximately 1.25%, which suggested the thickness of
organic layer of SPIONs/gel and SPIONs/gel/PVA are very thin, and both particles have similar
thickness of organic layer.
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2.2. Adsorption

2.2.1. Effect of pH

The effects of pH on the SPIONs/gel and SPIONs/gel/PVA are shown in Figure 6. As can be seen
from Figure 6 with the increase of the pH of the aqueous solution, the adsorption capacity for Cu(II)
and Zn(II) on both adsorbents is increased. At low pH, this may relate to the higher concentration and
mobility of H+ ions. Meanwhile, minimal adsorption is favored by the high solubility and ionization of
metallic salts in the acidic medium [31]. The suitable pH for Cu(II) and Zn(II) removal for all adsorbents
is determined as 5–6, at which the maximum adsorption capacity occurs for both adsorbents. Moreover,
the precipitation of heavy metal hydroxides occurs for a pH enhanced further [32]. If the pH is more
than 6, the heavy metal ions will be precipitated from the aqueous solution [33]. Accordingly, the initial
pH of the solutions was 5.2 (±0.2) for both solutions in the following adsorption experiments.
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2.2.2. Adsorption Kinetics

The effects of contact time on the kinetics of Cu(II) and Zn(II) adsorption by the SPIONs/gel
and SPIONs/gel/PVA adsorbents are displayed in Figure 7. As can be seen in Figure 7, the removal
of Cu(II) and Zn(II) on the SPIONs/gel and SPIONs/gel/PVA is rapid in the initial 5 min, and the
removal of Cu(II) increases sharply in the initial 30 min before continuing at a slower rate and finally
reaching equilibrium at 60 min. Therefore, 60 min was chosen as the optimum contact time for the
adsorption experiments. The adsorption rate is faster than those shown by some reported magnetic
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adsorbent materials [34–36]. Keochaiyom et al. [4] reported that the adsorption equilibrium time was
24 h for Zn(II), Cd(II), Pb(II) on magnetic chlorapatite nanoparticles. Ghasemi et al. [36] reported
that the adsorption process reached equilibrium within 90 min for the removal of Zn(II) from an
aqueous solution.
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In order to investigate the mechanisms of adsorption of Cu(II) and Zn(II) on the
SPIONs/gel and SPIONs/gel/PVA, fitting was determined according to the pseudo-first-order and
pseudo-second-order kinetic models. The sorption kinetic parameters including K1, K2, Qt, and the
correlation coefficients R2 are listed in Table 1. As can be seen, the correlation coefficients R2 for the
pseudo-second-order model are higher than those for the pseudo-first-order model. The calculated
Qt values are close to the experimental Qe values with the pseudo-second-order model for both
adsorbents. These results suggest that the sorption kinetics of heavy metal ions on SPIONs/gel
and SPIONs/gel/PVA can be described by the pseudo-second-order model, which means that the
adsorption rate depends on chemical sorption [37]. For illustration, functional groups such as carboxyl,
amino, and hydroxyl groups [27,28,38] on the surfaces of both adsorbents, as characterized by the
FTIR results, were active in heavy metal ion binding on the SPIONs/gel and SPIONs/gel/PVA.
Similar results have been reported by Vo et al. [28] and Wang et al. [38] for the removal of heavy metal
ions by other magnetic adsorbents.

Table 1. Adsorption kinetic parameters for adsorption of Cu(II) and Zn(II) on SPIONs/gel and
SPIONs/gel/PVA.

Metal Adsorbents
Pseudo-First-Order Pseudo-Second-Order

Qt (mg/g) K1 (1/min) R2 Qt (mg/g) K2 (g/(mg·min)) R2

Cu(II)
SPIONs/gel 18.834 0.055 0.992 20.779 0.004 0.991

SPIONs/gel/PVA 13.886 0.043 0.992 15.55 0.003 0.994

Zn(II)
SPIONs/gel 14.109 0.137 0.986 14.888 0.019 0.998

SPIONs/gel/PVA 11.101 0.059 0.983 12.146 0.008 0.986

2.2.3. Adsorption Isotherms

The adsorption isotherms of Cu(II) and Zn(II) on SPIONs/gel and SPIONs/gel/PVA at pH 5 are
presented Figure 8. It can be seen from Figure 8 that the adsorption capacities of Cu(II) and Zn(II) on
both adsorbents are increased with increasing initial concentrations of the metal ions. The SPIONs/gel
showed the equilibrium adsorption capacities of 20.1213 mg/g and 14.9092 mg/g for Cu(II) and Zn(II);
SPIONs/gel/PVA showed those of 13.7879 mg/g and 9.7803 mg/g, respectively, at the equilibrium
concentration of 0.1 mg/mL and 25 ◦C. The adsorption capacity of Cu(II) on bare iron oxide was
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just 0.15 mg/g, much less than that on another two adsorbents, so that the following adsorption
experiments were carried on SPIONs/gel and SPIONs/gel/PVA. Moreover, the adsorption capacities
of Cu(II) on SPIONs/gel and SPIONs/gel/PVA are much more than those of Zn(II); adsorption on
SPIONs/gel in particular shows a higher adsorption capacity than SPIONs/gel/PVA.
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The experimental data points were analyzed by the Langmuir, Freundlich, and Sips models.
The calculated parameters together with the correlation coefficients for the Langmuir, Freundlich,

and Sips models are shown in Table 2. As seen in Table 2, the adsorption of Cu(II) and Zn(II) on both
adsorbents is well correlated (R2 < 0.99) with the Langmuir model, Freundlich model, and Sips model.
All models show good fits with the experimental data. The Langmuir model describes monolayer
adsorption on the homogenous surface of the adsorbents [29]. The dimensionless separation parameter
RL is the essential characteristic of the Langmuir isotherm model and expressed by:

RL = 1/(1 + KLC0) (1)

where C0 is initial concentration of the metal ions (mg/mL) and the definition of KL is as explained for
Equation (4).

Table 2. Fitted result of the adsorption isotherms of the Cu(II) and Zn(II) by SPIONs/gel and
SPIONs/gel/PVA.

Isotherm Parameters
Cu(II) Zn(II)

SPIONs/Gel SPIONs/Gel/PVA SPIONs/Gel SPIONs/Gel/PVA

Langmuir
model

Qmax (mg/g) 47.594 56.051 40.559 40.865
KL (mL/mg) 6.66 3.397 5.727 3.267

R2 0.995 0.993 0.997 0.999

Freundlich
model

KF
((mg/g)(mL/mg)1/n) 43.991 45.658 36.515 32.866

1/n 0.3164 0.4373 0.3367 0.4399
R2 0.993 0.976 0.986 0.979

Sips model

Qmax (mg/g) 60.422 54.823 43.974 38.976
KS (mL/mg)1/n 2.382 3.713 3.854 3.961

1/n 0.6816 1.0319 0.8632 1.071
R2 0.999 0.991 0.998 0.999

The RL value is classified as irreversible (RL = 0), linear (RL = 1), favorable (0 < RL < 1),
and unfavorable (RL > 1) [39,40]. In this work, all the values of RL are between 0.1305 and 0.2274,
indicating that the experimental data fall between zero and 1, which is an indication of the favorable
adsorption of the two metal ions on the adsorbents.
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The Freundlich model describes the surface heterogeneity of the sorbent, indicating multilayer
adsorption. The 1/n value from the Freundlich model between 0.5 and 1.0, represents favorable
adsorption; on the other hand, a value of 1/n > 1 suggests weak adsorption bonds between the
adsorbent and adsorbate, indicating unfavorable adsorption [41]. The 1/n values from the Freundlich
model for the adsorption of SPIONs/gel were 0.3164 and 0.3367 for Cu(II) and Zn(II); SPIONs/gel/PVA
were those of 0.4373 and 0.4399, respectively. These values are lower than 1, indicating that the
adsorption of Cu(II) and Zn(II) is favorable on the both adsorbents.

The Sips model is the combination of Langmuir and Freundlich model and explains adsorption on
both homogeneous and heterogeneous surfaces. Its behavior is similar to Freundlich model; it reduces
to the Freundlich isotherm at a low adsorbate concentration and to the Langmuir model at a high
adsorbate concentration [42,43]. The adsorption of Cu(II) and Zn(II) on both adsorbents appears to
be a monolayer adsorption process, because the Langmuir and Sips models both fit better than the
Freundlich model. The correlation coefficients R2 from the Langmuir and Sips models are nearly 1,
suggesting that the adsorption of Cu(II) and Zn(II) on both adsorbents appears to be a monolayer
adsorption process. SPIONs/gel showed the maximum adsorption capacities of 47.594 mg/g and
40.559 mg/g for Cu(II) and Zn(II); SPIONs/gel/PVA showed those of 56.051 mg/g and 40.865 mg/g,
respectively. Meanwhile, the interaction of carboxyl groups in both adsorbents with Cu(II) and Zn(II)
formed bidentate chelates, a chemical sorption process [6].

The maximum adsorption capacities of both adsorbents were higher than the equilibrium
adsorption capacities and SPIONs/gel/PVA showed a higher adsorption capacity than SPIONs/gel,
indicating that the adsorption properties were improved significantly by PVA. These results suggest
that the SPIONs/gel/PVA adsorbent showed monolayer adsorption for low concentrations of metal
ions, while multilayer adsorption processes occur for increased concentrations. The SPIONs/gel/PVA
has more hydroxyl groups on the surface than SPIONs/gel and greater rigidity, which increased
the maximum adsorption capacities for both ions. The maximum adsorption capacity of Cu(II) is
higher than that of Zn(II), meaning that the chelating effect is more suitable for Cu(II). Meanwhile,
Cu(II) and Zn(II) have different characteristic properties, such as the difference in covalency index
(X2

mr, where Xm is electronegativity and r is ionic radius). Zhu et al. [44] recorded that the X2
mr is

a measure for a metal ions of the importance of covalent interactions relative to that of ionic interactions.
The covalency index increased in the following order: Zn (2.04) < Cu (2.64), suggesting that Cu(II) has
a stronger attraction that Zn(II), which agreed with the report by Nieboer et al. [45] in which metal
ions preferentially interacted with functional groups in the following order: S- > N- > O-containing
groups. This indicates that larger values of X2

mr, correspond to more characteristics of soft acids (HSAB
theory). The adsorption capacities of SPIONs/gel and SPIONs/gel/PVA for Cu(II) and (Zn) from
aqueous solution were compared with those reported in previously published works. The adsorption
capabilities of SPIONs/gel and SPIONs/gel/PVA for Cu(II) and Zn(II) from aqueous solution were
higher than those of some magnetic nanomaterials such as poly(N-2-aminoethylacrylamide) magnetite
nanoparticles and magnetic nanoparticle-decorated tea waste [46,47].

2.2.4. Regeneration

Repeated use of adsorbents and the recovery of the adsorbed metal ions are important
parameters indicating economic efficiency. In this study, the regeneration of the SPIONs/gel and
SPIONs/gel/PVA was tested by consecutive adsorption–desorption processes performed three times
using the same adsorbents.

The adsorption capacity of Cu(II) on SPIONs/gel and SPIONs/gel/PVA were decreased by
5.05% and 7.28%. The adsorption capacity of Zn(II) on SPIONs/gel and SPIONs/gel/PVA were
decreased by 7.87% and 12.57%, after three cycles, respectively. The reusability of these materials
were compared with some magnetic adsorbent materials, which was used to similar preparation
of iron oxide nanoparticles, initial concentration of heavy metal ions and cycling usage conditions.
The adsorption capacity of Cu(II) on the Mg/Fe layered double hydroxide loaded with Magnetic
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(Fe3O4) carbon spheres [48], and the magnetic Fe3O4/carbon nanotube (CNT) [49] were decreased by
18.6%, and 17.6%, after three cycles of usage, respectively. The adsorption capacity of Cu(II) and Zn(II)
on magnetic nanoparticles decorated tea waste (Fe3O4-tea) was decreased by 9.5% and 17.1% after six
cycles [46]. As shown in Figure 9, after three cycles that the SPIONs/gel and SPIONs/gel/PVA exhibit
good regeneration performance and can support long-term usage in the removal of Cu(II) and Zn(II).
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3. Experimental

3.1. Materials

Ferric chloride (FeCl3), ferrous chloride (FeCl2·4H2O), ammonia solution (NH3·H2O), gelatin,
polyvinyl alcohol (PVA), copper sulfate pentahydrate (CuSO4·5H2O), zinc sulfate heptahydrate
(ZnSO4·7H2O), hydrogen chloride (HCl), nitric acid (HNO3), sodium hydroxide (NaOH), and all
test solutions were prepared using deionized water. All chemicals were of were analytical grade and
used without further purification.

3.2. Synthesis of SPIONs/Gel/PVA

Firstly, SPIONs were prepared by co-precipitating Fe(II) (FeCl2·4H2O) and Fe(III) (FeCl3) ions
in ammonia solutions, as described in the literature [50,51]. 5.4066 g of FeCl3 and 3.3 g FeCl2·4H2O
were dissolved in 100 mL deionized water and then heated to 80 ◦C under mechanical stirring in Ar
atmospheric conditions. Afterwards, 15 mL of 29% NH3·H2O solution was added to the solution of
iron salts, which formed a black precipitate. The mixture was continually stirred at 80 ◦C for 1 h,
cooled to 70 ◦C, and stirred for 1 h. After that, 30 mL of gelatin solution (5% w/w) was added to the
mixture and the synthesis was continued for 1 h. Then 30 mL of PVA solution (10% w/w) was added
to the mixture. The synthesis was continued for another 1 h, and the solid phase was collected and
washed several times with deionized water and ethanol. The resulting powder was dried at room
temperature (25 ◦C) in vacuum (0.1 MPa) for 24 h. Pure SPIONs and SPIONs/gel were synthesized in
a similar condition without the addition of the PVA solution.

3.3. Characterization of Adsorbent

The morphologies of SPIONs, SPIONs/gel, and SPIONs/gel/PVA were characterized using
transmission electron microscopy (TEM, JEOL JEM-2100, Tokyo, Japan). The sizes of the SPIONs,
SPIONs/gel, and SPIONs/gel/PVA were measured by Dynamic Light Scattering (DLS). All DLS
measurements were performed with a Malvern Zetasizer Nano ZS particle analyzer (ZEN3600,
Malvern, United Kingdom) at wavelength of 633 nm and He-Ne laser at scattering angle of 173◦ at
25 ◦C. In this analysis, 1 mL of particle suspension (each sample was diluted to approximately
0.1 mg/mL) was employed and placed in 10 mm × 10 mm quartz cuvette. The intensity and average
diameters were calculated by the Zetasizer Nano Software 7.01 (Malvern, UK). The X-ray diffraction
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(XRD) patterns of SPIONs, SPIONs/gel, and SPIONs/gel/PVA were determined using an X-ray
diffractometer using Cu Kα (λ = 1.54 Å, scanning rate of 5◦ min−1 in the range of 10–80◦ at 40 kV and
20 mA, Rigaku, RINT2000). The Fourier-transform infrared (FTIR) spectra of SPIONs, SPIONs/gel,
and SPIONs/gel/PVA were recorded by using an FTIR spectrophotometer (Vertex 70, Brucker Optik
GmbH, Karlsruhe, Germany) in the range 400–4500 cm−1. The fine powder of KBr was mixed with
the sample (0.1–0.5%) and then ground to get a homogenous mixture. The homogenous mixture was
compressed under 10 MPa pressure to a small disk for analysis (Transmission ~10%). The data of the
sample from FTIR were plotted by Origin Pro 9.1 software. Thermogravimetric analysis (TGA) was
performed by using a STA 449 F3 DSC/DTA-TG analyzer (Netzsch Germany, Wunsiedel, Germany),
with the temperature heating range from 50 to 900 ◦C under N2 atmosphere, and the heating rate of
10 ◦C/min.

3.4. Adsorption

The adsorption experiments of Cu(II) and Zn(II) were performed via the batch adsorption method.
Metal ion solutions used in the adsorption experiments were prepared by dissolving salts (CuSO4·6H2O
and ZnSO4·7H2O) in deionized water. The initial and final heavy metal ion concentrations were
measured by a flame atomic absorption spectrophotometer (AAS, AA6300, Shimadzu Corporation,
Kyoto, Japan).

3.4.1. Effect of pH

25 mg of the adsorbents were added to 25 mL of 0.1 mg/mL Cu(II) and Zn(II) solution at a given
initial concentration in a 50 mL flask. The pH of the contact solution was adjusted from 2 to 6 using
0.1 mol/L HCl and 0.1 mol/L NaOH solutions. The flask was then placed in an automatic shaker
at 25 ◦C and shaken at 130 rpm for 60 min. The adsorbents were separated by an external magnetic
field and the residual heavy metal concentrations were measured by AAS. All the experiments were
conducted in duplicate and each data point was measured three times. The adsorption capacities of
the SPIONs/gel and SPIONs/gel/PVA were calculated by the following equation [52]:

Qe = (C0 − Ce)× V/m (2)

where Qe is the adsorption capacity of the SPIONs/gel or the SPIONs/gel/PVA (mg/g). C0 and Ce

are the initial and final concentrations of the metal ions (mg/mL), respectively. V is the volume of the
solution (mL), and m is the weight of the adsorbents (g).

3.4.2. Adsorption Kinetics

The effect of contact time on adsorption was determined at different time intervals from 5 to
240 min. 25 mL of Cu(II) and Zn(II) with the initial concentration of 0.1 mg/mL was mixed with
0.025 g of SPIONs/gel and SPIONs/gel/PVA adsorbents under shaking at 130 rpm and 25 ◦C for
different contact times. The adsorbents were then separated and the solution concentrations were
measured. The data obtained from these experiments were fitted to the pseudo-first-order and
pseudo-second-order kinetic models [29,53].

The equations of these models are given by:
Pseudo-first-order model:

Qt = Qe

(
1 − e−K1t

)
(3)

Pseudo-second-order model:

Qt = tQe
2K2/(tK2Qe + 1) (4)
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where Qt (mg/g) is the amount of metal ions adsorbed by SPIONs/gel or SPIONs/gel/PVA at time
t, and K1 and K2 are the rate constants of the pseudo-first-order (min−1) and pseudo-second-order
(min−1) models, respectively.

3.4.3. Adsorption Isotherms

25 mL of Cu(II) and Zn(II) metal ions solutions with different initial concentrations of 0.1, 0.2,
0.3, 0.4, 0.5, 0.75 and 1 mg/L was mixed with 0.025 g of adsorbents and shaken at 25 ◦C and 130 rpm
for 60 min. After that, the adsorbents were separated by an external magnetic field and the residual
concentrations of heavy metal ions were measured by AAS. The experimental data points were
analyzed by the Langmuir, Freundlich, and Sips models.

Langmuir equation:
Ce/Qe = 1/(KLQmax + Ce/Qmax) (5)

Freundlich equation:
Qe = KFC1/n

e (6)

Sips equation:
Qe = QmaxKsC1/n

e /(1 + KsC1/n
e ) (7)

where the definition of Qe is the same as that for equation 1, Qmax is the maximum adsorption capacity
of the adsorbent (mg/g), KL is the Langmuir constant related to the adsorption strength or intensity
(mg/g), KF is the Freundlich constant, KS is the Sips model constant (mL/mg)1/n, and 1/n is the
heterogeneity factor.

3.4.4. Regeneration

25 mg of the SPIONs/gel and SPIONs/gel/PVA were added to 25 mL of 0.1 mg/L Cu(II) and
Zn(II) and shaken at 130 rpm and 25 ◦C for 60 min. The SPIONs/gel and SPIONs/gel/PVA adsorbents
were separated and the residual concentration was measured. The collected adsorbents were mixed
with 0.1 mol/L HNO3 solution (25 mL) and shaken at 130 rpm and 25 ◦C for 60 min. After that,
the adsorbents were collected and washed repeatedly with deionized water to neutralize the acidic
condition and recycled three times.

4. Conclusions

In this work, magnetic nanoparticles were modified by gelatin and PVA for the removal of
Cu(II) and Zn(II). Copper and Zinc are very important metals for industries, electroplating, paint,
pigments, wood, metal plating, and so on. These enriched acidic solutions can be concentrated and
continue used to produce their salts and materials. The SPIONs/gel and SPIONs/gel/PVA were
used for the first time for the removal of heavy metal ions from aqueous solutions. SPIONs/gel
and SPIONs/gel/PVA can adsorb the two metal ions effectively; SPIONs/gel showed equilibrium
adsorption capacities of 18.067 mg/g and 14.143 mg/g for Cu(II) and Zn(II); SPIONs/gel/PVA showed
those of 12.904 mg/g and 9.303 mg/g, respectively, at 0.1 mg/mL and 25 ◦C. The equilibrium data fitted
very well with the pseudo-second-order model, indicating chemical adsorption by the chelating effect.
The SPIONs/gel/PVA adsorbent is more stable than that of SPIONs/gel, with greater adsorption
efficiency for Cu(II).
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