

Jiangchi Fei¹, Qiming Mao², Lu Peng³, Tiantian Ye⁴, Yuan Yang^{2,*} and Shuang Luo^{2,*}

- ¹ Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, China, 410083; E-mail: jack-fei@csu.edu.cn.
- ² College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; E-mail: <u>qimingmao@126.com</u>.
- ³ College of Biology and Environmental Sciences, Jishou University, Jishou, China, 416000; E-mail: abonluo@gmail.com.
- ⁴ South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, China; E-mail: yetiantian@scies.org.
- * Correspondence: yangyuan@hunau.edu.cn (Y.Y.); luoshuang@csu.edu.cn or shuangluo@hunau.edu.cn (S.L.); Tel.: +86-151-1120-6841 (S.L.)

Text S1:

Hammett constant, σ , is a reflection of the electronic nature and position of substituent, as indicated below:

$$\log\left(\frac{k_{X-Ar}}{k_{H-Ar}}\right) = \sigma\rho \tag{1}$$

where X is the functional group substituted on aromatic compounds (Ar), kx and $k_{\rm H}$ are the rate constants for substituted and unsubstituted benzene derivatives, respectively, and ρ is the reaction constant which depends on the type of reaction [1]. Both σ and ρ are obtained from a reference reaction, and can quantitatively describe chemical reactivities of substituents [1-3].

The σ - is one for groups that stabilize negative charges via resonance, σ - scale is based upon the ionization of *para*-substituted phenols [4]. The equation for σ -is:

The σ^+ is one for groups that stabilized positive charges via resonance, based upon the heterolysis reaction of *para*-substituted cumyl chlorides (phenyldimethyl chloromethanes). The equation for σ^+ is:

$$\log\left(\frac{k_{X-C_{6}H_{4}CH_{2}Cl}}{k_{H-C_{6}H_{4}CH_{2}Cl}}\right) = \sigma_{X}^{+}\rho$$

substituents	-Cl
σο	0.4
$\sigma_{ m m}$	0.37
$\sigma_{ m p}$	0.23
$\sigma_{ m o}^+$	0.073*
$\sigma_{ m m}^+$	0.4
σ_p^+	0.11
σ_{o}^{-}	0.19**
$\sigma_{ m m}^-$	0.37
σ_p^-	0.19

Table S1: The Hammett constants (σ , σ ⁻, σ ⁺) values

* The σ_0^+ values were calculated from the relationship $\sigma_0^+ = 0.66\sigma_p^+$, which accounts for the ortho effects. [5]

** σ_o^- values were sometimes obtained from the relationship $\sigma_o^- = \sigma_p^-$ when they are not available in literature. [4, 6]

descriptor	comment	unit
μ	molecular dipole moment	debye
EA	electron affinity	eV
Еномо	energy of the highest occupied molecular orbital	eV
Еномо-1	energy of the second HOMO	eV
Elumo	energy of the lowest unoccupied molecular orbital	eV
Elumo – Ehomo	gap of Elumo and Ehomo	eV
Elumo+1	energy of the second LUMO	eV
IP	ionization potential	eV
Q _{xx}	quadrupole moment tensor along the x axis	debye
Q_{yy}	quadrupole moment tensors along the y axis	debye
Qzz	quadrupole moment tensors long the z axis	debye
S	softness, $S = 1/(IP - EA)$	eV ⁻¹
α	mean polarizability of the molecule	Bohr ³
ζ	electronegativity, $\zeta = (IP + EA)/2$	eV
η	hardness, $\eta = (IP - EA)/2$	eV
ω	electrophilicity index, $\omega = \zeta^2/2\eta$	eV

Table S2: The nineteen molecular descriptors from quantum chemistry in this study.

Table S3: The structure of PCBs.

#	Name	structure	#	Name	structure	#	Name	structure
biphen yl	biphenyl		PCB18	2,2',5-Trichlo robiphenyl		PCB36	3,3',5-Trichlor obiphenyl	
PCB1	2-Chlorobiphe nyl	$\bigcirc - \bigcirc$	PCB19	2,2',6-Trichlo robiphenyl		PCB37	3,4,4'-Trichlor obiphenyl	a Cha
PCB2	3-Chlorobiphe nyl		PCB20	2,3,3'-Trichlo robiphenyl		PCB38	3,4,5-Trichloro biphenyl	of.
PCB3	4-Chlorobiphe nyl	C C C	PCB21	2,3,4-Trichlor obiphenyl		PCB39	3,4',5-Trichlor obiphenyl	
PCB4	2,2'-Dichlorob iphenyl		PCB22	2,3,4'-Trichlo robiphenyl	$\sum - \sum \cdot$	PCB40	2,2',3,3'-Tetrac hlorobiphenyl	
PCB5	2,3-Dichlorobi phenyl	\sim	PCB23	2,3,5-Trichlor obiphenyl	a C C	PCB41	2,2',3,4-Tetrac hlorobiphenyl	
PCB6	2,3'-Dichlorob iphenyl		PCB24	2,3,6-Trichlor obiphenyl	C C C C	PCB42	2,2',3,4'-Tetrac hlorobiphenyl	
PCB7	2,4-Dichlorobi phenyl	a Cha	PCB25	2,3',4-Trichlo robiphenyl		PCB43	2,2',3,5-Tetrac hlorobiphenyl	c c c c
PCB8	2,4'-Dichlorob iphenyl		PCB26	2,3',5-Trichlo robiphenyl		PCB44	2,2',3,5'-Tetrac hlorobiphenyl	
PCB9	2,5-Dichlorobi phenyl	CI CI CI	PCB27	2,3',6-Trichlo robiphenyl		PCB45	2,2',3,6-Tetrac hlorobiphenyl	
PCB10	2,6-Dichlorobi phenyl	J.	PCB28	2,4,4'-Trichlo robiphenyl		PCB46	2,2',3,6'-Tetrac hlorobiphenyl	
PCB11	3,3'-Dichlorob iphenyl	a Coro	PCB29	2,4,5-Trichlor obiphenyl	G G G	PCB47	2,2',4,4'-Tetrac hlorobiphenyl	
PCB12	3,4-Dichlorobi phenyl		PCB30	2,4,6-Trichlor obiphenyl		PCB48	2,2',4,5-Tetrac hlorobiphenyl	CI CI
PCB13	3,4'-Dichlorob iphenyl	a C C C	PCB31	2,4',5-Trichlo robiphenyl		PCB49	2,2',4,5'-Tetrac hlorobiphenyl	
PCB14	3,5-Dichlorobi phenyl		PCB32	2,4',6-Trichlo robiphenyl	CI CI	PCB50	2,2',4,6-Tetrac hlorobiphenyl	
PCB15	4,4'-Dichlorob iphenyl	ci-{}-{}-a	PCB33	2',3,4-Trichlo robiphenyl		PCB51	2,2',4,6'-Tetrac hlorobiphenyl	CI ^{CI} , CI
PCB16	2,2',3-Trichlor obiphenyl	a a a	PCB34	2',3,5-Trichlo robiphenyl		PCB52	2,2',5,5'-Tetrac hlorobiphenyl	CI CI CI CI
PCB17	2,2',4-Trichlor obiphenyl	a CL CI	PCB35	3,3',4-Trichlo robiphenyl	CI CI	PCB53	2,2',5,6'-Tetrac hlorobiphenyl	

Molecules 2018, 23, 2935; doi: 10.3390/molecules23112935

www.mdpi.com/journal/molecules

#	Name	structure	#	Name	structure	#	Name	structure
PCB54	2,2',6,6'-Tetra chlorobiphenyl		PCB73	2,3',5',6-Tetrac hlorobiphenyl		PCB92	2,2',3,5,5'-Penta chlorobiphenyl	e c c c c c c c c c c c c c c c c c c c
PCB55	2,3,3',4-Tetrac hlorobiphenyl		PCB74	2,4,4',5-Tetrach lorobiphenyl	a C C a	PCB93	2,2',3,5,6-Penta chlorobiphenyl	
PCB56	2,3,3',4'-Tetra chlorobiphenyl	$= (1 + 1)^{-1}$	PCB75	2,4,4',6-Tetrach lorobiphenyl		PCB94	2,2',3,5,6'-Penta chlorobiphenyl	
PCB57	2,3,3',5-Tetrac hlorobiphenyl		PCB76	2',3,4,5-Tetrach lorobiphenyl		PCB95	2,2',3,5',6-Penta chlorobiphenyl	
PCB58	2,3,3',5'-Tetra chlorobiphenyl		PCB77	3,3',4,4'-Tetrac hlorobiphenyl		PCB96	2,2',3,6,6'-Penta chlorobiphenyl	
PCB59	2,3,3',6-Tetrac hlorobiphenyl		PCB78	3,3',4,5-Tetrach lorobiphenyl		PCB97	2,2',3',4,5-Penta chlorobiphenyl	$a \rightarrow a \rightarrow a$
PCB60	2,3,4,4'-Tetrac hlorobiphenyl		PCB79	3,3',4,5'-Tetrac hlorobiphenyl	a for the a	PCB98	2,2',3',4,6-Penta chlorobiphenyl	
PCB61	2,3,4,5-Tetrach lorobiphenyl	a G G G G G G G G G G G G G G G G G G G	PCB80	3,3',5,5'-Tetrac hlorobiphenyl		PCB99	2,2',4,4',5-Penta chlorobiphenyl	
PCB62	2,3,4,6-Tetrach lorobiphenyl		PCB81	3,4,4',5-Tetrach lorobiphenyl		PCB100	2,2',4,4',6-Penta chlorobiphenyl	
PCB63	2,3,4',5-Tetrac hlorobiphenyl	CI CI CI	PCB82	2,2',3,3',4-Penta chlorobiphenyl	ւ.	PCB101	2,2',4,5,5'-Penta chlorobiphenyl	
PCB64	2,3,4',6-Tetrac hlorobiphenyl		PCB83	2,2',3,3',5-Penta chlorobiphenyl		PCB102	2,2',4,5,6'-Penta chlorobiphenyl	
PCB65	2,3,5,6-Tetrach lorobiphenyl	, , , ,	PCB84	2,2',3,3',6-Penta chlorobiphenyl		PCB103	2,2',4,5',6-Penta chlorobiphenyl	
PCB66	2,3',4,4'-Tetra chlorobiphenyl		PCB85	2,2',3,4,4'-Penta chlorobiphenyl		PCB104	2,2',4,6,6'-Penta chlorobiphenyl	
PCB67	2,3',4,5-Tetrac hlorobiphenyl	a fina	PCB86	2,2',3,4,5-Penta chlorobiphenyl		PCB105	2,3,3',4,4'-Penta chlorobiphenyl	
PCB68	2,3',4,5'-Tetra chlorobiphenyl		PCB87	2,2',3,4,5'-Penta chlorobiphenyl		PCB106	2,3,3',4,5-Penta chlorobiphenyl	$\overbrace{\underline{O}}_{\underline{O}} \xrightarrow{\underline{O}}_{\underline{O}} \xrightarrow{\underline{O}}_{\underline{O}}$
PCB69	2,3',4,6-Tetrac hlorobiphenyl		PCB88	2,2',3,4,6-Penta chlorobiphenyl		PCB107	2,3,3',4,5'-Penta chlorobiphenyl	
PCB70	2,3',4',5-Tetra chlorobiphenyl		PCB89	2,2',3,4,6'-Penta chlorobiphenyl		PCB108	2,3,3',4,6-Penta chlorobiphenyl	artia
PCB71	2,3',4',6-Tetra chlorobiphenyl		PCB90	2,2',3,4',5-Penta chlorobiphenyl		PCB109	2,3,3',4',5-Penta chlorobiphenyl	
PCB72	2,3',5,5'-Tetra chlorobiphenyl		PCB91	2,2',3,4',6-Penta chlorobiphenyl		PCB110	2,3,3',4',6-Penta chlorobiphenyl	

#	Name	structure	#	Name	structure	#	Name	structure
PCB111	2,3,3',5,5'-Pentac hlorobiphenyl	a f a a	PCB130	2,2',3,3',4,5'-Hexac hlorobiphenyl		PCB149	2,2',3,4',5',6-He xachlorobiphenyl	
PCB112	2,3,3',5,6-Pentach lorobiphenyl	° Å	PCB131	2,2',3,3',4,6-Hexach lorobiphenyl		PCB150	2,2',3,4',6,6'-He xachlorobiphenyl	
PCB113	2,3,3',5',6-Pentac hlorobiphenyl		PCB132	2,2',3,3',4,6'-Hexac hlorobiphenyl		PCB151	2,2',3,5,5',6-Hex achlorobiphenyl	
PCB114	2,3,4,4',5-Pentach lorobiphenyl		PCB133	2,2',3,3',5,5'-Hexac hlorobiphenyl		PCB152	2,2',3,5,6,6'-Hex achlorobiphenyl	
PCB115	2,3,4,4',6-Pentach lorobiphenyl		PCB134	2,2',3,3',5,6-Hexach lorobiphenyl		PCB153	2,2',4,4',5,5'-He xachlorobiphenyl	
PCB116	2,3,4,5,6-Pentachl orobiphenyl		PCB135	2,2',3,3',5,6'-Hexac hlorobiphenyl		PCB154	2,2',4,4',5,6'-He xachlorobiphenyl	a C a
PCB117	2,3,4',5,6-Pentach lorobiphenyl		PCB136	2,2',3,3',6,6'-Hexac hlorobiphenyl		PCB155	2,2',4,4',6,6'-He xachlorobiphenyl	and an a
PCB118	2,3',4,4',5-Pentac hlorobiphenyl		PCB137	2,2',3,4,4',5-Hexach lorobiphenyl		PCB156	2,3,3',4,4',5-Hex achlorobiphenyl	
PCB119	2,3',4,4',6-Pentac hlorobiphenyl		PCB138	2,2',3,4,4',5'-Hexac hlorobiphenyl	artfra Gifta	PCB157	2,3,3',4,4',5'-He xachlorobiphenyl	a fra
PCB120	2,3',4,5,5'-Pentac hlorobiphenyl	C C C	PCB139	2,2',3,4,4',6-Hexach lorobiphenyl		PCB158	2,3,3',4,4',6-Hex achlorobiphenyl	
PCB121	2,3',4,5',6-Pentac hlorobiphenyl		PCB140	2,2',3,4,4',6'-Hexac hlorobiphenyl		PCB159	2,3,3',4,5,5'-Hex achlorobiphenyl	$a \xrightarrow{a} \downarrow \downarrow \downarrow = 0$
PCB122	2',3,3',4,5-Pentac hlorobiphenyl		PCB141	2,2',3,4,5,5'-Hexach lorobiphenyl		PCB160	2,3,3',4,5,6-Hexa chlorobiphenyl	
PCB123	2',3,4,4',5-Pentac hlorobiphenyl	$\overline{o} \longrightarrow \underbrace{b}_{\overline{D}} \longrightarrow \underbrace{b}_{\overline{D}} \xrightarrow{\overline{O}} \overline{o}$	PCB142	2,2',3,4,5,6-Hexachl orobiphenyl	зţ?	PCB161	2,3,3',4,5',6-Hex achlorobiphenyl	
PCB124	2',3,4,5,5'-Pentac hlorobiphenyl		PCB143	2,2',3,4,5,6'-Hexach lorobiphenyl	a a b a b a b a b a b a b a b a b a b a	PCB162	2,3,3',4',5,5'-He xachlorobiphenyl	
PCB125	2',3,4,5,6'-Pentac hlorobiphenyl		PCB144	2,2',3,4,5',6-Hexach lorobiphenyl		PCB163	2,3,3',4',5,6-Hex achlorobiphenyl	
PCB126	3,3',4,4',5-Penta chlorobiphenyl	Solution of the	PCB145	2,2',3,4,6,6'-Hexach lorobiphenyl		PCB164	2,3,3',4',5',6-He xachlorobiphenyl	
PCB127	3,3',4,5,5'-Penta chlorobiphenyl		PCB146	2,2',3,4',5,5'-Hexac hlorobiphenyl	$= \bigcup_{\alpha \in \mathcal{A}} \bigcup$	PCB165	2,3,3',5,5',6-Hex achlorobiphenyl	
PCB128	2,2',3,3',4,4'-Hex achlorobiphenyl		PCB147	2,2',3,4',5,6-Hexach lorobiphenyl		PCB166	2,3,4,4',5,6-Hexa chlorobiphenyl	
PCB129	2,2',3,3',4,5-Hex achlorobiphenyl		PCB148	2,2',3,4',5,6'-Hexac hlorobiphenyl		PCB167	2,3',4,4',5,5'-He xachlorobiphenyl	

#	Name	structure	#	Name	structure	#	Name	structure
PCB168	2,3',4,4',5',6-Hex achlorobiphenyl		CB182	2,2',3,4,4',5,6'-Hept achlorobiphenyl		PCB196	2,2',3,3',4,4',5,6' -Octachlorobiphe nyl	
PCB169	3,3',4,4',5,5'-Hex achlorobiphenyl		PCB183	2,2',3,4,4',5',6-Hept achlorobiphenyl		PCB197	2,2',3,3',4,4',6,6' -Octachlorobiphe nyl	
PCB170	2,2',3,3',4,4',5-He ptachlorobiphenyl		PCB184	2,2',3,4,4',6,6'-Hept achlorobiphenyl		PCB198	2,2',3,3',4,5,5',6- Octachlorobiphe nyl	
PCB171	2,2',3,3',4,4',6-He ptachlorobiphenyl		PCB185	2,2',3,4,5,5',6-Hepta chlorobiphenyl	$c_{\alpha}^{\beta} + c_{\alpha}^{\beta}$	PCB199	2,2',3,3',4,5,5',6' -Octachlorobiphe nyl	
PCB172	2,2',3,3',4,5,5'-He ptachlorobiphenyl		PCB186	2,2',3,4,5,6,6'-Hepta chlorobiphenyl	$\begin{cases} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	PCB200	2,2',3,3',4,5,6,6'- Octachlorobiphe nyl	a + a + a + a + a + a + a + a + a + a +
PCB173	2,2',3,3',4,5,6-He ptachlorobiphenyl	$a \rightarrow a \rightarrow a$	PCB187	2,2',3,4',5,5',6-Hept achlorobiphenyl		PCB201	2,2',3,3',4,5',6,6' -Octachlorobiphe nyl	
PCB174	2,2',3,3',4,5,6'-He ptachlorobiphenyl		PCB188	2,2',3,4',5,6,6'-Hept achlorobiphenyl		PCB202	2,2',3,3',5,5',6,6' -Octachlorobiphe nyl	
PCB175	2,2',3,3',4,5',6-He ptachlorobiphenyl		PCB189	2,3,3',4,4',5,5'-Hept achlorobiphenyl		PCB203	2,2',3,4,4',5,5',6- Octachlorobiphe nyl	
PCB176	2,2',3,3',4,6,6'-He ptachlorobiphenyl		PCB190	2,3,3',4,4',5,6-Hepta chlorobiphenyl	$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	PCB204	2,2',3,4,4',5,6,6'- Octachlorobiphe nyl	$a \rightarrow c^{\alpha} \rightarrow c^{\alpha}$
PCB177	2,2',3,3',4',5,6-He ptachlorobiphenyl		PCB191	2,3,3',4,4',5',6-Hept achlorobiphenyl	$\begin{array}{c} c_{1} \\ c_{2} \\ c_{1} \\ c_{2} \\ c_{1} \\ c_{2} \\ c_{1} \end{array}$	PCB205	2,3,3',4,4',5,5',6- Octachlorobiphe nyl	
PCB178	2,2',3,3',5,5',6-He ptachlorobiphenyl		PCB192	2,3,3',4,5,5',6-Hepta chlorobiphenyl	$\begin{array}{c} \overline{} \\ \overline{} } \\ \overline{} } \\ \overline{} } \\ \phantom$	PCB206	2,2',3,3',4,4',5,5' ,6-Nonachlorobip henyl	$c \rightarrow c \rightarrow c$
PCB179	2,2',3,3',5,6,6'-He ptachlorobiphenyl		PCB193	2,3,3',4',5,5',6-Hept achlorobiphenyl		PCB207	2,2',3,3',4,4',5,6, 6'-Nonachlorobi phenyl	
PCB180	2,2',3,4,4',5,5'-He ptachlorobiphenyl		PCB194	2,2',3,3',4,4',5,5'-O ctachlorobiphenyl		PCB208	2,2',3,3',4,5,5',6, 6'-Nonachlorobi phenyl	
PCB181	2,2',3,4,4',5,6-He ptachlorobiphenyl		PCB195	2,2',3,3',4,4',5,6-Oct achlorobiphenyl		PCB209	2,2',3,3',4,4',5,5' ,6,6'-Decachloro biphenyl	

Table S4: The structure of PCDDs.

			i ubie 0.	I The Structure	011 CDD3.			
#	Name	structure	#	Name	structure	#	Name	structure
Dibenzo- 1,4-dioxi n	Dibenzo-1,4-dio xin		PCDD18	1,2,9-Trichlorodib enzodioxin		PCDD36	1,2,6,7-Tetrachlor odibenzo-p-dioxin	
PCDD1	1-Chlorodibenzo -p-dioxin		PCDD19	1,3,6-Trichlorodib enzodioxin		PCDD37	1,2,6,8-Tetrachlor odibenzo-p-dioxin	
PCDD2	2-Chlorodibenzo -p-dioxin		PCDD20	1,3,7-Trichlorodib enzodioxin		PCDD38	1,2,6,9-Tetrachlor odibenzo-p-dioxin	$ \bigcup_{CI}^{CI} \bigcup_{$
PCDD3	1,2-Dichlorodibe nzo-p-dioxin	C C C C C	PCDD21	1,3,8-Trichlorodib enzodioxin		PCDD39	1,2,7,8-Tetrachlor odibenzo-p-dioxin	
PCDD4	1,3-Dichlorodibe nzo-p-dioxin	CI CI	PCDD22	1,3,9-Trichlorodib enzodioxin		PCDD40	1,2,7,9-Tetrachlor odibenzodioxin	
PCDD5	1,4-Dichlorodibe nzo-p-dioxin		PCDD23	1,4,6-trichlorodibe nzo-p-dioxin		PCDD41	1,2,8,9-Tetrachlor odibenzo-p-dioxin	
PCDD6	1,6-Dichlorodibe nzo-p-dioxin	ц.	PCDD24	1,4,7-trichlorodibe nzo-p-dioxin		PCDD42	1,3,6,8-Tetrachlor obenzo-p-dioxin	
PCDD7	1,7-Dichlorodibe nzo-p-dioxin		PCDD25	2,3,6-Trichlorodib enzo-p-dioxin		PCDD43	1,3,6,9-Tetrachlor obenzo-p-dioxin	
PCDD8	1,8-Dichlorodibe nzo-p-dioxin		PCDD26	2,3,7-Trichlorodib enzo-p-dioxin	ci Ci o ci ci	PCDD44	1,3,7,8-Tetrachlor obenzo-p-dioxin	
PCDD9	1,9-dichlorodibe nzo-p-dioxin		PCDD27	1,2,3,4-Tetrachlor odibenzo-p-dioxin		PCDD45	1,3,7,9-Tetrachlor odibenzo-p-dioxin	CI CI CI
PCDD10	2,3-Dichlorodibe nzo-p-dioxin		PCDD28	1,2,3,6-Tetrachlor odibenzo-p-dioxin		PCDD46	1,4,6,9-tetrachloro dibenzo-p-dioxin	
PCDD11	2,7-Dichlorodibe nzo-p-dioxin	CI CI	PCDD29	1,2,3,7-Tetrachlor odibenzo-p-dioxin		PCDD47	1,4,7,8-tetrachloro dibenzo-p-dioxin	
PCDD12	2,8-Dichlorodibe nzo-p-dioxin		PCDD30	1,2,3,8-Tetrachlor odibenzo-p-dioxin		PCDD48	2,3,7,8-tetrachloro dibenzo-p-dioxin	
PCDD13	1,2,3-Trichlorod ibenzo-p-dioxin		PCDD31	1,2,3,9-Tetrachlor odibenzo-p-dioxin		PCDD49	Pentachlorodibenz o-p-dioxin	
PCDD14	1,2,4-Trichlorod ibenzo-p-dioxin		PCDD32	1,2,4,6-Tetrachlor odibenzo-p-dioxin		PCDD50	1,2,3,4,7-Pentachl orodibenzo-p-diox in	
PCDD15	1,2,6-Trichlorod ibenzodioxin;		PCDD33	1,2,4,7-Tetrachlor odibenzo-p-dioxin		PCDD51	1,2,3,6,7-Pentachl orodibenzo-p-diox in	
PCDD16	1,2,7-trichlorodi benzo-p-dioxin		PCDD34	1,2,4,8-Tetrachlor odibenzodioxin		PCDD52	1,2,3,6,8-Pentachl orodibenzo-p-diox in	

PCDD17	1,2,8-Trichlorod ibenzodioxin		PCDD3	1,2,4,9-Tetrachlo odibenzodioxin		PCDDS	1,2,3,6,9-Pentach orodibenzo-p-dic in	$ \begin{array}{c} \text{al} \\ \text{bx} \\ \text{c} \\ \text{c} \\ \text{c} \end{array} \end{array} $
			1		1			
#	Name	structure	#	Name	structure	#	Name	structure
PCDD54	1,2,3,7,8-Pent achlorodiben zo-p-dioxin		PCDD62	1,2,4,8,9-Pentachlo rodibenzo-p-dioxin		PCDD70	1,2,3,7,8,9-Hexac hlorodibenzo-p-di oxin	
PCDD55	1,2,3,7,9-Pent achlorodiben zo-p-dioxin		PCDD63	1,2,3,4,6,7-Hexachl orodibenzo-p-dioxi n		PCDD71	1,2,4,6,7,9-Hexac hlorodibenzo-p-di oxin	
PCDD56	1,2,3,8,9-Pent achlorodiben zo-p-dioxin	CI CI CI CI	PCDD64	1,2,3,4,6,8-Hexachl orodibenzo-p-dioxi n		PCDD72	1,2,4,6,8,9-Hexac hlorodibenzo-p-di oxin	
PCDD57	1,2,4,6,7-Pent achlorodiben zodioxin		PCDD65	1,2,3,4,6,9-Hexachl orodibenzo-p-dioxi n	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\$	PCDD73	1,2,3,4,6,7,8-Hept achlorodibenzo-p- dioxin	
PCDD58	1,2,4,6,8-Pent achlorodiben zo-p-dioxin		PCDD66	1,2,3,4,7,8-Hexachl orodibenzo-p-dioxi n		PCDD74	1,2,3,4,6,7,9-Hept achlorodibenzo-p- dioxin	
PCDD59	1,2,4,6,9-Pent achlorodiben zo-p-dioxin		PCDD67	1,2,3,6,7,8-Hexachl orodibenzo-p-dioxi n		PCDD75	1,2,3,4,6,7,8,9-Oct achlorodibenzo-p- dioxin	
PCDD60	1,2,4,7,8-Pent achlorodiben zo-p-dioxin		PCDD68	1,2,3,6,7,9-Hexachl orodibenzo-p-dioxi n				
PCDD61	1,2,4,7,9-Pent achlorodiben zo-p-dioxin		PCDD69	1,2,3,6,8,9-hexachl orodibenzo-p-dioxi n				

#	Name	structure	#	Name	structure	#	Name	structure
naphthal ene	naphthalene	$2 \underbrace{\begin{array}{c} 1 \\ 3 \\ 3 \\ 4 \\ 4 \\ 5 \end{array}}^{1} \underbrace{\begin{array}{c} 8 \\ 6 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 6$	PCN17	1,2,7-Trichlorona phthalene	a ga	PCN34	1,2,4,7-Tetrachlor onaphthalene	CI CI
PCN1	1-Chloronaph thalene	ŝ	PCN18	1,2,8-Trichlorona phthalene		PCN35	1,2,4,8-Tetrachlor onaphthalene	
PCN2	2-Chloronaph thalene		PCN19	1,3,5-Trichlorona phthalene		PCN36	1,2,5,6-Tetrachlor onaphthalene	
PCN3	1,2-Dichloron aphthalene	G a	PCN20	1,3,6-Trichlorona phthalene		PCN37	1,2,5,7-Tetrachlor onaphthalene	
PCN4	1,3-Dichloron aphthalene		PCN21	1,3,7-Trichlorona phthalene	C. CI	PCN38	1,2,5,8-Tetrachlor onaphthalene	
PCN5	1,4-Dichloron aphthalene	c	PCN22	1,3,8-Trichlorona phthalene		PCN39	1,2,6,7-Tetrachlor onaphthalene	
PCN6	1,5-Dichloron aphthalene	α ↓ ↓ σ	PCN23	1,4,5-Trichlorona phthalene		PCN40	1,2,6,8-Tetrachlor onaphthalene	
PCN7	1,6-Dichloron aphthalene		PCN24	1,4,6-Trichlorona phthalene		PCN41	1,2,7,8-Tetrachlor onaphthalene	CI CI CI
PCN8	1,7-Dichloron aphthalene	a	PCN25	1,6,7-Trichlorona phthalene		PCN42	1,3,5,7-Tetrachlor onaphthalene	
PCN9	1,8-Dichloron aphthalene	CI	PCN26	2,3,6-Trichlorona phthalene	GI-CI-CI	PCN43	1,3,5,8-Tetrachlor onaphthalene	
PCN10	2,3-Dichloron aphthalene	CI	PCN27	1,2,3,4-Tetrachlor onaphthalene		PCN44	1,3,6,7-Tetrachlor onaphthalene	a di di
PCN11	2,6-Dichloron aphthalene		PCN28	1,2,3,5-Tetrachlor onaphthalene		PCN45	1,3,6,8-Tetrachlor onaphthalene	ci ci ci ci
PCN12	2,7-Dichloron aphthalene		PCN29	1,2,3,6-Tetrachlor onaphthalene		PCN46	1,4,5,8-Tetrachlor onaphthalene	a a a a a a a
PCN13	trichloro-Nap hthalene		PCN30	1,2,3,7-Tetrachlor onaphthalene	CI CI CI CI	PCN47	1,4,6,7-Tetrachlor onaphthalene	
PCN14	1,2,4-Trichlor onaphthalene	G G G G	PCN31	1,2,3,8-Tetrachlor onaphthalene		PCN48	2,3,6,7-Tetrachlor onaphthalene	
PCN15	1,2,5-Trichlor onaphthalene		PCN32	1,2,4,5-Tetrachlor onaphthalene	CI	PCN49	1,2,3,4,5-pentachl oronaphthalene	
PCN16	1,2,6-Trichlor onaphthalene		PCN33	1,2,4,6-Tetrachlor onaphthalene		PCN50	1,2,3,4,6-pentachl oronaphthalene	

#	Name	structure	#	Name	structure	#	Name	structure
PCN51	1,2,3,5,6-Pent achloronapht halene		PCN60	1,2,4,6,7-Pentachlo ronaphthalene		PCN69	1,2,3,5,7,8-Hexac hloronaphthalene	
PCN52	1,2,3,5,7-Pent achloronapht halene	$a \rightarrow a \rightarrow a$	PCN61	1,2,4,6,8-Pentachlo ronaphthalene		PCN70	1,2,3,6,7,8-Hexac hloronaphthalene	
PCN53	1,2,3,5,8-Pent achloronapht halene		PCN62	1,2,4,7,8-Pentachlo ronaphthalene		PCN71	Naphthalene,1,2,4, 5,6,7-hexachloro-	
PCN54	1,2,3,6,7-Pent achloronapht halene		PCN63	1,2,3,4,5,6-Hexachl oronaphthalene		PCN72	1,2,4,5,7,8-Hexac hloronaphthalene	
PCN55	1,2,3,6,8-Pent achloronapht halene	CI CI CI	PCN64	1,2,3,4,5,7-Hexachl oronaphthalene		PCN73	1,2,3,4,5,6,7-Hept achloronaphthalen e	
PCN56	1,2,3,7,8-Pent achloronapht halene		PCN65	1,2,3,4,5,8-Hexachl oronaphthalene		PCN74	1,2,3,4,5,6,8-Hept achloronaphthalen e	
PCN57	1,2,4,5,6-Pent achloronapht halene		PCN66	1,2,3,4,6,7-Hexachl oronaphthalene		PCN75	1,2,3,4,5,6,7,8-Oct achloronaphthalen e	
PCN58	1,2,4,5,7-Pent achloronapht halene		PCN67	1,2,3,5,6,7-Hexachl oronaphthalene				
PCN59	1,2,4,5,8-Pent achloronapht halene		PCN68	1,2,3,5,6,8-Hexachl oronaphthalene				

Table S6: Comparison of lnk values of •OH oxidation of PCBs congeners (test set compounds) between observed and predicted values.

PCB conger	Nm_cl	observed lnk ª	predicted lnk	Δlnk	PCB conger	Nm_cl	observed ln <i>k</i> ª	predicted lnk	Δlnk
PCB0	0	-25.61	-25.86	0.253	PCB13	1	-26.89	-27.00	0.111
PCB 1	0	-26.60	-26.29	-0.306	PCB14	2	-26.57	-26.93	0.361
PCB2	1	-26.02	-26.44	0.416	PCB15	0	-27.10	-27.10	-0.002
PCB3	0	-26.30	-26.52	0.226	PCB20	2	-27.37	-27.22	-0.149
PCB4	0	-26.85	-26.57	-0.287	PCB28	0	-27.54	-27.41	-0.129
PCB5	1	-27.04	-26.75	-0.294	PCB29	1	-27.37	-27.34	-0.033
PCB6	1	-26.68	-26.76	0.082	PCB31	1	-27.41	-27.34	-0.070
PCB7	0	-26.71	-26.85	0.133	PCB33	1	-27.63	-27.29	-0.338
PCB8	0	-27.18	-26.83	-0.347	PCB44	2	-27.77	-27.53	-0.249
PCB9	1	-27.04	-26.79	-0.249	PCB47	0	-27.48	-27.64	0.166
PCB10	0	-27.04	-26.61	-0.430	PCB95	2	-27.99	-27.93	-0.059
PCB11	2	-26.64	-26.90	0.265	PCB110	2	-28.14	-28.08	-0.066
PCB12	1	-27.04	-26.99	-0.056	PCB116	2	-27.74	-28.12	0.381

a. The observed lnk values obtained from Anderson [7], Atkinson[8, 9] and Kwok [10] studies.

Table S7: Comparison of log*K*ow and log*S*w of PCDDs (test set compounds) between observed and predicted values.

PCDD	$N_{ m m_cl}$	observed	predicted	Alack	observed	predicted	Alase
conger		logKow ^a	logKow	Alogrow	logSw ^b	logSw	Δ-10g5 _w
PCDD0	0	4.30	4.46	-0.157	-5.34	-4.78	-0.558
PCDD1	0	5.05	4.79	0.259	-5.72	-5.47	-0.247
PCDD2	1	5.00	4.84	0.156	-5.90	-5.58	-0.317
PCDD10	2	5.60	5.24	0.360	-7.23	-6.40	-0.827
PCDD11	2	5.75	5.24	0.510	-7.83	-6.40	-1.427
PBDD12	2	5.60	5.24	0.360	-7.18	-6.40	-0.777
PCDD14	1	6.35	5.53	0.824	-7.53	-6.99	-0.534
PCDD27	2	6.48	5.92	0.558 -8.71		-7.82	-0.894
PCDD29	3	6.48	5.99	0.492	-8.88	-7.95	-0.927
PCDD33	2	6.20	5.92	5.92 0.278 /		/	/
PCDD42	2	6.29	5.92	0.368	-9.00	-7.82	-1.184
PCDD48	4	6.42	6.05	0.365 -9.01		-8.09	-0.919
PCDD50	3	6.64	6.33	0.311	-9.48	-8.66	-0.821
PCDD54	4	6.60	6.40	0.205	/	/	/
PCDD66	4	7.80	6.74	1.064	-10.95	-9.50	-1.448
PCDD73	4	8.00	7.08	0.924	-11.25	-10.20	-1.042
PCDD75	4	8.20	7.42	0.783	-12.79	-10.91	-1.877
		$\overline{\Delta log K_{ow}}$		0.451	$\overline{\Delta}$ -lo	-0.920	

a. The observed logKow values obtained from [11, 12]; b. The observed logSw values obtained from [13]

Table S8: The fitted linear equations of $\sum \sigma_{o, m, p}^+$ with $Q_{xx/yy/zz}$, α and E_{HOMO} for PCDDs congeners.

#	$\sum \sigma_{o, m, p}^{+}$ range	$Q_{\rm xx} = \mathbf{A} \times \sum \sigma_{\rm o, m, p}^+ + \mathbf{B}$			$Q_{yy} = \mathbf{A} \times \sum \sigma_{o, m, p}^{+} + \mathbf{B}$			$Q_{zz} = \mathbf{A} \times \Sigma \sigma_{0, \mathbf{m}, \mathbf{p}}^{+} + \mathbf{B}$		
		Α	В	R ²	Α	В	R ²	Α	В	R ²
$N_{\mathrm{m-Cl}} = 0$	0~0.29	-151.43	-74.87	0.712	-232.70	-66.96	0.848	-161.95	-82.22	0.778
$N_{\text{m-Cl}}=1$	0.4~0.69	-157.11	-26.70	0.868	-225.69	7.46	0.957	-162.95	-31.75	0.999
$N_{\text{m-Cl}}=2$	0.8~1.09	-158.43	17.68	0.778	-201.56	61.44	0.878	-169.24	27.44	0.958
$N_{\text{m-Cl}}=3$	1.2~1.49	-126.98	16.30	0.969	-223.37	159.27	0.977	-161.87	73.73	0.999
$N_{m-Cl}=4$	1.6~2.89	-117.85	39.84	0.513	-217.60	219.15	0.820	-161.88	124.10	0.825
#	$\sum \sigma_{o, m, p}^{+}$		$\alpha = \mathbf{A} \times \Sigma \boldsymbol{\sigma}$		${}^{+}_{0, m, p} + B$		$E_{\text{HOMO}} = \mathbf{A} \times \sum \sigma_{0, \text{ m, p}}^{+} + \mathbf{B}$			
	range		Α	В		R ²	В	A	4	R ²
$N_{\text{m-Cl}}=0$	0~0.29		137.38	121.56		0.999	-3.	38	-5.63	0.999
$N_{\text{m-Cl}}=1$	0.4~0.69		140.41	76	.96	0.998	-3.	01	-4.68	0.992
$N_{\text{m-Cl}}=2$	0.8~	-1.09	140.49	32	.56	0.998	-2.	68	-3.97	0.982
$N_{\text{m-Cl}}=3$	1.2~	-1.49	140.26	-1	1.17	0.999	-2	40	-3.43	0.989
$N_{\text{m-Cl}}=4$	1.6~	-2.89	140.23	-55	5.05	0.999	-2.	14	-3.06	0.999

Table S9: The fitted linear equations of $\sum \sigma_{o, m, p}^+$ with $Q_{xx/yy/zz}$, α and E_{HOMO} for PCNs congeners.

#	$\sum \sigma_{o, m, p}^+$ range	$Q_{\rm xx} = \mathbf{A} \times \sum \sigma_{\rm o, m, p}^+ + \mathbf{B}$		$Q_{yy} = \mathbf{A} \times \sum \sigma_{o, m, p}^{+} + \mathbf{B}$		$Q_{zz} = \mathbf{A} \times \sum \sigma_{\mathbf{o}, \mathbf{m}, \mathbf{p}}^{+} + \mathbf{B}$				
		А	В	R ²			А	В	R ²	
$N_{\mathrm{m-Cl}} = 0$	0~0.29	-240.02	-49.66	0.987	-216.10	-45.02	0.887	-162.41	-63.93	0.998
$N_{\text{m-Cl}}=1$	0.4~0.69	-219.32	24.56	0.950	-182.29	10.34	0.941	-162.11	-10.85	0.999
$N_{\text{m-Cl}}=2$	0.8~1.09	-164.29	42.91	0.883	-205.62	90.70	0.943	-162.10	42.65	0.970
$N_{\text{m-Cl}}=3$	1.2~1.49	-139.30	58.61	0.982	-215.12	171.84	0.970	-162.36	95.65	0.999
$N_{\text{m-Cl}}=4$	1.6~2.89	-114.93	49.67	0.782	-210.79	236.67	0.996	-162.75	149.49	0.997
#	$\sum \sigma_{o, m, p}^{+}$		$\alpha = \mathbf{A} \times \Sigma \sigma$		$r_{0, m, p}^{+} + \mathbf{B}$		$E_{\rm HOMO} = \mathbf{A} \times \sum \sigma_{\rm o, \ m, \ p}^+ \mathbf{B}$		В	
	rai	nge	А]	B	R ²	В	1	A	R ²
$N_{\text{m-Cl}}=0$	0~().29	144.24	94	.35	0.997	-1.	54	-6.33	0.674
$N_{\text{m-Cl}}=1$	0.4~	0.69	146.42	46	.57	0.996	-1.	32	-6.04	0.677
$N_{\text{m-Cl}}=2$	0.8~	-1.09	147.19	-0.	.66	0.995	-0.	97	-6.02	0.576
$N_{\text{m-Cl}}=3$	1.2~	-1.49	146.79	-40	5.67	0.997	-0.	65	-6.24	0.466
$N_{\text{m-Cl}}=4$	1.6~	-2.89	146.54	-92	2.20	0.998	-0.	43	-6.51	0.438

Figure S1: General molecular structures of the PCBs (a), PCDDs (b) and PCNs (c).

Figure S2: The relationship of 16 quantum chemical descriptors and $\sum \sigma_{o, m, p}$ for PCBs congeners.

6

4

0

(a)

3

2

0

(b)

0

-60

2

1

3

0

-60

Figure S3: The relationship of 16 quantum chemical descriptors and $\sum \sigma_{o, m, p}^{-}$ for PCBs congeners.

Figure S4: The relationship of $Q_{yy/zz}$ and $\sum \sigma_{o, m, p}^+$ for PCBs congeners.

Figure S5: The relationship of α and $Q_{yy/zz}$ for PCBs congeners.

Figure S6: The HOMO distribution of a series of PCBs congeners with different $N_{m_{-}Cl}$ numbers at meta position (0–4) and $N_{\circ_{-}Cl}$ at ortho position (0–4) for Cl substitutes. The entire left column referred to our previous study [14].

Figure S7: The relationship of $\sum \sigma_{o, m, p}^+$ and $Q_{xx/yy/zz}$, α and E_{HOMO} for PCDDs congeners. The $\sum \sigma_{o, m, p}^+$ and α referred to our previous study [14].

Figure S8: The relationship of $\sum \sigma_{o, m, p}^+$ and $Q_{xx/yy/zz}$, α and *E*homo for PCNs congeners.

References

- 1. Hansch, C.; Leo, A.; Taft, R., A survey of Hammett substituent constants and resonance and field parameters. *Chem Rev* **1991**, 91, (2), 165-195.
- 2. Hammett, L. P., Some Relations between Reaction Rates and Equilibrium Constants. *Chem Rev* **1935**, 17, (1), 125-136.
- 3. Hansch, C.; Leo, A.; Unger, S. H.; Kim, K. H.; Nikaitani, D.; Lien, E. J., Aromatic substituent constants for structure-activity correlations. *J Med Chem* **1973**, *16*, (11), 1207-1216.
- 4. Lee, Y.; Von Gunten, U., Quantitative structure–activity relationships (QSARs) for the transformation of organic micropollutants during oxidative water treatment. *Water Res* **2012**, *46*, (19), 6177-6195.
- Jonsson, M.; Lind, J.; Eriksen, T. E.; Merényi, G., O–H bond strengths and one-electron reduction potentials of multisubstituted phenols and phenoxyl radicals. Predictions using free energy relationships. *Journal of the Chemical Society, Perkin Transactions* 2 1993, (9), 1567-1568.
- 6. Hansch, C.; Leo, A.; Hoekman, D., *Exploring QSAR: fundamentals and applications in chemistry and biology*. American Chemical Society Washington, DC: 1995; Vol. 557.
- 7. Anderson, P. N.; Hites, R. A., 'OH radical reactions: The major removal pathway for polychlorinated biphenyls from the atmosphere. *Environmental Science and Technology* **1996**, 30, (5), 1756-63.
- 8. Atkinson, R.; Aschmann, S. M.; Pitts, J. N., Kinetics of the reactions of naphthalene and biphenyl with hydroxyl radicals and with ozone at 294±1 K. *Environ Sci Technol* **1984**, 18, (2), 110-113.
- Atkinson, R., Atmospheric chemistry of PCBs, PCDDs and PCDFs. In *Chlorinated organic micropollutants: Issues in environment science and technology*, Mester, R. E., Harrison, R.M., Ed. Royal Society of Chemistry: Cambridge, 1996; Vol. 6, pp 53-72.
- Kwok, E. S.; Atkinson, R.; Arey, J., Rate constants for the gas-phase reactions of the OH radical with dichlorobiphenyls, 1-chlorodibenzo-*p*-dioxin, 1,2-dimethoxybenzene, and diphenyl ether: Estimation of ·OH radical reaction rate constants for PCBs, PCDDs, and PCDFs. *Environ Sci Technol* 1995, 29, (6), 1591-8.
- Huang, J.; Yu, G.; Zhang, Z.-l., Application of TLSER method in predicting the aqueous solubility and n-octanol/water partition coefficient of PCBs, PCDDs and PCDFs. *Journal of Environmental Sciences* 2004, 16, (1), 21-29.
- Yang, G. Y.; Yu, J.; Wang, Z. Y.; Zeng, X. L.; Ju, X. H., QSPR Study on the Aqueous Solubility (- lgSw) and n-Octanol/Water Partition Coefficients (lgKow) of Polychlorinated Dibenzo-p-dioxins (PCDDs). *QSAR Comb Sci* 2007, 26, (3), 352-357.
- Kim, M.; Li, L. Y.; Grace, J. R., Predictability of physicochemical properties of polychlorinated dibenzo-*p*-dioxins (PCDDs) based on single-molecular descriptor models. *Environ. Pollut.* 2016, 213, 99-111.
- 14. Luo, S.; Wei, Z.; Spinney, R.; Yang, Z.; Chai, L.; Xiao, R., A novel model to predict gas–phase hydroxyl radical oxidation kinetics of polychlorinated compounds. *Chemosphere* **2017**, 172, 333-340.

Sample Availability: Samples of the compounds are available from the authors.

© 2018 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).