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Abstract: A high performance liquid chromatography (HPLC) method was developed for the
simultaneous isolation, on a semi-preparative scale, of chavibetol and methyleugenol from the
crude essential oil of P. pseudocaryophyllus leaves. The purity of the isolated compounds and their
quantifications were developed using GC/FID. Chavibetol was isolated with high purity (98.7%) and
mass recovery (94.6%). The mass recovery (86.4%) and purity (85.3%) of methyleugenol were lower
than those of chavibetol. Both compounds were identified on the basis of spectral analysis. The results
suggest that the method can provide chavibetol with high purity, mass recovery, and productivity
from crude essential, which will be used in bioassays against stored insect pests.
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1. Introduction

Pimenta pseudocaryophyllus (Gomes) L.R. Landrum, popularly known as “cataia” or “craveiro”,
is a native Myrtaceae in Brazil with great abundance in the Atlantic Forest and Cerrado biomes [1].
In Brazil, its leaves are commonly used in the treatment of influenza and fatigue, and as a diuretic
and flavoring agent. Ethnopharmacological studies indicate that this species is a promising source of
several important metabolites [2,3]. Pharmacological and biological activities of different species in the
genus have been described, including potent antibacterial action [4–6], antifungal [7], anticonceptive,
and anti-inflammatory properties [8].

Species of Pimenta are sources of the essential oil, which is biosynthesized in the specialized cells
of aromatic plants. These species contain secondary metabolites with strong biological activities [9],
including insecticidal action (knockdown effect), repellency, feeding, and oviposition deterrence and
development inhibition [10]. The essential oil from leaves of P. pseudocaryophylus extracted in this
study contained phenylpropanoids chavibetol (5-allyl-2-methoxyphenol, Figure 1) and methyleugenol
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(4-allyl-1,2-dimethoxybenzene, Figure 1) as major components. Chavibetol and other phenylpropanoid
compounds are reported as fungicides [11], protecting photosensitization-mediated lipid peroxidation
(LPO) of rat liver mitochondria [12] and antioxidants [13].
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Figure 1. Chemical structures of chavibetol, eugenol, and methyleugenol.

We previously detected insecticidal activity in the essential oil from the leaves of
P. pseudocaryophylus against Sitophilus zeamais (Coleoptera: Curculionidade), the main insect pest
of stored corn [14]. The activity of commercial standard methyleugenol was comparable to that of
crude essential oil. However, unfortunately, chavibetol, the main constituent of the oil, is not available
commercially. Thus, the purpose of this work was to develop a rapid and sensitive high performance
liquid chromatography (HPLC) method for the isolation of chavibetol for further investigation as
a potential insecticidal agent. In this regard, while earlier publication described a counter-current
chromatography (CCC) method for the isolation of chavibetol from crude essential oil [15], there
are no papers published for obtaining of this phenylpropanoid and methyleugenol by HPLC, which
is still uncommon. Recently, a semi-preparative reversed-phase HPLC method was reported and
shown to be viable and satisfactory for the separation and isolation of carvone from the essential oil of
Mentha spicata L. [16].

Natural product chemistry using classical methods, for example, open-column chromatography [17],
preparative thin-layer chromatography [18], and solvent extraction [17], often produces large amounts
of toxic waste, including chlorinated solvents, carcinogens, and environmental contaminants. Methods
of isolation developed by HPLC can decrease these undesirable effects, and allow the isolation of large
quantities of natural products with high purity in a shorter time; however, this technique is rarely used
from crude samples. This approach can be considered a green method, because it can eliminate sample
preparation, which is often necessary to isolate chemical compounds, and decreases or eliminate the
use of toxic solvents [19,20].

Therefore, HPLC was employed to develop a new method for the isolation of chavibetol and
methyleugenol from crude essential oil of P. pseudocaryophyllus leaves. This study was also focused
on the isolation of chavibetol in high purity, mass recovery, and productivity, which was identified
on the basis of spectral analysis such as 1H and 13C-NMR, and GC/MS. The purity of the isolated
compounds and their quantification were developed using GC/FID.

2. Results and Discussion

2.1. Isolation and Purity of Chavibetol and Methyleugenol

The HPLC analysis of crude essential oil obtained from P. pseudocaryophyllus leaves in analytical
mode were optimized with different rates of mobile phase using hexane:ethanol (chromatograms
not shown). The best chromatographic resolution was achieved using an isocratic solvent system,
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hexane:ethanol (92:8) (Figure 2A). Preliminary analysis of the essential oil by 1H-NMR showed the
presence of eugenol, methyleugenol, and chavibetol, and structural identification of the first two
was also supported by comparison with those spectra of commercial standards. The 1H-NMR of
essential oil also showed higher concentrations (integration area) of chavibetol in comparison with
other compounds in this matrix.

1 
 

 

 
 

A 

B 

1 

2 

2 

1 

Figure 2. Chromatogram of crude essential oil from the P. pseudocaryophyllus leaves obtained from
HPLC in analytical (A) and semi-preparative scale (B). Peak 1 (methyleugenol) and peak 2 (chavibetol).

Based on the analytical conditions, the scaling of the flow rate to be used in semi-preparative
analysis mode was performed, obtaining a flow rate of 6 mL/min using Equation (1), where S =
scaling factor; Rα = diameter of analytical column; Rp = diameter of preparative column; Lα = length
of analytical column; Lp = length of preparative column.

S =
R 2

p ·Lp

R 2
a ·La

(1)
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The semi-preparative scale in the normal elution mode allowed us to isolate 102.7 mg of chavibetol
(fraction represented by peak 2 with retention time 6.1 min) and 27.9 mg of methyleugenol (fraction
represented by peak 1 with retention time 3.0 min) (Figure 2B) (Table 1) after 11 injections of 130 µL of
the crude essential oil from P. pseudocaryophyllus leaves at concentration of 143 mg/mL.

Area percentages (calculated by calibration curve) of chavibetol and methyleugenol in essential
oil was 51.7% and 15.4%, respectively. The purity of isolated compounds was determined by GC/FID
in triplicate after joint and evaporation of collected fractions. The purity of chavibetol was 98.7%
(Figure 3) and of methyleugenol was 85.3% (Figure 4).Molecules 2018, 23, x FOR PEER REVIEW  4 of 9 
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Figure 3. GC/FID chromatogram from the isolated fraction containing chavibetol (peak 2, 98.7%).
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Figure 4. GC/FID chromatogram from the isolated fraction containing methyleugenol (peak 9, 85.3%).

As shown in Table 1, the method allows the isolation of chavibetol in high purity and mass
recovery (yield), as well as excellent productivity (amount of material collected per unit time) and low
solvent consumption per mass isolated, showing that HPLC is an excellent technique to isolate this
compound on a semi-preparative scale. Methyleugenol was isolated with lower purity than chavibetol,
but with good mass recovery, productivity, and moderate consumption of solvent per isolated mass
(Table 1).

Table 1. Summary of the results for the isolation of chavibetol and methyleugenol by HPLC.

Parameter Chavibetol Methyleugenol

Isolated mass (mg) 102.7 27.9
Purity (%) 98.7 85.3

Mass recovery (%) 94.6 86.4
Processing time 11 injections: 1.5 h 11 injections: 1.5 h

Solvent consumption (mL) 528 528
Productivity (mg/h) 68.5 18.6

Solvent consumption/isolated mass (mL/mg) 5.1 18.9
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2.2. Characterization of Chavibetol and Methyleugenol

The GC/MS analysis of the fraction containing chavibetol showed molecular ion at m/z 164
(Figure 5). The retention index calculated (1367) is consistent with that reported by dos Santos et al. [15]
(1372) and Pino et al. [21] (1374). Analysis by 1H-NMR showed the spectral information described in
Table 2. These data also are consistent with those previously published by dos Santos et al. [15] and
Momin et al. [22].
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Table 2. 1H (400 MHz, CDCl3) and 13C-NMR (100 MHz, CDCl3) data of methyleugenol and chavibetol.

Position
Methyleugenol Chavibetol

1H-NMR 13C-NMR 1H-NMR 13C-NMR

1 - 132.6 - 133.4
2 6.72 (d, 1H, J = 2.0 Hz) 111.2 6.79 (d, 1H, J = 2.1 Hz) 114.8
3 - 147.4 - 144.9
4 - 148.9 - 145.5
5 6.81 (d, 1H, J = 7.9 Hz) 120.4 6.80 (d, 1H, J = 8.2 Hz) 119.8
6 6.73 (dd, 1H, J = 7.9 and 2.0 Hz) 111.8 6.68 (dd, 1H, J = 8.2 and 2.1 Hz) 110.6
7 3.35 (dl, 2H, J = 6.9 Hz) 39.8 3.30 (d, 2H, J = 6.7 Hz) 39.6
8 5.97 (tdd, 1H, J = 12.0, 10.0 and 6.9 Hz) 137.7 5.95 (m, 1H) 137.6
9 5.07 (m, 2H) 115.6 5.07 (m, 2H) 115.5

3-OCH3 3.88 55.9 - -
4-OCH3 3.87 55.8 3.88 (s, 3H, –OCH3) 56.0

OH - - 5.60 (s, 1H, –OH) -

Mass spectrum of fraction containing methyleugenol (Figure 6) and retention time were identical
to standard (Sigma-Aldrich, St. Louis, MO, USA). The retention index calculated (1398) is also
consistent with that reported by Adams, 2007 (1403). Analyses by 1H-NMR described in Table 2 are
supported by the data published by Meepagala et al. [23].
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3. Materials and Methods

3.1. Chemicals and Material

Standards eugenol (Figure 1) and methyleugenol were purchased from Sigma-Aldrich (St. Louis,
MO, USA). Ethanol, hexane, and ethyl acetate was used in HPLC grade purchased from Panreac
(Barcelona, Spain). Deuterated chloroform used in NMR analyses was obtained from Cambridge
Isotope Laboratories, Inc. (Andover, MA, USA).

3.2. Plant Material and Essential Oils Extraction

The leaves of P. pseudocaryophyllus used in this study were collected on 26 June 2011, from samples
cultivated in District Caiçara de Pedrinhas, city of Ilha Comprida, São Paulo State, Brazil (24◦54′09.2”
S; 47◦47′10.8” W; height: 31 m). A voucher specimen, previously identified by Professor Dr. João
Vicente Coffani Nunes (UNESP, Campus Registro) is deposited at ESA herbarium of the Department
of Biological Sciences, Luiz de Queiroz College of Agriculture/University of São Paulo (ESALQ/USP)
in Piracicaba, São Paulo State, Brazil, under registration No. 121119. After collection, the leaves were
separated from other structures and were used in fresh form for essential oil extraction.

Fresh leaves were separated in samples of 100 g each, washed in water, cut into small pieces to
optimize extraction by increasing contact surface, and subjected to hydrodistillation using a Clevenger
type apparatus for 2 h at 110 ◦C. The mixture of water and oil (hydrolate) was separated by decantation
and dried by adding anhydrous sodium sulfate (Na2SO4). The extraction yield was 0.81%, determined
based on the fresh weight of the plant material (g of oil/g of fresh leaves). The essential oil obtained
was stored in a domestic refrigerator (c.a. −10 ◦C) until analysis.

3.3. HPLC Analysis and Isolation

The HPLC analysis and isolation were performed on a HPLC Shimadzu (Kyoto, Japan) composed
of an LC-6AD pump, an SPD-10AV VP UV-Vis detector, an SCL-10 VP system controller with
an analytical flow cell or a preparative flow cell according to the HPLC mode (analytical or
semi-preparative) and a loop of 200 µL.

Analytical conditions were optimized with different proportions of hexane/ethanol (10:90, 70:30
and 92:8) using a Phenomenex Luna amino column (4.6 mm × 150 mm, 10 µm) with flow rate
1 mL/min, 10 µL of injection and detection at 230 nm. Optimal analytical chromatography was carried
out under isocratic conditions with the mobile phase constituted of hexane:ethanol (92:8) at flow rate
1.0 mL/min using a Phenomenex Luna amino column (4.6 mm × 150 mm, 10 µm) and detection at
230 nm.

Compound isolations were carried out by the semi-preparative condition on the same HPLC
equipment with a Phenomenex Luna amino column (10 mm × 250 mm, 10 µm) with flow rate
6.0 mL/min under the same mobile phase and detection of analytical conditions. For the analytical
conditions, crude essential oils were diluted in hexane:ethanol (92:8) at a concentration of 1 mg/mL,
and 10 µL was injected. For the semi-preparative conditions, 210 mg of crude essential oil was diluted
in hexane:ethanol (92:8) at a concentration of 143 mg/mL and 130 µL was injected. The fraction solvent
obtained was evaporated under a vacuum and the purity of isolated compounds was determined by
GC/FID and characterized by GC/MS and NMR.

3.4. GC/MS Analysis

The qualitative analysis of essential oil constituents was performed using a gas chromatograph
17A (Shimadzu Corporation, Kyoto, Japan) hyphenated to a mass spectrometer (GC/MS) QP5000.
The following conditions were used: fused-silica capillary column DB-5MS with 30 m × 0.25 mm
ID × 0.25 µm thick film, flow of 1.2 mL/min of helium as carrier gas (99.999%); 1.0 µL of injection
volume in ethyl acetate; split ratio of 1:12; injector temperature of 250 ◦C; detector temperature of
280 ◦C. Temperature was set at 50 ◦C for 1.5 min, followed by 4 ◦C/min to 200 ◦C, then 10 ◦C to



Molecules 2018, 23, 2909 7 of 10

250 ◦C finishing with isotherm of 5 min at 250 ◦C. Mass spectrum was conducted at 70 eV with a rapid
scan of 0.5 scan/s in the mass range 45–500 Da. Volatile components were identified by comparison
of their mass spectra with spectra reported in the literature [24], as well with equipment database
spectra (NIST11, WILEY8, NIST05, NIST21 and NIST107), comparing their retention indices with
those in the literature. Retention indices (RI) were determined using a homologous series of n-alkanes
(C9H20–C20H42) injected under the same chromatographic conditions of the samples using the equation
proposed by Van den Dool and Kratz [25].

3.5. Purity Analysis of the Isolated Compound and Quantification by GC/FID Analysis

Purities of chavibetol and methyleugenol were performed on GC/FID 17A after injection of
0.1 mg/mL of each compound in triplicate and estimated by normalization of peak areas (%).

Quantification of chavibetol and methyleugenol in the essential oil was carried out by internal
standardization as follows: A stock solution of chavibetol (15 mg/mL) and methyleugenol (15 mg/mL)
isolated were prepared in ethyl acetate. Each solution was diluted to 2.4, 1.8, 1.2, and 0.6,
and 0.15 mg/mL and 1 mg/mL of thymol was added as internal standard. The calibration curve
was constructed using linear regression, and the R2 coefficients of 0.99 were obtained. A solution
of 1.4 mg/mL of the essential oil and 1 mg/mL of thymol in ethyl acetate was injected to calculate
the mass percent of chavibetol and methyleugenol in the essential oil by means of ratios between
concentrations of isolated compounds in the calibration curve and oil concentration.

Essential oil and isolated compounds were injected using the same chromatographic conditions
of GC/MS (Section 3.4), but using a DB-1 column 30 m × 0.25 mm ID × 0.25 µm thick film and using
N2 as carrier gas.

3.6. NMR Analysis

NMR spectra of chavibetol and methyleugenol were performed on a Bruker Avance III
spectrometer (Bruker, Billerica, MA, USA) of 9.4 Tesla (400 MHz for the frequency of 1H and 100 MHz
for 13C in Norell tubes of 5 mm id). Chemical shifts (δ) were expressed in parts per million (ppm) using
deuterated chloroform (CDCl3, 7.3 ppm) and tetramethylsilane (TMS, 0 ppm) as reference standard for
1H-NMR and chloroform (77.0 ppm) for 13C-NMR.

4. Conclusions

The present HPLC method is simple and useful for the simultaneous isolation, on a semi-preparative
scale, of chavibetol and methyleugenol from crude essential oil. In addition, no sample preparation
is required, small amounts of solvent were used, and the time of analysis was reduced compared
to conventional isolation methods such as open column chromatography and preparative thin layer
chromatography. Moreover, evaporation of the mobile phase hexane and ethanol was facilitated
because they are more volatile than the solvents used in reverse-mode elution. This is the first time that
a HPLC method was developed to isolate phenylpropanoids from crude essential oil. Finally, these
results show that chavibetol was obtained in high purity, high mass recovery, and high productivity
from crude essential oil to be used in bioassay against stored insect pests.
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