



# Supplementary Materials

# Stable isotope-labeled lipidomics to unravel the heterogeneous development lipotoxicity

Firstname Lastname <sup>1</sup>, Firstname Lastname <sup>2</sup> and Firstname Lastname <sup>2,\*</sup> Lu-Min Shih <sup>1,2,3</sup>, Hsiang-Yu Tang <sup>1,2,3</sup>, Ke-Shiuan Lynn <sup>6</sup>, Cheng-Yu Huang <sup>1,2,3</sup>, Hung-Yao Ho <sup>5,7</sup>, and Mei-Ling Cheng <sup>1,2,3,4,5,\*</sup>

- <sup>1</sup> Healthy Aging Research Center, Chang Gung University, Taoyuan, 33302, Taiwan
- <sup>2</sup> Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
- <sup>3</sup> Metabolomics Core Laboratory, Chang Gung University, Taoyuan, 33302, Taiwan
- <sup>4</sup> Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
- <sup>5</sup> Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, 33305, Taiwan
- <sup>6</sup> Department of Mathematics, Fu-Jen Catholic University, New Taipei City, 24205, Taiwan
- <sup>7</sup> Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
- \* Correspondence: chengm@mail.cgu.edu.tw; Tel.: +886-3-2118800 (ext.3811); Fax: 886-3-2118700

## **Supplementary Materials**

# **Supplementary Tables**

Table S1. Significant changes in metabolites produced by palmitic acid-treated (FA 16:0) HepG2 cells (in ESI-positive mode)

| ID               | m/z      | CON_4HR         | CON_8HR              | CON_16HR        | CON_24HR        | FA16:0_4HR           | FA16:0_8HR       | FA16:0_16HR       | FA16:0_24HR      | VIP 16:0<br>(16HR) | S-Plot<br>16:0<br>(16HR) | FA 16:0<br>P-value<br>(16HR) |
|------------------|----------|-----------------|----------------------|-----------------|-----------------|----------------------|------------------|-------------------|------------------|--------------------|--------------------------|------------------------------|
| PC(32:0)         | 734.5834 | 24691.7±1153.3  | 27339.0±1408.9       | 28110.2±2361.7  | 22855.4±694.3   | 364963.0±56529.1     | 781911.3±90400.4 | 935030.0±132598.1 | 686010.6±50028.2 | 16.81              | -0.99                    | 3.31E-08                     |
| DG(32:0)         | 591.5063 | 3.5±10.6        | 0.0±0.0              | 13.2±30.5       | 0.0±0.0         | 12607.8±1720.6       | 38102.9±5615.1   | 66384.8±12540.1   | 50815.8±6556.5   | 4.52               | -0.98                    | 2.48E-07                     |
| PC(36:2)         | 786.6069 | 69746.6±4876.9  | 73574.0±3341.9       | 75936.7±4271.8  | 75220.0±4247.1  | 50343.8±3712.0       | 39227.5±3117.0   | 18670.2±3815.4    | 8804.8±1134.6    | 4.25               | 0.98                     | 1.72E-15                     |
| PC(32:1)         | 732.5675 | 79483.9±3415.6  | 89803.3±3453.2       | 104516.1±8222.2 | 110212.9±7997.9 | 91532.7±7892.1       | 134392.3±8126.8  | 169217.6±33023.7  | 172518.1±14801.4 | 4.10               | -0.82                    | 0.0003                       |
| PC(34:3)         | 756.5590 | 0.0±0.0         | 0.0±0.0              | 10.2±30.6       | 5.3±16.0        | 12197.3±3268.7       | 41992.1±7255.3   | 52537.9±11588.1   | 30804.8±2764.3   | 4.00               | -0.97                    | 8.22E-07                     |
| TG(48:1)         | 822.7662 | 9264.1±835.0    | 9650.5±1758.9        | 10796.9±1862.2  | 10367.5±1652.7  | 27619.3±4552.5       | 40287.3±9300.8   | 58718.1±16568.7   | 78618.0±38348.0  | 3.72               | -0.91                    | 2.17E-05                     |
| TG(50:1)         | 850.8030 | 29585.0±11971.7 | 32632.6±4718.9       | 25574.7±14775.2 | 27504.9±12631.2 | 70014.0±18945.2      | 88392.5±24498.8  | 68192.0±22530.2   | 62405.4±49855.4  | 3.22               | -0.77                    | 0.0002                       |
| DG(32:0)Fragment | 313.2760 | 12.9±10.9       | 15.5±12.6            | 28.5±21.6       | 19.6±21.2       | 4199.4±552.4         | 12523.2±1045.2   | 23270.9±5806.1    | 16238.7±1885.6   | 2.65               | -0.96                    | 2.13E-06                     |
| PC(34:2)         | 758.5779 | 20933.8±3166.1  | 21873.1±1557.1       | 27586.5±1728.5  | 36324.9±5152.7  | 12828.2±2012.8       | 10753.8±920.6    | 5770.5±2836.6     | 5519.1±1104.5    | 2.61               | 0.97                     | 1.21E-12                     |
| Unknown          | 551.5065 | 343.1±68.1      | 365.4±67.3           | 321.5±43.7      | 292.3±83.8      | 3779.6±471.5         | 11177.4±1655.4   | 18243.2±4160.7    | 13581.7±1472.7   | 2.33               | -0.97                    | 1.22E-06                     |
| TG(50:2)         | 848.7869 | 19857.6±713.4   | $21855.0{\pm}4038.1$ | 28224.3±3044.5  | 27046.5±3991.7  | 32164.7±2887.3       | 36541.8±3099.0   | 41103.1±7239.7    | 56213.3±9468.4   | 1.78               | -0.76                    | 0.0005                       |
| SM               | 703.5786 | 14187.6±958.3   | 15595.0±1686.5       | 16674.7±1212.0  | 13995.0±5313.1  | $12807.0 \pm 1785.2$ | 11664.8±834.7    | 7707.7±1476.2     | 6741.6±624.6     | 1.66               | 0.95                     | 1.96E-10                     |
| TG(50:4)         | 827.7192 | 0.0±0.0         | 39.3±87.5            | 94.5±172.8      | 51.7±102.7      | 2955.2±1095.4        | 5128.3±891.0     | 7248.5±1758.0     | 8709.6±4435.5    | 1.47               | -0.96                    | 1.66E-06                     |
| PC(36:1)         | 788.6203 | 5272.3±1095.3   | 7404.4±1194.3        | 8882.5±1569.5   | 5315.5±983.2    | 3283.7±1059.4        | 4987.3±1226.0    | 2930.5±1128.1     | 1241.0±458.6     | 1.32               | 0.91                     | 8.18E-08                     |
| PC(36:4)         | 782.5732 | 2538.4±1431.4   | 1950.8±537.5         | 1152.1±665.5    | 636.0±212.9     | 5986.0±1800.2        | 9207.8±942.1     | 7186.9±2216.7     | 4821.2±596.4     | 1.31               | -0.90                    | 2.02E-05                     |
| PC(34:0)         | 762.6043 | 23.5±46.9       | 57.6±62.1            | 32.2±66.9       | 0.0±0.0         | 365.5±218.2          | 3972.2±1138.3    | 4964.1±2259.5     | 1398.9±815.7     | 1.16               | -0.88                    | 0.0002                       |
| Unknown          | 607.4617 | 36.2±46.4       | 69.4±78.7            | 36.3±59.5       | 89.6±82.2       | 1560.9±326.1         | 2622.1±287.0     | 3670.1±516.8      | 3266.9±618.2     | 1.06               | -0.99                    | 2.02E-08                     |

Samples were analyzed using LC–TOFMS in the ESI-positive mode and demonstrated by peak area. Metabolites were selected when VIP values were >1.0, p value was <0.001, and S-plot [p(corr)] value was >0.75 and <-0.75, based on the results of control cells versus 16-hr FA (16:0)-treated cells.

Table S2. Significant changes in metabolites produced by palmitic acid-treated (FA16:0) HepG2 cells (in ESI-negative mode)

| ID              | m/z      | Con_4HR       | Con_8HR      | Con_16HR      | Con_24HR           | FA16:0_4HR     | FA16:0_8HR     | FA16:0_16HR    | FA16:0_24HR    | VIP<br>16:0<br>(16Hr) | S-Plot<br>16:0<br>(16Hr) | FA 16:0<br>P-value<br>(16Hr) |
|-----------------|----------|---------------|--------------|---------------|--------------------|----------------|----------------|----------------|----------------|-----------------------|--------------------------|------------------------------|
| PC(32:0)        | 778.5676 | 817.2±212.4   | 771.0±328.1  | 950.3±274.4   | 781.8±300.5        | 28964.7±5837.3 | 64428.0±9529.7 | 69997.9±9882.7 | 50269.1±3140.9 | 12.84                 | -0.99                    | 2.77E-08                     |
| PC(36:2)        | 830.5960 | 4743.9±739.0  | 5883.5±773.4 | 6184.3±1208.3 | 5792.8±364.6       | 3150.5±769.2   | 2187.9±597.1   | 413.5±248.3    | 48.1±42.5      | 3.67                  | 0.97                     | 2.92E-07                     |
| PC(32:1)        | 776.5490 | 5200.8±1431.9 | 6672.3±690.6 | 8367.7±1513.5 | 8655.0±973.2       | 7484.5±1866.1  | 12066.8±2163.5 | 14002.7±3149.8 | 13805.8±1215.1 | 3.25                  | -0.75                    | 0.0002                       |
| PE(36:2)        | 742.5421 | 1128.1±370.8  | 1814.6±524.2 | 2401.3±427.8  | $1874.4 \pm 550.5$ | 1018.8±444.4   | 716.5±381.1    | 37.0±32.6      | 44.4±50.0      | 2.36                  | 0.98                     | 1.60E-07                     |
| Cer(d18:1/16:0) | 582.5118 | 0.0±0.0       | 0.0±0.0      | 3.7±11.0      | 0.0±0.0            | 75.9±78.1      | 816.8±244.7    | 1952.1±547.9   | 1586.6±574.4   | 2.11                  | -0.95                    | 5.20E-06                     |
| PE(38:4)        | 766.5427 | 3028.4±975.6  | 3396.6±601.9 | 3211.0±918.7  | 2070.2±507.3       | 2211.6±644.1   | 2937.6±809.2   | 1266.0±698.9   | 617.6±292.2    | 1.93                  | 0.80                     | 0.0001                       |
| PE(38:5)        | 764.5281 | 989.3±410.9   | 1323.0±289.3 | 1349.5±394.0  | 785.8±265.6        | 747.2±211.2    | 915.8±484.4    | 229.9±238.6    | 42.0±61.9      | 1.55                  | 0.87                     | 1.80E-06                     |
| PC(34:2)        | 802.5648 | 566.9±255.8   | 619.6±370.3  | 1072.6±404.4  | 1618.0±431.1       | 332.0±329.1    | 135.4±154.4    | 34.6±53.8      | 15.9±32.0      | 1.50                  | 0.89                     | 5.06E-05                     |
| Cer(d18:1/24:1) | 692.6219 | 99.2±99.6     | 81.2±77.5    | 157.2±99.1    | 170.8±142.1        | 63.5±91.0      | 340.3±200.1    | 893.5±452.8    | 666.8±277.1    | 1.17                  | -0.79                    | 0.0009                       |
| SM(d18:1/16:0)  | 747.5687 | 632.2±178.5   | 805.5±255.3  | 713.3±244.3   | 762.9±370.5        | 599.1±252.4    | 625.7±241.8    | 106.4±80.0     | 125.9±142.2    | 1.13                  | 0.88                     | 3.95E-05                     |
| PI(38:4)        | 885.5551 | 812.0±257.1   | 865.3±305.3  | 644.1±239.6   | 321.6±310.0        | 667.7±278.7    | 653.8±276.0    | 55.3±92.1      | 186.4±143.7    | 1.11                  | 0.88                     | 3.68E-05                     |

Samples were analyzed using LC–TOFMS in the ESI-negative mode and demonstrated by peak area. Metabolites were selected when VIP values were >1.0, p value was <0.001, and S-plot [p(corr)] value was >0.75) and <-0.75, based on the results of control cells versus 16-hr FA (16:0)-treated cells.

Table S3. Significant changes in metabolites produced by palmitoleic acid-treated (FA 16:1) HepG2 cells (in ESI-positive mode)

|          |          |                  |                  |                  |                  |                  |                   |                    |                    | VIP    | S-Plot | FA 16:1  |
|----------|----------|------------------|------------------|------------------|------------------|------------------|-------------------|--------------------|--------------------|--------|--------|----------|
|          |          | CON_4HR          | CON_8HR          | CON_16HR         | CON_24HR         | FA16:1_4HR       | FA16:1_8HR        | FA16:1_16HR        | FA16:1_24HR        | 16:1   | 16:1   | P-value  |
| ID       | m/z      |                  |                  |                  |                  |                  |                   |                    |                    | (16HR) | (16HR) | (16HR)   |
| TG(48:3) | 818.7439 | 0.0±0.0          | 0.0±0.0          | 78.7±236.0       | 11.8±35.5        | 367162.6±46153.9 | 716009.0±199528.9 | 1077280.1±114992.2 | 1232628.4±138803.0 | 10.97  | -0.99  | 2.78E-09 |
| PC(32:2) | 730.5557 | 9.3±27.9         | 28.9±43.5        | 187.8±111.6      | 843.7±405.9      | 263883.5±16622.2 | 484101.9±24051.0  | 786079.0±80829.7   | 830999.9±65305.6   | 9.38   | -0.99  | 2.07E-09 |
| TG(50:3) | 846.7766 | 0.0±0.0          | 13.7±41.1        | 5205.8±10646.1   | 2728.3±7955.0    | 181411.1±16649.5 | 375873.9±106497.2 | 621077.2±83427.3   | 760821.2±50163.5   | 8.27   | -0.99  | 1.28E-08 |
| PC(34:1) | 760.6002 | 278665.7±14007.0 | 312040.0±18403.3 | 331564.7±26612.7 | 291665.3±20267.4 | 189759.5±16927.4 | 116532.5±9527.5   | 65276.4±8468.4     | 52262.8±5325.4     | 5.46   | 0.99   | 1.28E-10 |
| TG(48:2) | 820.7564 | 64.0±115.4       | 202.5±322.3      | 2601.4±3917.8    | 1503.3±3025.3    | 86035.1±12676.5  | 164619.8±58477.5  | 251458.2±31969.7   | 291774.9±24156.2   | 5.26   | -0.99  | 8.54E-09 |
| PC(32:1) | 732.5675 | 79483.9±3415.6   | 89803.3±3453.2   | 104516.1±8222.2  | 110212.9±7997.9  | 181771.7±16502.1 | 211236.7±15886.5  | 279813.5±37710.0   | 307584.7±32882.5   | 4.36   | -0.97  | 3.39E-07 |

| PC(34:2) | 758.5779 | 20933.8±3166.1   | 21873.1±1557.1   | 27586.5±1728.5   | 36324.9±5152.7        | 70211.0±5318.3   | 89081.6±6660.8   | 141285.8±26257.3 | 169560.6±15879.7 | 3.50 | -0.97 | 1.10E-06 |
|----------|----------|------------------|------------------|------------------|-----------------------|------------------|------------------|------------------|------------------|------|-------|----------|
| TG(50:2) | 848.7869 | 19857.6±713.4    | 21855.0±4038.1   | 28224.3±3044.5   | 27046.5±3991.7        | 65965.7±8821.1   | 105294.7±32443.4 | 129290.1±23259.7 | 152140.5±9983.8  | 3.30 | -0.96 | 8.96E-07 |
| Unknown  | 663.4700 | 799568.6±50590.3 | 748757.8±41446.1 | 712553.4±12742.9 | 724388.5±39594.9      | 781494.9±17919.9 | 787933.0±25870.7 | 806877.0±27431.1 | 776469.6±45240.7 | 3.13 | -0.92 | 1.17E-06 |
| TG(50:6) | 823.7055 | 0.0±0.0          | 0.0±0.0          | 0.0±0.0          | 0.0±0.0               | 44266.2±1848.7   | 54724.4±19343.8  | 86378.1±18990.2  | 106811.0±14235.9 | 3.06 | -0.96 | 8.01E-07 |
| PC(36:2) | 786.6069 | 69746.6±4876.9   | 73574.0±3341.9   | 75936.7±4271.8   | 75220.0±4247.1        | 48508.2±3437.8   | 25630.9±2778.6   | 6687.1±3483.4    | 5350.5±1447.1    | 2.79 | 0.99  | 4.67E-17 |
| PC(34:5) | 752.5308 | 0.0±0.0          | 0.0±0.0          | 0.0±0.0          | 0.0±0.0               | 10487.6±1185.4   | 25048.7±1745.3   | 51101.6±7717.4   | 60074.8±6155.3   | 2.38 | -0.98 | 4.30E-08 |
| TG(52:6) | 851.7229 | 0.0±0.0          | 0.0±0.0          | 0.0±0.0          | 0.0±0.0               | 21177.6±1480.6   | 25055.5±9595.1   | 33283.6±2549.0   | 31723.8±3582.4   | 1.93 | -0.99 | 1.98E-10 |
| PC(32:0) | 734.5834 | 24691.7±1153.3   | 27339.0±1408.9   | 28110.2±2361.7   | 22855.4±694.3         | 6387.0±864.7     | 4392.1±1050.3    | 2345.0±996.9     | 2713.5±789.3     | 1.70 | 0.99  | 9.59E-12 |
| Unknown  | 547.4798 | 3.6±10.7         | 0.1±0.3          | 3.1±9.4          | 0.0±0.1               | 4917.3±855.8     | 11952.8±4200.1   | 19665.0±2820.3   | 24361.5±4434.6   | 1.48 | -0.99 | 2.87E-08 |
| TG(46:2) | 792.7162 | $0.0\pm0.0$      | 0.0±0.0          | 0.0±0.0          | 6.9±20.7              | 3707.0±710.7     | 9357.8±3724.4    | 18936.4±3447.0   | 24989.2±3494.9   | 1.44 | -0.98 | 1.85E-07 |
| TG(54:3) | 902.8331 | 25915.6±9851.4   | 30433.3±5880.7   | 37430.3±12674.6  | 39931.7±11616.3       | 28905.3±2619.0   | 23884.9±4941.7   | 14630.0±1127.9   | 12311.5±1107.7   | 1.44 | 0.77  | 0.0006   |
| Unknown  | 550.6327 | 125116.8±9407.2  | 118161.6±8962.9  | 110114.6±5635.4  | 116011.9±5920.7       | 124734.0±4189.7  | 125828.7±6165.7  | 130605.2±6787.1  | 122276.3±7393.7  | 1.42 | -0.87 | 3.17E-06 |
| PC(30:0) | 706.5420 | 8858.9±487.9     | 12793.9±694.9    | 17418.2±1328.8   | 14600.5±4574.1        | 1049.5±463.8     | 107.1±98.2       | 29.1±58.3        | 0.0±0.0          | 1.40 | 0.99  | 1.84E-10 |
| Unknown  | 845.7478 | $0.0\pm0.0$      | 0.0±0.0          | 0.0±0.0          | 0.0±0.0               | 5857.5±698.9     | 9020.4±3490.4    | 12943.5±1123.5   | 13517.7±779.9    | 1.21 | -1.00 | 5.37E-10 |
| Unknown  | 839.6623 | $0.0\pm0.0$      | 0.0±0.0          | 0.0±0.0          | 0.0±0.0               | 8614.8±651.1     | 9876.5±3743.9    | 12443.1±790.1    | 11916.2±648.6    | 1.18 | -0.99 | 4.45E-11 |
| Unknown  | 685.4397 | 115411.3±8263.3  | 107016.9±6173.2  | 102738.3±3241.3  | $105055.5 \pm 7083.1$ | 113082.3±2514.1  | 112498.1±4602.1  | 116834.0±5707.9  | 112247.4±7656.1  | 1.16 | -0.85 | 8.14E-06 |
| TG(52:5) | 853.7338 | 682.4±656.1      | 1270.9±608.0     | 1988.6±1359.4    | 2680.7±1121.6         | 8963.2±1606.1    | 10749.3±3693.3   | 12987.6±989.1    | 13420.5±1567.9   | 1.10 | -0.99 | 1.28E-12 |
| TG(50:5) | 825.7069 | $0.0\pm0.0$      | 0.0±0.0          | 17.3±51.9        | 0.0±0.0               | 9068.2±1002.6    | 10869.0±4265.5   | 11548.7±4572.5   | 12542.3±1593.2   | 1.07 | -0.90 | 6.50E-05 |
| Unknown  | 707.4953 | 112909.2±7529.7  | 105143.7±5190.7  | 100492.3±3647.6  | 102071.8±5580.9       | 109586.4±3986.4  | 112255.4±4089.8  | 112835.0±5315.6  | 108636.8±7810.9  | 1.07 | -0.83 | 3.02E-05 |
| Unknown  | 522.6005 | 88313.0±5014.0   | 82282.2±5019.8   | 78640.1±1698.9   | 80146.2±5061.0        | 86482.6±2150.7   | 87747.9±3126.4   | 89225.3±3325.2   | 85906.9±6027.6   | 1.04 | -0.90 | 2.49E-07 |

Samples were analyzed by LC–TOFMS in the ESI-positive mode and demonstrated by peak area. Metabolites were selected when the VIP values were >1.0), p value was <0.001, and S-plot [p(corr)] was >0.75 and <-0.75, based on the results of control cells versus 16-hr FA (16:1)-treated cells.

Table S4. Significant changes in metabolites produced by palmitoleic acid-treated (FA 16:1) HepG2 cells (in ESI-negative mode)

| ID       |          | Con_4HR        | Con_8HR              | Con_16HR       | Con_24HR           | FA16:1_4HR     | FA16:1_8HR          | FA16:1_16HR     | FA16:1_24HR    | VIP<br>16:1<br>(16Hr) | S-Plot<br>16:1<br>(16Hr) | FA 16:1 P-<br>value (16Hr) |
|----------|----------|----------------|----------------------|----------------|--------------------|----------------|---------------------|-----------------|----------------|-----------------------|--------------------------|----------------------------|
| PC(32:2) | 774.5402 | 0.0±0.0        | 0.0±0.0              | 0.0±0.0        | 0.0±0.0            | 16945.1±1691.8 | 30765.9±5410.2      | 51421.7±10287.2 | 55065.7±3237.7 | 9.92                  | -0.97                    | 3.86E-07                   |
| PC(34:1) | 804.5809 | 24676.9±2774.5 | $26436.3 \pm 1595.5$ | 27414.5±3075.6 | 25221.5±1956.2     | 15470.6±1286.9 | 9371.6±1673.5       | 3400.0±1386.7   | 1901.8±261.1   | 6.84                  | 0.99                     | 2.22E-10                   |
| PC(34:2) | 802.5648 | 566.9±255.8    | 619.6±370.3          | 1072.6±404.4   | 1618.0±431.1       | 5155.7±594.0   | $7654.5 \pm 1840.2$ | 12206.9±2930.7  | 13908.3±938.4  | 4.56                  | -0.95                    | 2.52E-06                   |
| PC(32:1) | 776.5490 | 5200.8±1431.9  | 6672.3±690.6         | 8367.7±1513.5  | 8655.0±973.2       | 12440.2±1252.7 | 14161.2±2511.2      | 17272.9±3876.7  | 18536.5±1323.5 | 3.87                  | -0.85                    | 6.44E-05                   |
| PC(36:2) | 830.5960 | 4743.9±739.0   | 5883.5±773.4         | 6184.3±1208.3  | 5792.8±364.6       | 2061.2±374.7   | 656.6±312.3         | 22.3±26.9       | 14.2±21.4      | 3.44                  | 0.98                     | 3.28E-07                   |
| PE(34:2) | 714.5107 | 5.8±17.4       | $0.0\pm0.0$          | 102.4±101.2    | 42.0±55.0          | 428.0±318.5    | 1652.7±779.0        | 5882.2±1943.2   | 7378.6±613.7   | 3.23                  | -0.92                    | 1.93E-05                   |
| PE(32:2) | 686.4791 | 0.0±0.0        | $0.0\pm0.0$          | 0.0±0.0        | $0.0\pm0.0$        | 122.4±79.4     | 969.3±277.6         | 3006.4±977.6    | 3405.1±333.4   | 2.34                  | -0.93                    | 1.54E-05                   |
| PE(36:2) | 742.5421 | 1128.1±370.8   | 1814.6±524.2         | 2401.3±427.8   | $1874.4 \pm 550.5$ | 748.2±139.0    | 301.5±148.5         | 149.4±168.3     | 56.0±53.6      | 2.07                  | 0.98                     | 2.67E-08                   |
| PE(38:5) | 764.5281 | 989.3±410.9    | 1323.0±289.3         | 1349.5±394.0   | 785.8±265.6        | 1135.3±321.4   | 558.9±198.5         | 271.4±219.0     | 280.2±132.6    | 1.37                  | 0.87                     | 2.21E-06                   |
| PC(32:0) | 778.5676 | 817.2±212.4    | 771.0±328.1          | 950.3±274.4    | 781.8±300.5        | 36.8±51.9      | 3.2±9.6             | 12.2±24.2       | 9.4±18.6       | 1.32                  | 0.93                     | 6.45E-06                   |

Samples were analyzed by LC–TOFMS in the ESI-negative mode and demonstrated by peak area. Metabolites were selected when the VIP values were >1.0, p value was <0.001, and S-plot [p(corr)] was >0.75 and <-0.75, based on the results of control cells versus 16-hr FA (16:1)-treated cells.

Table S5. Stable isotope-labeled metabolites in 13C16-palmitic acid (isoFA 16:0)- and 13C16-palmitoleic acid (isoFA 16:1)-treated HepG2 cells

| ID                 | Adduct | m/z      | Con_4hr   | IsoFA_4hr   | Con_8hr   | IsoFA_8hr    | Con_16hr  | IsoFA_16hr   | Source_Mode |
|--------------------|--------|----------|-----------|-------------|-----------|--------------|-----------|--------------|-------------|
| Cer(d18:0/16:0)    | M+H    | 540.5368 | 10.0±0.0  | 10.0±0.0    | 10.0±0.0  | 10.0±0.0     | 10.0±0.0  | 12.0±6.1     | C16:0_POS   |
| Cer(d18:0/16:0)+16 |        | 556.5900 | 10.0±0.0  | 10.0±0.0    | 10.0±0.0  | 67.2±41.5    | 10.0±0.0  | 570.5±201.4  | C16:0_POS   |
| Cer(d18:0/16:0)+32 |        | 572.6449 | 10.0±0.0  | 10.0±0.0    | 10.0±0.0  | 2602.0±388.1 | 10.0±0.0  | 5665.3±562.5 | C16:0_POS   |
| Cer(d18:1/16:0)    | M+Na   | 560.5035 | 13.8±11.4 | 10.0±0.0    | 22.6±25.2 | 22.4±28.5    | 14.2±12.5 | 148.2±188.1  | C16:0_POS   |
| Cer(d18:1/16:0)+16 |        | 576.5558 | 10.0±0.0  | 983.7±176.1 | 10.0±0.0  | 2206.3±400.4 | 10.0±0.0  | 3119.0±513.7 | C16:0_POS   |
| Cer(d18:1/16:0)+32 |        | 592.6093 | 10.0±0.0  | 10.0±0.0    | 10.0±0.0  | 719.0±432.8  | 10.0±0.0  | 2595.1±678.2 | C16:0_POS   |
| DG(32:0)           | M+Na   | 591.5009 | 32.8±37.2 | 22.7±19.5   | 40.7±47.2 | 50.0±48.4    | 22.5±20.9 | 23.3±39.9    | C16:0_POS   |

#### Molecules 2018, 23, 2862

| DG(32:0)+16           |     | 607.5494 | 10.0±0.0          | 3066.0±946.7     | 10.0±0.0          | 10250.4±561.1     | 34.4±40.0         | 10520.0±1232.1     | C16:0_POS |
|-----------------------|-----|----------|-------------------|------------------|-------------------|-------------------|-------------------|--------------------|-----------|
| DG(32:0)+32           |     | 623.6092 | 22.0±36.1         | 34571.9±2646.5   | 10.0±0.0          | 78315.2±4868.8    | 75.9±152.7        | 72488.9±9143.8     | C16:0_POS |
| Palmitoylcarnitine    | M+H | 400.3426 | 21.4±12.8         | 10.7±2.0         | 138.2±82.0        | 24.5±17.9         | 21.9±20.0         | 16.8±20.5          | C16:0_POS |
| Palmitoylcarnitine+16 |     | 416.3970 | 10.0±0.0          | 1983.7±654.2     | 10.0±0.0          | 3636.0±274.7      | 10.0±0.0          | 3161.3±412.6       | C16:0_POS |
| LysoPC(16:0)          | M+H | 496.3425 | 559.9±163.1       | 2425.1±218.6     | 938.5±108.6       | 3169.1±297.4      | 1041.6±220.7      | 2824.5±333.6       | C16:0_POS |
| LysoPC(16:0)+16       |     | 512.3983 | 12.6±7.9          | 3807.3±231.4     | 10.0±0.0          | 11477.0±645.4     | 10.0±0.0          | 14848.5±1430.2     | C16:0_POS |
| PC(30:0)              | M+H | 706.5519 | 74787.4±13074.2   | 35500.5±2830.7   | 97698.6±11396.6   | 31924.2±1317.9    | 117557.3±11476.7  | 25488.0±2423.8     | C16:0_POS |
| PC(30:0)+16           |     | 722.6000 | 10.0±0.0          | 16888.1±921.9    | 10.0±0.0          | 47835.3±2075.4    | 10.0±0.0          | 76511.2±2610.0     | C16:0_POS |
| PC(32:0)              | M+H | 734.5852 | 163331.5±27744.0  | 70026.1±5853.4   | 180209.6±24506.5  | 64799.9±3500.6    | 184835.0±22658.4  | 60313.7±8229.6     | C16:0_POS |
| PC(32:0)+16           |     | 750.6413 | 4410.9±6627.2     | 275207.3±26907.2 | 10.0±0.0          | 555069.0±25538.4  | 150.7±266.3       | 628466.7±63314.6   | C16:0_POS |
| PC(32:0)+32           |     | 766.6970 | 16367.0±24575.1   | 797537.6±58026.6 | 381.8±511.5       | 1782316.9±88497.7 | 2009.1±2955.7     | 1990163.6±190498.4 | C16:0_POS |
| PC(34:0)              | M+H | 762.6056 | 15951.0±3124.8    | 10256.9±1257.0   | 19516.1±2782.9    | 13648.0±1010.7    | 18213.6±2748.4    | 9914.3±1091.7      | C16:0_POS |
| PC(34:0)+16           |     | 778.6593 | 10.0±0.0          | 8224.1±731.9     | 10.0±0.0          | 29634.3±1646.4    | 10.0±0.0          | 36073.8±4215.6     | C16:0_POS |
| PC(34:1)              | M+H | 760.6054 | 1169330.2±75071.1 | 866152.1±61126.8 | 1149825.8±99006.5 | 667168.0±31426.0  | 1289932.6±71374.6 | 523559.5±22612.3   | C16:0_POS |
| PC(34:1)+16           |     | 776.6590 | 10.0±0.0          | 293350.6±22659.4 | 10.0±0.0          | 768481.8±24480.9  | 10.0±0.0          | 1153439.7±40080.8  | C16:0_POS |
| PC(34:2)              | M+H | 758.5771 | 67936.8±6033.5    | 45225.4±2348.7   | 68093.3±9479.2    | 30949.7±1760.3    | 74997.2±5847.6    | 26406.4±1723.0     | C16:0_POS |
| PC(34:2)+16           |     | 774.6299 | 10.0±0.0          | 19950.3±1317.2   | 10.0±0.0          | 39363.5±1277.7    | 10.0±0.0          | 57265.7±3493.8     | C16:0_POS |
| PC(34:3)              | M+H | 756.5633 | 17986.3±3761.8    | 312.8±318.6      | 19999.6±2288.4    | 80.6±85.8         | 20271.6±1899.6    | 77.5±50.5          | C16:0_POS |
| PC(34:3)+16           |     | 772.6163 | 119.4±203.6       | 8803.2±1510.8    | 14.8±14.4         | 9399.8±1687.7     | 41.0±53.3         | 8543.1±1751.8      | C16:0_POS |
| PC(34:3)+32           |     | 788.6731 | 2137.9±3222.4     | 71088.4±4899.4   | 10.0±0.0          | 110785.7±8034.0   | 10.0±0.0          | 100343.4±7429.9    | C16:0_POS |
| PC(34:4)              | M+H | 754.5436 | 50325.9±3864.7    | 27032.3±1281.1   | 53672.6±4669.6    | 12915.7±1380.0    | 65063.3±2984.2    | 6213.3±515.8       | C16:0_POS |
| PC(34:4)+16           |     | 770.5928 | 172.5±204.5       | 14256.7±1144.6   | 323.9±280.7       | 25803.6±1550.8    | 292.8±150.5       | 31748.3±915.0      | C16:0_POS |
| PC(34:4)+32           |     | 786.6461 | 10.0±0.0          | 10548.5±1171.7   | 10.0±0.0          | 18196.3±713.2     | 10.0±0.0          | 26526.2±2064.5     | C16:0_POS |
| PC(36:3)              | M+H | 784.5896 | 20258.5±1438.3    | 14502.6±1180.3   | 18012.7±2570.3    | 9609.4±1123.2     | 18360.1±1485.5    | 8709.4±342.2       | C16:0_POS |
| PC(36:3)+16           |     | 800.6433 | 10.0±0.0          | 5455.6±486.8     | 10.0±0.0          | 11864.4±518.8     | 10.0±0.0          | 17214.3±692.9      | C16:0_POS |
| PC(36:4)              | M+H | 782.5753 | 17575.3±959.3     | 3876.4±501.9     | 19827.5±2454.3    | 2066.9±805.2      | 18058.6±1159.8    | 2014.1±740.5       | C16:0_POS |

798.6296

 $10.0\pm0.0$ 

13627.1±1192.9

PC(36:4)+16

| PC(38:6)          | M+H    | 806.5744 | 6066.5±871.1     | 516.7±421.1      | 6678.8±1504.5    | 114.9±133.7      | 5895.7±660.0     | 96.8±133.8       | C16:0_POS |
|-------------------|--------|----------|------------------|------------------|------------------|------------------|------------------|------------------|-----------|
| PC(38:6)+16       |        | 822.6280 | 10.0±0.0         | 3651.1±629.7     | 10.0±0.0         | 7049.6±358.6     | 10.0±0.0         | 9114.9±490.4     | C16:0_POS |
| SM(d18:1/16:0)    | M+H    | 703.5923 | 220582.8±30495.9 | 195576.0±12880.1 | 253114.8±28417.6 | 201590.3±16795.6 | 279210.8±23394.4 | 165626.8±14622.4 | C16:0_POS |
| SM(d18:1/16:0)+32 |        | 735.6562 | 10.0±0.0         | 303.2±140.2      | 10.0±0.0         | 5508.7±1052.9    | 10.0±0.0         | 9578.7±1503.3    | C16:0_POS |
| TG(50:1)          | M+NH4  | 850.7936 | 15662.6±1121.2   | 11080.9±853.2    | 17412.0±2467.0   | 9635.8±665.7     | 15498.8±1175.0   | 4401.1±1060.6    | C16:0_POS |
| TG(50:1)+16       |        | 866.8460 | 10.0±0.0         | 169.8±264.7      | 10.0±0.0         | 1247.0±615.7     | 10.0±0.0         | 667.5±552.9      | C16:0_POS |
| TG(50:2)          | M+NH4  | 848.7792 | 22422.6±1363.4   | 22496.7±1459.3   | 25650.7±2251.4   | 19675.8±733.5    | 22872.7±3050.0   | 12900.9±755.6    | C16:0_POS |
| TG(50:2)+16       |        | 864.8303 | 10.0±0.0         | 754.0±381.1      | 10.0±0.0         | 1890.5±608.0     | 10.0±0.0         | 2410.6±738.8     | C16:0_POS |
| TG(52:2)          | M+NH4  | 876.8211 | 87856.8±8686.5   | 72794.5±4502.0   | 93177.2±9616.4   | 63522.7±4714.9   | 80807.6±13766.4  | 36621.1±2541.0   | C16:0_POS |
| TG(52:2)+16       |        | 892.8635 | 10.0±0.0         | 2362.3±575.3     | 10.0±0.0         | 5949.8±912.7     | 10.0±0.0         | 6619.9±1093.2    | C16:0_POS |
| LysoPE(16:0)      | M-H    | 452.2783 | 10.0±0.0         | 108.5±102.2      | 15.0±15.1        | 269.9±99.3       | 10.0±0.0         | 318.8±170.1      | C16:0_NEG |
| LysoPE(16:0)+16   |        | 468.3328 | 10.0±0.0         | 172.0±85.7       | 10.0±0.0         | 1202.8±452.5     | 10.0±0.0         | 1777.1±202.0     | C16:0_NEG |
| LysoPA(16:0)      | M-H    | 409.2330 | 10.0±0.0         | 22.46±2.22       | 10.0±0.0         | 29.58±2.45       | 10.0±0.0         | 31.17±9.65       | C16:0_NEG |
| LysoPA(16:0)+16   |        | 425.2876 | 10.0±0.0         | 262.95±18.59     | 10.0±0.0         | 342.94±32.70     | 10.0±0.0         | 378.62±131.12    | C16:0_NEG |
| PC(32:1)          | M+FA-H | 776.5524 | 56275.0±5746.6   | 41267.2±3979.5   | 61714.9±3496.1   | 33376.0±3080.2   | 71078.6±6763.5   | 25298.8±1916.9   | C16:0_NEG |
| PC(32:1)+16       |        | 792.6031 | 10.0±0.0         | 17486.2±1417.8   | 10.0±0.0         | 37603.0±3518.0   | 10.0±0.0         | 55051.3±4080.7   | C16:0_NEG |
| PC(32:1)+32       |        | 808.6571 | 10.0±0.0         | 12313.9±1440.0   | 10.0±0.0         | 23141.6±2632.1   | 10.0±0.0         | 40263.6±4825.4   | C16:0_NEG |
| PC(36:3)          | M+FA-H | 828.5793 | 2851.1±330.2     | 1363.5±370.9     | 2376.7±635.4     | 483.9±202.1      | 2285.7±424.2     | 342.6±137.9      | C16:0_NEG |
| PC(36:3)+16       |        | 844.6332 | 10.0±0.0         | 384.2±204.7      | 10.0±0.0         | 1844.4±435.0     | 10.0±0.0         | 3534.1±629.7     | C16:0_NEG |
| PE(32:0)          | M-H    | 690.5093 | 10.0±0.0         | 10.0±0.0         | 10.0±0.0         | 10.0±0.0         | 10.0±0.0         | 10.0±0.0         | C16:0_NEG |
| PE(32:0)+32       |        | 722.6169 | 10.0±0.0         | 731.0±360.0      | 10.0±0.0         | 3338.6±454.9     | 10.0±0.0         | 3059.1±1421.0    | C16:0_NEG |
| PE(34:0)          | M-H    | 718.5415 | 80.3±73.2        | 10.0±0.0         | 55.1±30.7        | 10.0±0.0         | 130.7±77.0       | 10.0±0.0         | C16:0_NEG |
| PE(34:0)+32       |        | 750.6495 | 10.0±0.0         | 1505.3±302.7     | 10.0±0.0         | 5733.5±730.4     | 10.0±0.0         | 6936.0±837.5     | C16:0_NEG |
| PE(34:1)          | M-H    | 716.5256 | 15749.6±1264.2   | 12387.9±1008.8   | 18937.8±1223.1   | 14811.6±1441.1   | 19612.8±1185.9   | 11543.3±409.7    | C16:0_NEG |
| PE(34:1)+16       |        | 732.5796 | 10.0±0.0         | 4036.9±525.4     | $10.0 \pm 0.0$   | 11859.4±1006.6   | 10.0±0.0         | 17463.5±1101.1   | C16:0_NEG |

 $10.0\pm0.0$ 

C16:0\_POS

8 of 21

| PE(36:4)    | M-H   | 738.5101 | 6663.0±690.5     | 6419.1±798.5     | 7138.2±570.9    | 6288.8±707.4     | 7466.5±820.6     | 4552.2±467.6       | C16:0_NEG |
|-------------|-------|----------|------------------|------------------|-----------------|------------------|------------------|--------------------|-----------|
| PE(36:4)+16 |       | 754.5640 | 10.0±0.0         | 2624.2±482.1     | 10.0±0.0        | 6504.8±1072.1    | 10.0±0.0         | 9003.6±559.6       | C16:0_NEG |
| PI(32:0)    | M-H   | 809.5215 | 10.0±0.0         | 10.0±0.0         | 10.0±0.0        | 10.0±0.0         | 10.0±0.0         | 10.0±0.0           | C16:0_NEG |
| PI(32:0)+32 |       | 841.6296 | 10.0±0.0         | 75.6±92.4        | 10.0±0.0        | 2182.8±335.9     | 10.0±0.0         | 1535.0±588.7       | C16:0_NEG |
| PI(34:1)    | M-H   | 835.5378 | 646.7±380.7      | 212.9±111.1      | 1695.0±372.9    | 974.2±371.8      | 2726.9±454.5     | 823.1±706.0        | C16:0_NEG |
| PI(34:1)+16 |       | 851.5912 | 10.0±0.0         | 1762.1±471.2     | 10.0±0.0        | 7823.9±1283.2    | 10.0±0.0         | 7861.0±3280.9      | C16:0_NEG |
| PI(36:4)    | M-H   | 857.5224 | 336.6±169.6      | 190.4±89.0       | 647.0±225.5     | 77.7±81.0        | 702.2±221.4      | 58.9±81.0          | C16:0_NEG |
| PI(36:4)+16 |       | 873.5765 | 10.0±0.0         | 397.9±209.1      | 10.0±0.0        | 2687.9±634.4     | 10.0±0.0         | 2054.2±1123.0      | C16:0_NEG |
| DG(32:2)    | M+Na  | 587.4669 | 10.0±0.0         | 10.0±0.0         | 10.0±0.0        | 10.0±0.0         | 10.0±0.0         | 10.0±0.0           | C16:1_POS |
| DG(32:2)+16 |       | 603.4402 | 10.0±0.0         | 10.0±0.0         | 10.0±0.0        | 10.0±0.0         | 10.0±0.0         | 10.0±0.0           | C16:1_POS |
| DG(32:2)+32 |       | 619.5742 | 10.0±0.0         | 10.0±0.0         | 10.0±0.0        | 1914.7±671.2     | 10.0±0.0         | 4762.6±1163.7      | C16:1_POS |
| PC(32:1)    | M+H   | 732.5704 | 261362.6±20069.0 | 137800.2±20248.3 | 267691.0±6580.3 | 63903.1±12781.2  | 399882.2±19686.4 | 49645.2±5791.7     | C16:1_POS |
| PC(32:1)+16 |       | 748.6245 | 10.0±0.0         | 198972.1±21074.0 | 10.0±0.0        | 250079.6±42882.3 | 10.0±0.0         | 706240.8±93155.4   | C16:1_POS |
| PC(32:2)    | M+H   | 730.5546 | 4132.9±955.2     | 348.0±150.3      | 4238.2±23.6     | 10.0±0.0         | 10564.1±655.2    | 10.0±0.0           | C16:1_POS |
| PC(32:2)+16 |       | 746.5989 | 10.0±0.0         | 22240.5±3012.6   | 10.0±0.0        | 29161.0±5412.1   | 10.0±0.0         | 69359.9±8237.4     | C16:1_POS |
| PC(32:2)+32 |       | 762.6665 | 10.0±0.0         | 307009.6±24299.2 | 10.0±0.0        | 470442.1±78570.2 | 10.0±0.0         | 1357526.2±160707.8 | C16:1_POS |
| PC(34:1)    | M+H   | 760.6043 | 694019.7±36635.0 | 457586.7±53195.6 | 712287.9±8487.7 | 230274.5±52238.0 | 954359.2±74985.4 | 169310.5±22954.7   | C16:1_POS |
| PC(34:1)+16 |       | 776.6444 | 10.0±0.0         | 3624.4±1169.6    | 10.0±0.0        | 6377.5±1933.0    | 10.0±0.0         | 26144.6±3498.1     | C16:1_POS |
| PC(34:4)    | M+H   | 754.5421 | 6072.8±1163.6    | 941.4±866.0      | 6567.6±230.9    | 90.2±113.5       | 13498.4±1828.6   | 546.2±204.4        | C16:1_POS |
| PC(34:4)+16 |       | 770.5947 | 10.0±0.0         | 5557.7±1793.0    | 10.0±0.0        | 8151.4±2175.4    | 10.0±0.0         | 31120.9±4601.3     | C16:1_POS |
| PC(34:5)    | M+H   | 752.5324 | 10.0±0.0         | 10.0±0.0         | 10.0±0.0        | 10.0±0.0         | 16.5±9.2         | 10.0±0.0           | C16:1_POS |
| PC(34:5)+32 |       | 784.6444 | 10.0±0.0         | 13616.9±3265.2   | 10.0±0.0        | 27261.1±6651.6   | 10.0±0.0         | 97049.1±13202.9    | C16:1_POS |
| TG(48:3)    | M+NH4 | 818.7466 | 10.0±0.0         | 10.0±0.0         | 10.0±0.0        | 10.0±0.0         | 10.0±0.0         | 10.0±0.0           | C16:1_POS |
| TG(48:3)+32 |       | 850.8450 | 10.0±0.0         | 8247.6±245.2     | 10.0±0.0        | 13449.3±1296.0   | 10.0±0.0         | 44074.3±11518.0    | C16:1_POS |
| TG(48:3)+48 |       | 866.9099 | 10.0±0.0         | 209471.5±2955.9  | 10.0±0.0        | 302325.2±24208.9 | 10.0±0.0         | 642343.0±153250.4  | C16:1_POS |
| TG(48:2)    | M+NH4 | 820.7564 | 6304.0±442.6     | 5628.8±977.9     | 6966.2±264.7    | 2714.7±213.5     | 8008.6±1445.2    | 2603.6±1280.4      | C16:1_POS |

| TG(48:2)+32 |        | 852.8639 | 10.0±0.0       | 40790.6±1755.3 | 10.0±0.0       | 62950.3±3779.4 | 10.0±0.0       | 147369.7±36567.1 | C16:1_POS |
|-------------|--------|----------|----------------|----------------|----------------|----------------|----------------|------------------|-----------|
| TG(50:2)    | M+NH4  | 848.7876 | 34175.6±3890.3 | 24212.4±2662.3 | 37990.5±892.4  | 14237.3±1022.2 | 54913.4±7560.3 | 16490.6±4412.7   | C16:1_POS |
| TG(50:2)+32 |        | 880.8791 | 146.7±122.5    | 4775.6±473.9   | 151.2±47.9     | 5135.8±804.8   | 327.2±354.6    | 13901.9±4095.9   | C16:1_POS |
| TG(52:3)    | M+NH4  | 874.7981 | 18727.3±2060.6 | 10092.5±751.2  | 20131.3±334.8  | 3458.6±742.9   | 27896.2±4341.3 | 2223.5±1316.0    | C16:1_POS |
| TG(52:3)+16 |        | 890.8469 | 10.0±0.0       | 2325.9±257.3   | 10.0±0.0       | 2764.2±544.4   | 10.0±0.0       | 7901.2±3237.8    | C16:1_POS |
| PC(34:2)    | M+FA-H | 802.5661 | 12485.7±2060.9 | 3848.3±649.8   | 11458.3±1150.9 | 861.1±341.5    | 17435.3±2776.4 | 138.0±61.3       | C16:1_NEG |
| PC(34:2)+16 |        | 818.6198 | 10.0±0.0       | 7413.4±1276.2  | 10.0±0.0       | 10463.1±565.9  | 10.0±0.0       | 13776.8±1018.3   | C16:1_NEG |
| PC(34:2)+32 |        | 834.6735 | 10.0±0.0       | 1821.7±309.0   | 10.0±0.0       | 4812.2±392.0   | 10.0±0.0       | 12632.8±1285.1   | C16:1_NEG |
| PE(34:1)    | M-H    | 716.5273 | 4345.6±791.8   | 2208.6±918.2   | 4181.5±834.7   | 2256.3±605.3   | 7225.9±1459.7  | 2181.5±501.6     | C16:1_NEG |
| PE(34:1)+16 |        | 732.5809 | 10.0±0.0       | 130.5±44.5     | 10.0±0.0       | 513.9±329.5    | 10.0±0.0       | 3232.9±431.3     | C16:1_NEG |
| PE(34:2)    | M-H    | 714.5121 | 2494.0±566.3   | 892.6±122.4    | 2679.9±264.7   | 163.1±166.0    | 4400.5±1177.0  | 173.4±74.2       | C16:1_NEG |
| PE(34:2)+16 |        | 730.5658 | 10.0±0.0       | 1529.3±632.8   | 10.0±0.0       | 2998.6±855.1   | 10.0±0.0       | 6384.1±169.7     | C16:1_NEG |
| PE(34:2)+32 |        | 746.6192 | 10.0±0.0       | 188.9±88.8     | 10.0±0.0       | 792.1±368.3    | 10.0±0.0       | 3581.4±217.9     | C16:1_NEG |
| PI(34:1)    | M-H    | 835.5392 | 10.0±0.0       | 10.0±0.0       | 10.0±0.0       | 10.0±0.0       | 37.3±47.3      | 10.0±0.0         | C16:1_NEG |
| PI(34:1)+16 | M-H    | 851.5922 | 10.0±0.0       | 10.0±0.0       | 10.0±0.0       | 232.3±196.1    | 10.0±0.0       | 1351.0±53.3      | C16:1_NEG |

Samples were analyzed by LC–TOFMS in the ESI-positive or negative mode and demonstrated by peak area.

# Table S6. In-house database.

| Neutral mass | Compound Id | Description            | Formula  |
|--------------|-------------|------------------------|----------|
| 268.2402     | Fatty acid  | 10E-heptadecenoic acid | C17H32O2 |
| 254.2246     | Fatty acid  | 9Z-hexadecenoic acid   | C16H30O2 |
| 282.2559     | Fatty acid  | 9Z-octadecenoic acid   | C18H34O2 |
| 282.2559     | Fatty acid  | 9E-octadecenoic acid   | C18H34O2 |
| 310.2872     | Fatty acid  | 11Z-eicosenoic acid    | C20H38O2 |
| 338.3185     | Fatty acid  | 13Z-docosenoic acid    | C22H42O2 |
| 366.3498     | Fatty acid  | 15Z-tetracosenoic acid | C24H46O2 |

| 256.2402 | Fatty acid               | hexadecanoic acid                                            | C16H32O2                  |
|----------|--------------------------|--------------------------------------------------------------|---------------------------|
| 270.2559 | Fatty acid               | heptadecanoic acid                                           | C17H34O2                  |
| 284.2715 | Fatty acid               | octadecanoic acid                                            | C18H36O2                  |
| 312.3028 | Fatty acid               | Eicosanoic acid                                              | C20H40O2                  |
| 340.3341 | Fatty acid               | docosanoic acid                                              | C22H44O2                  |
| 368.3654 | Fatty acid               | tetracosanoic acid                                           | C24H48O2                  |
| 396.3967 | Fatty acid               | hexacosanoic acid                                            | C26H52O2                  |
| 278.2246 | Fatty acid               | 9Z,12Z,15Z-octadecatrienoic acid                             | C18H30O2                  |
| 302.2246 | Fatty acid               | 5Z,8Z,11Z,14Z,17Z-eicosapentaenoic acid                      | C20H30O2                  |
| 280.2402 | Fatty acid               | 9Z,12Z-octadecadienoic acid                                  | C18H32O2                  |
| 304.2402 | Fatty acid               | 5Z,8Z,11Z,14Z-eicosatetraenoic acid                          | C20H32O2                  |
| 312.2896 | Fatty acid               | 5Z,8Z,11Z,14Z-eicosatetraenoic acid (5,6,8,9,11,12,14,15-d8) | C20H24D8O2                |
| 328.2402 | Fatty acid               | 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoic acid                   | C22H32O2                  |
| 330.2559 | Fatty acid               | 4,7,10,13,16-docosapentaenoic acid                           | C22H34O2                  |
| 330.2559 | Fatty acid               | 7,10,13,16,19-docosapentaenoic acid                          | C22H34O2                  |
| 306.2559 | Fatty acid               | 8Z,11Z,14Z-eicosatrienoic acid                               | C20H34O2                  |
| 306.2559 | Fatty acid               | 5Z,8Z,11Z-eicosatrienoic acid                                | C20H34O2                  |
| 332.2715 | Fatty acid               | 7Z,10Z,13Z,16Z-docosatetraenoic acid                         | C22H36O2                  |
| 635.4526 | Phosphatidylethanolamine | PE 28:0                                                      | $C_{33}H_{66}NO_8P$       |
| 663.4839 | Phosphatidylethanolamine | PE 30:0                                                      | $C_{35}H_{70}N_{1}O_{8}P$ |
| 699.5203 | Phosphatidylethanolamine | PEp 34:2                                                     | C39H74NO7P                |
| 701.5359 | Phosphatidylethanolamine | PEp 34:1                                                     | C39H76NO7P                |
| 703.5516 | Phosphatidylethanolamine | PEp 34:0                                                     | C39H78NO7P                |
| 715.5152 | Phosphatidylethanolamine | PE 34:2                                                      | C39H74NO8P                |
| 717.5309 | Phosphatidylethanolamine | PE 34:1                                                      | C39H76NO8P                |
| 719.5465 | Phosphatidylethanolamine | PE 34:0                                                      | C39H78NO8P                |
| 721.5046 | Phosphatidylethanolamine | PEp 36:5                                                     | C41H72NO7P                |
| 723.5203 | Phosphatidylethanolamine | РЕр 36:4                                                     | C41H74NO7P                |

| 727.5516 | Phosphatidylethanolamine | PEp 36:2 | C41H78NO7P          |
|----------|--------------------------|----------|---------------------|
| 729.5672 | Phosphatidylethanolamine | PEp 36:1 | C41H80NO7P          |
| 737.4996 | Phosphatidylethanolamine | PE 36:5  | C41H72NO8P          |
| 737.4996 | Phosphatidylethanolamine | PE 36:5  | C41H72NO8P          |
| 739.5152 | Phosphatidylethanolamine | PE 36:4  | C41H74NO8P          |
| 741.5309 | Phosphatidylethanolamine | PE 36:3  | C41H76NO8P          |
| 743.5465 | Phosphatidylethanolamine | PE 36:2  | C41H78NO8P          |
| 745.5622 | Phosphatidylethanolamine | PE 36:1  | C41H80NO8P          |
| 747.5203 | Phosphatidylethanolamine | PEp 38:6 | C43H74NO7P          |
| 749.5359 | Phosphatidylethanolamine | PEp 38:5 | C43H76NO7P          |
| 749.5359 | Phosphatidylethanolamine | PEp 38:5 | C43H76NO7P          |
| 751.5516 | Phosphatidylethanolamine | PEp 38:4 | C43H78NO7P          |
| 751.5516 | Phosphatidylethanolamine | PEp 38:4 | C43H78NO7P          |
| 753.5672 | Phosphatidylethanolamine | PEp 38:3 | C43H80NO7P          |
| 755.5829 | Phosphatidylethanolamine | PEp 38:2 | C43H82NO7P          |
| 757.5985 | Phosphatidylethanolamine | PEp 38:1 | C43H84NO7P          |
| 763.5152 | Phosphatidylethanolamine | PE 38:6  | C43H74NO8P          |
| 763.5152 | Phosphatidylethanolamine | PE 38:6  | C43H74NO8P          |
| 765.5309 | Phosphatidylethanolamine | PE 38:5  | $C_{45}H_{76}NO_8P$ |
| 765.5309 | Phosphatidylethanolamine | PE 38:5  | C43H76NO8P          |
| 767.5465 | Phosphatidylethanolamine | PE 38:4  | C43H78NO8P          |
| 773.5359 | Phosphatidylethanolamine | PEp 40:7 | C45H76NO7P          |
| 775.5516 | Phosphatidylethanolamine | PEp 40:6 | C45H78NO7P          |
| 777.5672 | Phosphatidylethanolamine | PEp 40:5 | $C_{45}H_{80}NO_7P$ |
| 779.5829 | Phosphatidylethanolamine | PEp 40:4 | C45H82NO7P          |
| 781.5985 | Phosphatidylethanolamine | PEp 40:3 | $C_{45}H_{84}NO_7P$ |
| 783.6142 | Phosphatidylethanolamine | PEp 40:2 | $C_{45}H_{86}NO_7P$ |
| 785.6298 | Phosphatidylethanolamine | PEp 40:1 | C45H88NO7P          |

| 789.5309 | Phosphatidylethanolamine     | PE 40:7  | C45H76NO8P          |
|----------|------------------------------|----------|---------------------|
| 791.5465 | Phosphatidylethanolamine     | PE 40:6  | $C_{45}H_{78}NO_8P$ |
| 791.5465 | Phosphatidylethanolamine     | PE 40:6  | C45H78NO8P          |
| 793.5622 | Phosphatidylethanolamine     | PE 40:5  | $C_{45}H_{80}NO_8P$ |
| 795.5778 | Phosphatidylethanolamine     | PE 40:4  | $C_{45}H_{84}NO_8P$ |
| 797.5935 | Phosphatidylethanolamine     | PE 40:3  | $C_{45}H_{84}NO_8P$ |
| 799.6091 | Phosphatidylethanolamine     | PE 40:2  | $C_{45}H_{86}NO_8P$ |
| 465.2855 | Lysophosphatidylethanolamine | LPE 17:1 | C22H44NO7P          |
| 425.2542 | Lysophosphatidylethanolamine | LPE 14:0 | C19H40NO7P          |
| 451.2699 | Lysophosphatidylethanolamine | LPE 16:1 | C21H42NO7P          |
| 453.2855 | Lysophosphatidylethanolamine | LPE 16:0 | C21H44NO7P          |
| 479.3012 | Lysophosphatidylethanolamine | LPE 18:1 | C23H46NO7P          |
| 481.3168 | Lysophosphatidylethanolamine | LPE 18:0 | C23H48NO7P          |
| 501.2855 | Lysophosphatidylethanolamine | LPE 20:4 | C25H44NO7P          |
| 503.3012 | Lysophosphatidylethanolamine | LPE 20:3 | C25H46NO7P          |
| 505.3168 | Lysophosphatidylethanolamine | LPE 20:2 | C25H48NO7P          |
| 507.3325 | Lysophosphatidylethanolamine | LPE 20:1 | C25H50NO7P          |
| 509.3481 | Lysophosphatidylethanolamine | LPE 20:0 | C25H52NO7P          |
| 499.2699 | Lysophosphatidylethanolamine | LPE 20:5 | C25H42NO7P          |
| 525.2855 | Lysophosphatidylethanolamine | LPE 22:6 | C27H44NO7P          |
| 527.3012 | Lysophosphatidylethanolamine | LPE 22:5 | $C_{27}H_{46}NO_7P$ |
| 529.3168 | Lysophosphatidylethanolamine | LPE 22:4 | C27H48NO7P          |
| 666.4472 | Phosphatidylglycerol         | PG 28:0  | C34H67O10P          |
| 720.4941 | Phosphatidylglycerol         | PG 32:1  | C38H73O10P          |
| 722.5098 | Phosphatidylglycerol         | PG 32:0  | C38H75O10P          |
| 746.5098 | Phosphatidylglycerol         | PG 34:2  | C40H75O10P          |
| 748.5254 | Phosphatidylglycerol         | PG 34:1  | C40H77O10P          |
| 750.5411 | Phosphatidylglycerol         | PG 34:0  | C40H79O10P          |

| 770.5098 | Phosphatidylglycerol | PG 36:4 | C42H75O10P            |
|----------|----------------------|---------|-----------------------|
| 772.5254 | Phosphatidylglycerol | PG 36:3 | C42H77O10P            |
| 774.5411 | Phosphatidylglycerol | PG 36:2 | $C_{42}H_{79}O_{10}P$ |
| 776.5567 | Phosphatidylglycerol | PG 36:1 | C42H81O10P            |
| 778.5724 | Phosphatidylglycerol | PG 36:0 | C42H83O10P            |
| 794.5098 | Phosphatidylglycerol | PG 38:6 | C44H75O10P            |
| 796.5254 | Phosphatidylglycerol | PG 38:5 | C44H77O10P            |
| 798.5411 | Phosphatidylglycerol | PG 38:4 | C44H79O10P            |
| 800.5567 | Phosphatidylglycerol | PG 38:3 | C44H81O10P            |
| 820.5254 | Phosphatidylglycerol | PG 40:7 | C46H77O10P            |
| 822.5411 | Phosphatidylglycerol | PG 40:6 | C46H79O10P            |
| 824.5567 | Phosphatidylglycerol | PG 40:5 | $C_{46}H_{81}O_{10}P$ |
| 826.5724 | Phosphatidylglycerol | PG 40:4 | C46H83O10P            |
| 810.5258 | Phosphatidylinositol | PI 32:0 | C41H79O13P            |
| 808.5102 | Phosphatidylinositol | PI 32:1 | C41H77O13P            |
| 806.4945 | Phosphatidylinositol | PI 32:2 | C41H75O13P            |
| 838.5571 | Phosphatidylinositol | PI 34:0 | C43H83O13P            |
| 836.5415 | Phosphatidylinositol | PI 34:1 | C43H81O13P            |
| 834.5258 | Phosphatidylinositol | PI 34:2 | C43H79O13P            |
| 866.5884 | Phosphatidylinositol | PI 36:0 | C45H87O13P            |
| 864.5728 | Phosphatidylinositol | PI 36:1 | C45H85O13P            |
| 862.5571 | Phosphatidylinositol | PI 36:2 | C45H83O13P            |
| 860.5415 | Phosphatidylinositol | PI 36:3 | C45H81O13P            |
| 858.5258 | Phosphatidylinositol | PI 36:4 | C45H79O13P            |
| 856.5102 | Phosphatidylinositol | PI 36:5 | C45H77O13P            |
| 890.5884 | Phosphatidylinositol | PI 38:2 | C47H87O13P            |
| 888.5728 | Phosphatidylinositol | PI 38:3 | C47H85O13P            |
| 886.5571 | Phosphatidylinositol | PI 38:4 | C47H83O13P            |

| 884.5415 | Phosphatidylinositol | PI 38:5       | C47H81O13P                                         |
|----------|----------------------|---------------|----------------------------------------------------|
| 882.5258 | Phosphatidylinositol | PI 38:6       | C47H79O13P                                         |
| 914.5884 | Phosphatidylinositol | PI 40:4       | C49H87O13P                                         |
| 912.5728 | Phosphatidylinositol | PI 40:5       | $C_{49}H_{85}O_{13}P$                              |
| 910.5571 | Phosphatidylinositol | PI 40:6       | C49H83O13P                                         |
| 908.5415 | Phosphatidylinositol | PI 40:7       | C49H81O13P                                         |
| 679.4424 | Phosphatidylserine   | PS 28:0       | C34H66NO10P                                        |
| 759.5050 | Phosphatidylserine   | PS 34:2       | C40H74NO10P                                        |
| 761.5207 | Phosphatidylserine   | PS 34:1       | C40H76NO10P                                        |
| 763.5363 | Phosphatidylserine   | PS 34:0       | C40H78NO10P                                        |
| 781.4894 | Phosphatidylserine   | PS 36:5       | C42H72NO10P                                        |
| 783.5050 | Phosphatidylserine   | PS 36:4       | C42H74NO10P                                        |
| 785.5207 | Phosphatidylserine   | PS 36:3       | C42H76NO10P                                        |
| 787.5363 | Phosphatidylserine   | PS 36:2       | C42H78NO10P                                        |
| 789.5520 | Phosphatidylserine   | PS 36:1       | C42H80NO10P                                        |
| 807.5050 | Phosphatidylserine   | PS 38:6       | C44H74NO10P                                        |
| 809.5207 | Phosphatidylserine   | PS 38:5       | C44H76NO10P                                        |
| 811.5363 | Phosphatidylserine   | PS 38:4       | C44H78NO10P                                        |
| 813.5520 | Phosphatidylserine   | PS 38:3       | C44H80NO10P                                        |
| 815.5676 | Phosphatidylserine   | PS 38:2       | C44H82NO10P                                        |
| 817.5833 | Phosphatidylserine   | PS 38:1       | C44H84NO10P                                        |
| 833.5207 | Phosphatidylserine   | PS 40:7       | C46H76NO10P                                        |
| 835.5363 | Phosphatidylserine   | PS 40:6       | C46H78NO10P                                        |
| 837.5520 | Phosphatidylserine   | PS 40:5       | C46H80NO10P                                        |
| 839.5676 | Phosphatidylserine   | PS 40:4       | C46H82NO10P                                        |
| 841.5833 | Phosphatidylserine   | PS 40:3       | C46H84NO10P                                        |
| 843.5989 | Phosphatidylserine   | PS 40:2       | C46H86NO10P                                        |
| 723.4591 | Sulfatide            | C12 Sulfatide | C <sub>36</sub> H <sub>69</sub> NO <sub>11</sub> S |

| 779.5217 | Sulfatide           | C16 Sulfatide      | C40H77NO11S |
|----------|---------------------|--------------------|-------------|
| 795.5167 | Sulfatide           | C16-OH Sulfatide   | C40H77NO12S |
| 807.5530 | Sulfatide           | C18 Sulfatide      | C42H81NO11S |
| 823.5480 | Sulfatide           | C18-OH Sulfatide   | C42H81NO12S |
| 835.5843 | Sulfatide           | C20 Sulfatide      | C44H85NO11S |
| 851.5793 | Sulfatide           | C20-OH Sulfatide   | C44H85NO12S |
| 863.6156 | Sulfatide           | C22 Sulfatide      | C46H89NO11S |
| 879.6106 | Sulfatide           | C22-OH Sulfatide   | C46H89NO12S |
| 889.6313 | Sulfatide           | C24:1 Sulfatide    | C48H91NO11S |
| 905.6262 | Sulfatide           | C24:1-OH Sulfatide | C48H91NO12S |
| 891.6469 | Sulfatide           | C24 Sulfatide      | C48H93NO11S |
| 907.6419 | Sulfatide           | C24-OH Sulfatide   | C48H93NO12S |
| 677.4996 | Phosphatidylcholine | PC 28:0            | C36H72NO8P  |
| 731.5465 | Phosphatidylcholine | PC 32:1            | C40H78NO8P  |
| 733.5622 | Phosphatidylcholine | PC 32:0            | C40H80NO8P  |
| 755.5465 | Phosphatidylcholine | PC 34:3            | C42H78NO8P  |
| 757.5622 | Phosphatidylcholine | PC 34:2            | C42H80NO8P  |
| 759.5778 | Phosphatidylcholine | PC 34:1            | C42H82NO8P  |
| 761.5935 | Phosphatidylcholine | PC 34:0            | C42H84NO8P  |
| 779.5465 | Phosphatidylcholine | PC 36:5            | C44H78NO8P  |
| 779.5465 | Phosphatidylcholine | PC 36:5            | C44H78NO8P  |
| 781.5622 | Phosphatidylcholine | PC 36:4            | C44H80NO8P  |
| 783.5778 | Phosphatidylcholine | PC 36:3            | C44H82NO8P  |
| 785.5935 | Phosphatidylcholine | PC 36:2            | C44H84NO8P  |
| 787.6091 | Phosphatidylcholine | PC 36:1            | C44H86NO8P  |
| 789.6248 | Phosphatidylcholine | PC 36:0            | C44H88NO8P  |
| 803.5465 | Phosphatidylcholine | PC 38:7            | C46H78NO8P  |
| 805.5622 | Phosphatidylcholine | PC 38:6            | C46H80NO8P  |

| 807.5778 | Phosphatidylcholine     | PC 38:5           | C46H82NO8P  |
|----------|-------------------------|-------------------|-------------|
| 807.5778 | Phosphatidylcholine     | PC 38:5           | C46H82NO8P  |
| 807.5778 | Phosphatidylcholine     | PC 38:5           | C46H82NO8P  |
| 809.5935 | Phosphatidylcholine     | PC 38:4           | C46H84NO8P  |
| 829.5622 | Phosphatidylcholine     | PC 40:8           | C48H80NO8P  |
| 831.5778 | Phosphatidylcholine     | PC 40:7           | C48H82NO8P  |
| 833.5935 | Phosphatidylcholine     | PC 40:6           | C48H84NO8P  |
| 835.6091 | Phosphatidylcholine     | PC 40:5           | C48H86NO8P  |
| 837.6248 | Phosphatidylcholine     | PC 40:4           | C48H88NO8P  |
| 507.3325 | Lysophosphatidylcholine | LPC 17:1          | C25H50NO7P  |
| 509.3481 | Lysophosphatidylcholine | LPC 17:0          | C25H52NO7P  |
| 467.3012 | Lysophosphatidylcholine | LPC 14:0          | C22H46NO7P  |
| 493.3168 | Lysophosphatidylcholine | LPC 16:1          | C24H48NO7P  |
| 495.3325 | Lysophosphatidylcholine | LPC 16:0          | C24H50NO7P  |
| 519.3325 | Lysophosphatidylcholine | LPC 18:2          | C26H50NO7P  |
| 521.3481 | Lysophosphatidylcholine | LPC 18:1          | C26H52NO7P  |
| 523.3638 | Lysophosphatidylcholine | LPC 18:0          | C26H54NO7P  |
| 541.3168 | Lysophosphatidylcholine | LPC 20:5          | C28H48NO7P  |
| 543.3325 | Lysophosphatidylcholine | LPC 20:4          | C28H50NO7P  |
| 545.3481 | Lysophosphatidylcholine | LPC 20:3          | C28H52NO7P  |
| 547.3638 | Lysophosphatidylcholine | LPC 20:2          | C28H54NO7P  |
| 549.3794 | Lysophosphatidylcholine | LPC 20:1          | C28H56NO7P  |
| 551.3951 | Lysophosphatidylcholine | LPC 20:0          | C28H58NO7P  |
| 567.3325 | Lysophosphatidylcholine | LPC 22:6          | C30H50NO7P  |
| 646.5050 | Sphingomyelin           | C12 Sphingomyelin | C35H71N2O6P |
| 702.5676 | Sphingomyelin           | C16 Sphingomyelin | C39H79N2O6P |
| 716.5832 | Sphingomyelin           | C17 Sphingomyelin | C40H81N2O6P |
| 730.5989 | Sphingomyelin           | C18 Sphingomyelin | C41H83N2O6P |

| 758.6302 | Sphingomyelin | C20 Sphingomyelin                                                                                     | C43H87N2O6P           |
|----------|---------------|-------------------------------------------------------------------------------------------------------|-----------------------|
| 784.6458 | Sphingomyelin | C22:1 Sphingomyelin                                                                                   | $C_{45}H_{89}N_2O_6P$ |
| 786.6615 | Sphingomyelin | C22 Sphingomyelin                                                                                     | C45H91N2O6P           |
| 812.6771 | Sphingomyelin | C24:1 Sphingomyelin                                                                                   | C47H93N2O6P           |
| 814.6928 | Sphingomyelin | C24 Sphingomyelin                                                                                     | C47H95N2O6P           |
| 842.7241 | Sphingomyelin | C26 Sphingomyelin                                                                                     | C49H99N2O6P           |
| 840.7084 | Sphingomyelin | C26:1 Sphingomyelin                                                                                   | C49H97N2O6P           |
| 704.5832 | Sphingomyelin | C16DH Sphingomyelin                                                                                   | C39H81N2O6P           |
| 732.6145 | Sphingomyelin | C18DH Sphingomyelin                                                                                   | C41H85N2O6P           |
| 760.6458 | Sphingomyelin | C20DH Sphingomyelin                                                                                   | C43H89N2O6P           |
| 800.6407 | Sphingomyelin | C22:1DH Sphingomyelin                                                                                 | $C_{45}H_{89}N_2O_7P$ |
| 788.6771 | Sphingomyelin | C22DH Sphingomyelin                                                                                   | C45H93N2O6P           |
| 814.6928 | Sphingomyelin | C24:1DH Sphingomyelin                                                                                 | C47H95N2O6P           |
| 816.7084 | Sphingomyelin | C24DH Sphingomyelin                                                                                   | C47H97N2O6P           |
| 842.7241 | Sphingomyelin | C26:1DH Sphingomyelin                                                                                 | C49H99N2O6P           |
| 844.7397 | Sphingomyelin | C26DH Sphingomyelin                                                                                   | C49H101N2O6P          |
| 481.4495 | Ceramide      | C12 Cer; N-(dodecanoyl)-ceramide; N-(dodecanoyl)-ceramide                                             | C30H59NO3             |
| 509.4808 | Ceramide      | C14 Cer; N-(tetradecanoyl)-ceramide; N-(myristoyl)-ceramide                                           | C32H63NO3             |
| 537.5121 | Ceramide      | C16 Cer; N-(hexadecanoyl)-ceramide; N-(palmitoyl)-ceramide; N-<br>palmitoyl-sphingosine               | C34H67NO3             |
| 549.5121 | Ceramide      | C17 Cer; N-(heptadecanoyl)-ceramide                                                                   | C35H67NO3             |
| 565.5434 | Ceramide      | C18 Cer; N-(octadecanoyl)-ceramide; N-(stearoyl)-ceramide                                             | C36H71NO3             |
| 593.5747 | Ceramide      | C20 Cer; N-(eicosanoyl)-ceramide; N-(eicosanoyl)-ceramide                                             | C38H75NO3             |
| 621.6060 | Ceramide      | C22 Cer; N-(docosanoyl)-ceramide; N-(docosanoyl)-ceramide; N-<br>behenoyl-sphingosine                 | C40H79NO3             |
| 647.6216 | Ceramide      | C24:1 Cer; N-(15Z-tetracosenoyl)-ceramide; N-(15Z-tetracosenoyl)-<br>ceramide; N-nervonyl-sphingosine | C42H81NO3             |
| 649.6373 | Ceramide      | C24 Cer; N-(tetracosanoyl)-ceramide; N-<br>lignoceroyl-sphingosine                                    | C42H83NO3             |
| 675.6529 | Ceramide      | C26:1 Cer; N-(17Z-hexacosenoyl)-ceramide; N-(17Z-hexacosenoyl)-<br>ceramide                           | C44H85NO3             |
| 677.6686 | Ceramide      | C26 Cer; N-(hexacosanoyl)-ceramide; N-(hexacosanoyl)-ceramide                                         | C44H87NO3             |

|          |                   | C16DH Cer: N (havadecanovl) dihydroceramide: N (nalmitovl)                                                               |                     |
|----------|-------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------|
| 539.5277 | Ceramide          | dihydroceramide                                                                                                          | C34H69NO3           |
| 567,5590 | Ceramide          | C18DH Cer; N-(octadecanoyl)-dihydroceramide; N-(stearoyl)-<br>dihydroceramide                                            | C36H73NO3           |
| 507.5570 | Cerumide          | C20DH Cer; N-(eicosanoyl)-dihydroceramide; N-(eicosanoyl)-                                                               | 00011/01/00         |
| 595.5903 | Ceramide          | dihydroceramide<br>C22DH Cer: N-(docosanoyl)-dihydroceramide: N-(docosanoyl)-                                            | C38H77NO3           |
| 623.6216 | Ceramide          | dihydroceramide                                                                                                          | C40H81NO3           |
| 651.6529 | Ceramide          | C24DH Cer; N-(tetracosanoyl)-dihydroceramide; N-(tetracosanoyl)-<br>dihydroceramide                                      | C42H85NO3           |
|          |                   | C24:1DH Cer; N-(15Z-tetracosenoyl)-dihydroceramide; N-(15Z-                                                              |                     |
| 649.6373 | Ceramide          | tetracosenoyl)-dihydroceramide; N-nervonyl-sphinganine<br>C26DH Cer: N-(hexacosanoyl)-dihydroceramide: N-(hexacosanoyl)- | C42H83NO3           |
| 679.6842 | Ceramide          | dihydroceramide                                                                                                          | C44H89NO3           |
| 677.6686 | Ceramide          | C26:1DH Cer; N-(17Z-hexacosenoyl)-dihydroceramide; N-(17Z-<br>hexacosenoyl)-dihydroceramide                              | C44H87NO3           |
| 638.6001 | Cholestervl Ester | 17:0 Cholestervl ester                                                                                                   | $C_{44}H_{78}O_{2}$ |
| 666.6315 | Cholesteryl Ester | 19:0 Cholesteryl ester                                                                                                   | C46H82O2            |
| 624 5845 | Cholesteryl Ester | 16:0 Cholesteryl ester                                                                                                   | C43H76O2            |
| 652 6159 | Cholosteryl Ester | 18:0 Chalasterral aster                                                                                                  | C45119002           |
| 052.0158 | Cholesteryl Ester | 18:0 Cholesteryl ester                                                                                                   | C45H80O2            |
| 650.6002 | Cholesteryl Ester | 18:1 Cholesteryl ester                                                                                                   | C45H78O2            |
| 648.5845 | Cholesteryl Ester | 18:2 Cholesteryl ester                                                                                                   | C45H76O2            |
| 646.5689 | Cholesteryl Ester | 18:3 Cholesteryl ester                                                                                                   | C45H74O2            |
| 674.6002 | Cholesteryl Ester | 20:3 Cholesteryl ester                                                                                                   | C47H78O2            |
| 672.5845 | Cholesteryl Ester | 20:4 Cholesteryl ester                                                                                                   | C47H76O2            |
| 670.5689 | Cholesteryl Ester | 20:5 Cholesteryl ester                                                                                                   | C47H74O2            |
| 700.6158 | Cholesteryl Ester | 22:4 Cholesteryl ester                                                                                                   | C49H80O2            |
| 698.6002 | Cholesteryl Ester | 22:5 Cholesteryl ester                                                                                                   | C49H78O2            |
| 698.6002 | Cholesteryl Ester | 22:5 Cholesteryl ester                                                                                                   | $C_{49}H_{78}O_2$   |
| 696.5845 | Cholesteryl Ester | 22:6 Cholesteryl ester                                                                                                   | C49H76O2            |
| 386.3549 | Cholesterol       | Cholesterol                                                                                                              | C27H46O             |
| 806.7363 | Triacylglycerol   | TG 48:0                                                                                                                  | C51H98O6            |
| 802.7050 | Triacylglycerol   | TG (48:2)                                                                                                                | C51H94O6            |
| 804.7207 | Triacylglycerol   | TG (48:1)                                                                                                                | C51H96O6            |

#### Molecules 2018, 23, 2862

| 834.7676 | Triacylglycerol | TG (50:0) | C53H102O6 |
|----------|-----------------|-----------|-----------|
| 832.7520 | Triacylglycerol | TG (50:1) | C53H100O6 |
| 830.7363 | Triacylglycerol | TG (50:2) | C53H98O6  |
| 828.7207 | Triacylglycerol | TG (50:3) | C53H96O6  |
| 826.7050 | Triacylglycerol | TG (50:4) | C53H94O6  |
| 860.7832 | Triacylglycerol | TG (52:1) | C55H104O6 |
| 858.7676 | Triacylglycerol | TG (52:2) | C55H102O6 |
| 856.7520 | Triacylglycerol | TG (52:3) | C55H100O6 |
| 854.7363 | Triacylglycerol | TG (52:4) | C55H98O6  |
| 852.7207 | Triacylglycerol | TG (52:5) | C55H96O6  |
| 886.7989 | Triacylglycerol | TG (54:2) | C57H106O6 |
| 884.7832 | Triacylglycerol | TG 54:3)  | C57H104O6 |
| 882.7676 | Triacylglycerol | TG (54:4) | C57H102O6 |
| 880.7520 | Triacylglycerol | TG (54:5) | C57H100O6 |
| 878.7363 | Triacylglycerol | TG 54:6 ) | C57H98O6  |
| 906.7676 | Triacylglycerol | TG (56:6) | C59H102O6 |
| 908.7832 | Triacylglycerol | TG (56:5) | C59H104O6 |
| 910.7989 | Triacylglycerol | TG (56:4) | C59H106O6 |
| 912.8145 | Triacylglycerol | TG (56:3) | C59H108O6 |

## **Supplementary Figure**



Figure S1. The workflow of FFAs treated HepG2 cell experiments

#### Supplementary materials and methods

#### Sample preparation for aqueous phase

In brief, aqueous phase was extracted from FFAs treated 10<sup>6</sup> HepG2 cells using the modified Folch method. The aqueous phase extract (upper layer) was dissolved in isopropanol/acetonitrile/water (2:1:1, V/V/V) mixture. After vortexing (30 sec, 4 times) and centrifuging (12,000 rpm, for 20 min at 4°C) the mixture, the supernatant was transferred into a vial for LC–MS analysis. [Samples per group were biological triplicates (n= total number of biological replicates) and each of biological triplicates was detected three times for technical triplicates (triplicates).]

#### Aqueous phase analyzed by LC-MS

Mass spectrometry analysis was performed using the ultra-performance liquid chromatography (UPLC) system coupled with time-of-flight mass spectrometry (TOF-MS; Waters, USA). Chromatographic separation was performed on an ACQUITY UPLC BEH Amide column (2.1 mm × 150 mm × 1.7  $\mu$ m). Column temperature was maintained at 45°C. For metabolite profiling, the mobile phase A was water with 0.1% formic acid and the mobile phase B was acetonitrile with 0.1% formic acid. The flow rate was 0.4 mL/min, and the solvent gradient was as follows: 0–0.1 min, 99% solvent B; 0.1–7 min, 99%–30% solvent B; 7–7.2 min, 30%–99% solvent B; 7.2–10 min.

Mass spectrometric analysis was performed using the Waters Synapt HDMS system operating in positive- and negative-ion ESI mode. The capillary voltage was set at 2,700 V in ESI-positive mode and 2,000 V in ESI-negative mode and cone voltage was set at 35 V, respectively. Desolvation gas flow rate was set at 700 L/hr, and cone gas flow was maintained at 25 L/hr. The desolvation and source temperatures were set at 80°C. MS data were collected in centroid mode over a range of 20–990 m/z at a rate of 0.1 scan/sec. Leucine-enkephalin was used as the reference compound. LockSpray frequency was set at 0.5 sec and was averaged over 10 scans for correction.

Data matrices were determined utilizing the Progenesis QI software (Waters) by the extracted m/z value, retention time (RT), and ion intensity. Metabolite identification was performed by searching the extracted data against the METLIN (http://metlin.scripps.edu/index.php), LIPID MAPS (http://www.lipidmaps.org/), Human Metabolome Database (HMDB) (http://www.hmdb.ca/), and in-house database (Table S6).



© 2018 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).