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Abstract: [Cp*Rh] complexes (Cp* = pentamethylcyclopentadienyl) are attracting renewed interest in
coordination chemistry and catalysis, but these useful compounds often undergo net two-electron
redox cycling that precludes observation of individual one-electron reduction events. Here, we show
that a [Cp*Rh] complex bearing the 4,4′-dinitro-2,2′-bipyridyl ligand (dnbpy) (3) can access
a distinctive manifold of five oxidation states in organic electrolytes, contrasting with prior work
that found no accessible reductions in aqueous electrolyte. These states are readily generated
from a newly isolated and fully characterized rhodium(III) precursor complex 3, formulated as
[Cp*Rh(dnbpy)Cl]PF6. Single-crystal X-ray diffraction (XRD) data, previously unavailable for the
dnbpy ligand bound to the [Cp*Rh] platform, confirm the presence of both [η5-Cp*] and [κ2-dnbpy].
Four individual one-electron reductions of 3 are observed, contrasting sharply with the single
two-electron reductions of other [Cp*Rh] complexes. Chemical preparation and the study of the
singly reduced species with electronic absorption and electron paramagnetic resonance spectroscopies
indicate that the first reduction is predominantly centered on the dnbpy ligand. Comparative cyclic
voltammetry studies with [NBu4][PF6] and [NBu4][Cl] as supporting electrolytes indicate that the
chloride ligand can be lost from 3 by ligand exchange upon reduction. Spectroelectrochemical studies
with ultraviolet (UV)-visible detection reveal isosbestic behavior, confirming the clean interconversion
of the reduced forms of 3 inferred from the voltammetry with [NBu4][PF6] as supporting electrolyte.
Electrochemical reduction in the presence of triethylammonium results in an irreversible response,
but does not give rise to catalytic H2 evolution, contrasting with the reactivity patterns observed in
[Cp*Rh] complexes bearing bipyridyl ligands with less electron-withdrawing substituents.

Keywords: rhodium; electrochemistry; paramagnetic; spectroelectrochemistry; catalysis

1. Introduction

The development of metal complexes capable of efficiently storing and transferring reducing
equivalents attracts interest in a variety of contexts. Reduced metal complexes are key reaction
intermediates in many transformations, including photoredox reactions enabled by reductive
quenching pathways [1], olefin polymerization or oligomerization [2], and reactions involving
concerted oxidative addition to transition metal complexes [3]. Reduced metal complexes also attract
significant attention in the area of molecular electrocatalysis [4], as several reduced intermediates are
typically involved in multielectron redox cycles that generate fuels like H2 via H+ and e− coupling [5,6].
In many of these cycles, however, the key metal complexes reduced by one or more e− equivalents are
not isolated or detected—instead, their involvement is inferred from the observed reactivity [7].

[Cp*Rh] complexes (Cp* = pentamethylcyclopentadienyl, Scheme 1) are one class of catalysts for
H+ and e− coupling that are capable of generating H2 from water [8]. These catalysts are supported
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by bidentate chelating ligands, such as 2,2′-bipyridyl (bpy, as in complex 1) and its substituted
derivatives [8–10]. [Cp*] and diimine ligands (like bpy) are readily installed through straightforward
synthetic chemistry onto the rhodium center in these compounds [10,11], and thus this system has
been popular for model studies of H2 generation [12,13] as well as applications in other areas [14].
In this work, two-electron reduction of the rhodium(III) precatalyst in the presence of a suitably
strong acid results in quantitative formation of H2 and regeneration of the starting rhodium(III)
complexes [10]. However, in chemistry that is distinctive for this family of catalysts, the putative
rhodium(II) intermediate generated by the initial 1e− reduction of a given precatalyst does not result
in a stable intermediate. In chemical work, treatment of RhIII with 1 equiv. of reducing agent results
in disproportionation of two transient RhII complexes to yield 0.5 equiv. each of RhI and RhIII [9].
In electrochemical work, a so-called ECE-type event occurs at the electrode: a single reductive wave is
observed by cyclic voltammetry, corresponding to the first reduction of RhIII (E), followed by a fast
chemical reaction step (C), and then immediate transfer of a second electron (E′) to reduce RhII to
RhI [15]. Thus, RhI is very quickly generated following formation of RhII, because the E(RhII/RhI) is
more positive than E(RhIII/RhII). These two-electron events obscure the routine measurement of the
individual one-electron reduction events involved in this chemistry [7,10,16].
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The energy conversion efficiency of these [Cp*Rh] catalysts is closely tied to the potentials of
the individual reduction events [7,17,18], but only a limited level of control of these parameters has
been demonstrated to date. Moreover, the use of redox-active bpy ligands (and other diimines)
in these complexes has attracted significant attention [19–21]. Understanding the nature of the
observed reductions is key, as these [Cp*Rh] complexes bearing diimine ligands undergo unique
[Cp*]-centered protonations [22,23] during catalysis to generate [Cp*H] complexes [24] that are active
for H2 evolution. Our group recently showed that installation of electron-withdrawing trifluoromethyl
groups at the 4 and 4′ positions of the bpy ligand (as in 2) results in a previously unobserved catalytic
pathway involving reduction of the 4,4′-bis(trifluoromethyl)-2,2′-bipyridyl ligand on [(Cp*H)RhI]
species, followed by H2 evolution [10]. We have also found that [Cp*Rh] complexes bearing bidentate
diphosphine [25] or hybrid phosphine-quinoline ligands [26] are not capable of similar catalysis.
Thus, although the role of supporting bidentate ligand structure in formation of [Cp*H] intermediates
is not yet clear, it is of high interest considering the new reactivity manifolds that may be accessible
with [Cp*H] complexes [27,28].

As use of 4,4′-bis(trifluoromethyl)-2,2′-bipyridyl enables observation of a new catalytic pathway
with 2 [10], we became interested in the electrochemical behavior engendered by use of the
4,4′-dinitro-2,2′-bipyridyl (dnbpy) ligand, which by contrast features electron-withdrawing nitro
groups (–NO2). In considering use of the dnbpy ligand, it is useful to note the Hammett parameter (σ−)
values associated with the hydrogen (–H), trifluoromethyl (–CF3), and nitro functionalities (–NO2).
Specifically, these values are 0, 0.65, and 1.27, respectively [29]. Thus, in terms of the effects engendered
by substituents at the 4 and 4′ positions on electronic properties, moving from –CF3 to –NO2 represents
a similarly significant difference as moving from –H to –CF3.

We were pleased to find that Lütz and co-workers previously reported preparation of
[Cp*Rh(dnbpy)Cl]Cl [30], and that [Cp*Ir] complexes bearing dnbpy have been known for some
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years [31–33]. Moreover, dnbpy [34–36] and other nitrated polypyridyls [37,38] have been explored
as ligands to rhodium in other frameworks. We were especially intrigued to read that Lütz and
co-workers found that [Cp*Rh(dnbpy)Cl]Cl did not undergo electrochemical reduction down to –1 V
vs. Ag/AgCl in aqueous electrolyte [30]. However, in their report, [Cp*Rh(dnbpy)Cl]Cl was prepared
for use in a high-throughput, robotic electrochemical system, rather than fully characterized with
proof of homogeneity and bulk composition from synthetic work [30]. Moreover, the electrochemical
studies were carried out in aqueous electrolyte, rather than the organic electrolytes common in studies
involving organometallic compounds.

Here, we now report the isolation, full characterization, and electrochemical studies of
[Cp*Rh(dnbpy)Cl]PF6 (3). We find that use of dnbpy engenders unique electrochemical properties
in organic solvent-based electrolytes, as 3 undergoes three quasi-reversible one-electron reduction
events and an additional, one-electron reduction event that is irreversible. The first, one-electron
reduced product of 3 can be generated chemically and isolated, and spectroscopic work confirms
that the first electron transferred is stored in orbitals primarily associated with the dnbpy ligand.
Spectroelectrochemical studies reveal the clean interconversion of 3 and its reduction products,
as isosbestic behavior is observed during multistep polarization experiments. The addition of acid
in the form of triethylammonium bromide (pKa ≈ 19 in MeCN [39]) does not result in generation of
diamagnetic [Cp*H] complexes or hydrides, and does not lead to catalytic activity toward H2 evolution.
These results are discussed in the context of understanding and guiding the order and energetics of e−

and H+ delivery to complexes assembled with the [Cp*Rh] fragment.

2. Results

In order to study the properties of dnbpy complexes containing the [Cp*Rh] fragment, we targeted
synthesis of [Cp*Rh(dnbpy)Cl]PF6 (3). We have encountered cleaner reactivity of the [Cp*RhCl2]2

precursor [11] upon use of silver reagents to remove one equivalent of chloride from each rhodium
center, motivating preparation of the hexafluorophosphate salt 3 [40,41]. We first synthesized dnbpy
with literature methods, routinely obtaining an overall yield of ca. 50% [42–47]. 3 was then prepared
in tetrahydrofuran (THF) by addition of 2 equiv. of dnbpy to [Cp*RhCl2]2, followed by addition
of 2 equiv. of AgPF6, resulting in formation of the rhodium(III) complex 3 in moderate 44% yield
(See Experimental Section and SI, Figures S1–S4, S6, S7 for characterization data).

Vapor diffusion of diethyl ether into a concentrated acetonitrile (MeCN) solution of 3 yielded
orange crystals suitable for single-crystal X-ray diffraction (XRD) studies. The geometry at the
rhodium center is pseudo-octahedral, with a first coordination sphere around the metal center
containing [η5-Cp*], [κ2-dnbpy], and a bound chloride anion (see Figure 1). The geometry and
metal-ligand distances do not differ significantly from other structures of [Cp*RhIII] complexes
containing 4,4′-disubstituted-2,2′-bipyridyl ligands [10]. However, only a limited number of XRD
datasets are available in the Cambridge Structural Database for metal complexes of dnbpy, and our
structure of 3 is the first structure obtained with rhodium [48]. In the structure of 3, as in most other
structures containing dnbpy, the (NO2) groups are approximately co-planar with their partnered
pyridine rings. In fact, of the seven total structures of dnbpy itself [49], or those containing
dnbpy [50–55], only one of these [51] has an O–N–C–C torsion angle greater than 13◦. The observed
co-planarity of the NO2 groups and the pyridine rings suggests that there is likely strong electronic
communication between these substituents and the π system of bipyridine. Therefore, we turned to
electrochemical methods to establish the influence of the nitro groups on the electrochemical properties
of the metal complex.
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Figure 1. Solid-state structure (X-ray diffraction (XRD)) of 3. H atoms, PF6
− counteranion, and one

co-crystallized MeCN molecule omitted for clarity. Displacement ellipsoids are shown at 50% probability.

Cyclic voltammograms (CVs) of 3 (ca. 1 mM) were collected in THF solution containing 0.1 M
tetrabutylammonium hexafluorophosphate ([NBu4][PF6]) as supporting electrolyte. Beginning at
oxidizing potentials, 3 displays a manifold of four reduction events (see Figure 2) that onset around
−1 V versus the ferrocenium/ferrocene couple (denoted hereafter as Fc+/0). The key parameters
associated with each of these four reduction events are summarized in Table 1. If the switching
potential for the return anodic sweep is set at −2.2 V, the first three reduction events appear to be
quasi-reversible with well-defined, clean return anodic waves. However, if the switching potential
is set at a greater negative value of −2.6 V, the fourth reduction wave is clearly visible. This fourth
reduction, however, is not accompanied by a clean return oxidation wave, suggesting that one or more
significant chemical reactions may follow injection of a fourth electron into the rhodium complex.
Interrogation of the scan rate dependence of the both the cathodic and anodic peak currents for
the first three observed redox processes reveals a square-root dependence (see SI, Figures S13–S15).
This indicates that all the oxidized and reduced forms of the complex undergoing reduction and
oxidation are freely diffusional in solution and homogeneous.

We also carried out cyclic voltammetry of 3 in acetonitrile electrolyte, and consistently observed
a similar manifold of reduction events (see SI, Figure S10). Specifically, three quasi-reversible reductions
are followed by a virtually irreversible reduction, albeit at shifted potentials (see [56] for further
discussion). However, we conducted most of our studies in THF electrolyte, as the complex typically
yielded a better response under these conditions.
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ca. −0.6 V to a switching potential of −2.2 V and returning to −0.6 V. Light blue line: Cathodic sweep
from ca. −0.6 V to a switching potential of −2.6 V and returning to −0.6 V. Gray line: electrolyte-only
blank. Conditions: [3] ≈ 1 × 10−3 M; electrolyte: 0.1 M [NBu4][PF6] in tetrahydrofuran (THF).

Table 1. Cyclic voltammetry data for 3. Conditions: [3] = 10−3 M; scan rate: 100 mV/s; electrolyte:
0.1 M [NBu4][PF6] in THF.

Redox Event E1/2 (V) ∆Ep (V) Ep,c (V) Ep,a (V)

A −0.94 0.20 −1.04 −0.84
B −1.44 0.18 −1.53 −1.35
C −1.89 0.17 −1.98 −1.81
D - - −2.36 -

In the cyclic voltammetry shown in Figure 2, the peak heights of the reduction processes
appear to be similar, suggesting that the same number of electrons are transferred during each
event. However, as the individual reduction events are relatively closely spaced, estimation of the
appropriate background-corrected peak heights could be challenging. Therefore, differential pulse
voltammetry (DPV) was carried out to quantitatively examine the number of electrons transferred
in each event. For this determination, we prepared a solution containing a 1:1 mixture of ferrocene
(Cp2Fe) and 3 in THF containing 0.1 M [NBu4][PF6] supporting electrolyte and collected a differential
pulse voltammogram from +0.5 V to −2.6 V (see SI, Figure S12). In addition to the one-electron process
corresponding to the FeIII/FeII couple of ferrocene, we observe four closely spaced and reasonably
well resolved processes over a range similar to that seen for 3 in cyclic voltammetry. The areas of the
four processes measured for 3 and that of Cp2Fe were fit to Gaussian profiles, and comparison of the
peak areas to that of the internal ferrocene standard confirms that one electron is indeed transferred in
each event (see SI, Table S3 for peak area ratios).

The electrochemical response of complex 3 sharply contrasts with the behavior commonly
encountered for other [Cp*RhIII] complexes. Most other chloride-bound complexes in this family
containing other diimine [8,10,24,40], diphosphine [9,25], or hybrid phosphine-monoimine ligands [26]
undergo a net two-electron reduction that appears as a single redox process in cyclic voltammetry
experiments. As described in the Introduction, this ECE-type electrochemical response implicates
that a chemical reaction follows the initial reduction of the metal complex and leads to formation
of a species that undergoes immediate transfer of a second electron [7,15]. Disentangling the
nature of the elementary steps in this chemistry is of high interest, as the resulting 2e−-reduced
complexes often undergo subsequent reactivity with protons. Notably, our recent work examining
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the case of a [Cp*Rh] complex bearing the hybrid 8-(diphenylphosphino)quinoline (PQN) ligand
suggests that the first reduction of [Cp*RhIII(PQN)Cl]PF6 is rhodium-centered, and leads to ejection
of the chloride ligand at the RhII oxidation state [26]. The electrochemical behavior of the [Cp*Rh]
complex supported by the dimethyldipyridylmethane (Me2dpma) ligand is also consistent with initial
metal-centered reduction [40].

Therefore, to investigate the nature of the first reduction of 3, we targeted preparation of the
singly reduced product. In accord with the clean, one-electron reduction of 3 observed by cyclic
voltammetry, treatment of a THF suspension of 3 with cobaltocene (E◦ ≈ −1.3 V, [57] 2 equiv.) results
in an immediate color change from bright yellow to a deep shade of forest green. Following stirring
for 10 min and the subsequent removal of all volatiles under vacuum, the reduction product 4 was
extracted with THF and isolated as a dark green solid. Characterization of 4 by 1H-nuclear magnetic
resonance (NMR) (Figure S5) reveals a loss of all resonances associated with 3, including those of the
[κ2-dnbpy] ligand in the aromatic region and that associated with [η5-Cp*] in the aliphatic region.
The disappearance of these resonances and lack of new peaks associated with diamagnetic material
is consistent with generation of a paramagnetic complex, as would be expected for a 1e− reduction
of 3 as observed in cyclic voltammetry. A small impurity of [Cp2Co]+ (δ = 5.66 ppm) is observed in
NMR spectra of isolated samples from the reduction of 3, but could not be removed due to the similar
solubility profiles of 4 and cobaltocenium.

To further characterize 4, we turned to electron paramagnetic resonance spectroscopy. Prior to
reduction, 3 is a low-spin rhodium(III) complex with a d6 configuration and S = 0. The cobalt(II)
reductant (Cp2Co) used to generate 4 has a d7 configuration and is a S = 1/2 species, displaying the
distinctive spectrum (consistent with literature) shown as the purple line in Figure 3. This spectrum
displays hyperfine coupling to the I = 7/2 cobalt nucleus. In contrast, the spectrum of 4 isolated
as described above reveals a relatively narrow and isotropic signal with a center crossing point at
g = 2.006 (H = 3341 G). Although 4 could be considered to be a formal rhodium(II) species, the sharp
and isotropic spectrum is instead consistent with an organic radical—in this case, predominant
localization of unpaired electron density on the dnbpy ligand. Thus, 4 can be most appropriately
considered as a rhodium(III) complex with a bound dnbpy·−. Retention of this ligand radical in the
first coordination sphere of the rhodium center is consistent with both the quasi-reversible CV studies
(vide supra) and spectroelectrochemical work that confirms the chemically reversible interconversion
of 3 and 4 (vide infra) on the seconds to minutes timescale. Moreover, the lack of resolved hyperfine
coupling to the I = 1

2
103Rh nucleus (100% abundance) in 4 corroborates assignment of the reduced metal

species as having unpaired electron density that is localized primarily on dnbpy. Notably, the trace
impurity of [Cp2Co]+ present in samples of isolated 4 does not contribute to the EPR spectrum shown
in Figure 3, as [Cp2Co]+ is an S = 0 low-spin cobalt(III) complex.
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Few examples of formal rhodium(II) complexes have been observed by EPR [58]. Localization
of unpaired electron density in orbitals with increased Rh(II) character would be expected to
result in a significantly more anisotropic spectrum than that observed for 4, with larger g-value
shifts and resolved hyperfine coupling to the metal nucleus. The experimental data for 4 compare
well with data that we have recently obtained on [Cp*Rh(bpy·−)Me]0 and [Cp*Ir(bpy·−)Me]0

compounds [41]. Specifically, these methyl complexes display narrow rhombic spectra centered
near g ≈ 2.0. This greater rhombicity arises from hyperfine couplings to the I = 1/2 RhIII and
I = 3/2 IrIII centers in these compounds, contrasting with the case of virtually ligand-centered 4.
Thus, we conclude that the unpaired electron density on dnbpy·− is contained in molecular orbitals
with very little character arising from rhodium, a phenomenon likely driven by the presence of the
strongly electron-withdrawing nitro groups on dnbpy.

To gain further insight into the dnbpy-localization of electron density arising from the first
reduction of 3, we turned to electronic absorption spectroscopy (see Figure 4 and SI, Figure S8).
The spectrum of 3 is unremarkable and displays features consistent with most rhodium(III) complexes;
3 is a yellow solid, and the ultraviolet (UV)-visible absorption spectrum reflects this with a relatively
intense (ca. 5000 M−1 cm−1) band trailing into the visible around 400 nm. Isolated 4 displays a very
different profile, with distinctive new features in the visible-near infrared (NIR) region (λmax values
at 694 nm, 860 nm, and 945 nm with molar absorptivities of 13,000, 6100, and 7800 M−1 cm−1,
respectively). Consistent with the observed forest-green color of 4, a weaker absorption band is
retained at lower wavelength (420 nm, 5200 M−1 cm−1) and thus transmits predominantly green light
between these bands. The absorption bands in the 800–1000 nm range are similar to examples of both
free bpy·− and metal complexes ligated by [bpy·−] [59–61]. Analogous data is not available from prior
work for dnbpy·−, although similar features are measured for the doubly reduced form of complex 2,
which possesses significant reduced-ligand character [21]. Thus, both EPR and electronic absorption
data are consistent with assignment of dnbpy-centered reduction in 4.
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Metal-centered reduction of [Cp*RhIII] complexes is associated with ejection of monodentate
ligands such as chloride from the first coordination sphere. This phenomenon is driven by formation
of transient, 19e− RhII intermediates upon reduction that release the monodentate ligand to form
more stable 17e− species [26]. The assignment of ligand-centered reduction of 3 thus prompted us to
explore whether analogous reactivity takes place here. To test this, we performed cyclic voltammetry
on 3 in acetonitrile containing 0.1 M [NBu4][Cl] as supporting electrolyte. The first reduction of 3
remains unchanged from the case of [NBu4][PF6], showing a quasi-reversible appearance. However,
the appearance of the second reduction of 3 (or reduction of 4) is different, showing two peaks on the
cathodic sweep (∆E ≈ 175 mV) and a single peak on the anodic sweep (see SI, Figure S11). This is
consistent with the formation of both the cationic solvento complex [Cp*Rh(dnbpy·−)(NCMe)](PF6)
and a neutral chloride complex Cp*Rh(dnbpy·−)Cl following the first reduction, when the electrolyte
contains a 100-fold excess of chloride. Thus, under conditions where chloride is not found in excess
(Figure 2), we propose that reduction of 3 leads exclusively to generation of the 18e−, cationic
[Cp*Rh(dnbpy·−)(NCMe)](PF6) complex. Consistent with this significant coupled chemical reaction,
the peak-to-peak separation (∆Ep ≈ 200 mV in THF, 90 mV in MeCN) associated with reduction of 3 to
4 in [NBu4][PF6] is significantly larger than those associated with the following two reductions (180,
170 mV in THF; 70, 70 mV in MeCN) (see Table 1 and Table S1 in SI). Completing our proposed model
for the electrochemistry, reduction of 4 leads to a single product, on the basis of the single anodic wave
observed at −1.35 V in THF (Figure 2) and −1.19 V in MeCN (see SI, Figure S10). As this species is
rather electron-rich, we speculate that the reduction of 4 produces [Cp*Rh(dnbpy)]0; however, further
assignments regarding this compound are beyond the scope of this study.

To gain further insight into the reductions of 3 that are readily accessible via electrochemical
methods, we turned to UV-visible spectroelectrochemistry. We took the approach of in situ generation
and detection of 4 and other reduced forms of 3 by use of a short-pathlength cuvette cell placed
in the beam path of a UV-visible spectrophotometer for real-time data collection during working
electrode polarization. With the working electrode polarized at −0.63 V vs. Fc+/0, the spectrum of 3
contained in the cell (electrolyte: 0.1 M [NBu4][PF6] in THF) is virtually identical to that of 3 in pure
THF free from supporting electrolyte. However, upon polarization at −1.31 V, the spectrum changes
dramatically (Figure 5, panel a), with new features appearing that correspond to those of rhodium(III)
bound to reduced dnbpy·−. Notably, isosbestic points were measured at 312 and 352 nm (Figure S22),
consistent with clean conversion of 3 to 4 in THF solution under the spectroelectrochemical conditions.
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However, close comparison of the spectroelectrochemical data (collected in THF electrolyte containing
0.1 M [NBu4][PF6]) and the earlier UV-visible data collected on 4 (in pure THF) reveals that the λmax

values are slightly shifted in the two cases (417 vs. 418, 699 vs. 693, 865 vs. 860, 946 vs. 944 nm,
respectively) (see SI, Figure S28). These minor differences are consistent with ligand exchange of
chloride in favor of THF, facilitated by 0.1 M [NBu4][PF6], as similar spectral changes accompany
exchange of halide ligands for coordinated solvent (e.g., MeCN) in other rhodium(III) complexes.
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studies as described in the main text. Initial potentials for each experiment were−0.63 V (panel a),−1.31 V
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(panel c). Final potential was held until no spectral changes were reached, indicating full conversion of the
thin-layer region to the desired form of the complex.

To confirm the apparent chemical reversibility observed in cyclic voltammetry for transformation
of 3 to 4 (Figure 2) and 4 to 3 (see SI, Figure S16), an experiment was also carried out with an initial
potential of −1.31 V and final potential of −0.63 V in an electrolyte solution prepared with 4 (see SI,
Figure S26). In this experiment, the evolution of the spectral features detected in the experiment shown
in Figure 1a were essentially reversed. This is consistent with clean regeneration of complex 3 from 4
upon electrochemical re-oxidation (isosbestic points at 312 and 352 nm).

Further potential excursions show spectral changes associated with the further reductions of 3.
A potential jump from −1.31 to −1.69 V results in fairly minor changes to the UV-visible spectrum
(Figure 5b). Clear isosbestic points were observed at 437, 638, and 800 nm for this reduction event,
corresponding to increased spectral absorption toward the blue region (522 nm) and slightly attenuated
absorption intensity (peak at 699 nm) toward the longer wavelengths. A further potential excursion to
−2.16 V (Figure 5c) results in further increases in absorption toward shorter wavelengths (325 and
522 nm), and virtually no changes in absorption at the longer wavelengths (isosbestic point at 420 nm).
Based on the isosbestic behavior, we confirm the interconversion of single species implied by the
electrochemical studies carried out in [NBu4][PF6] [26,40].

However, final potential excursion to−2.56 V results in non-isosbestic spectral evolution (Figure 5c
and SI, Figure S25), suggesting formation of multiple speciation products or decomposition of the
four-electron reduced species generated from 3. This behavior is consistent with the irreversible
reduction observed at −2.36 V in the voltammetry of 3 and confirms that the quadruply reduced form
of 3 is unstable under electrochemical and spectroelectrochemical conditions. Study of the electronic
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structure of these further reduced intermediates is deserving of future work, especially focusing on the
localization of each reduction (metal, ligand, both) and coordination geometry of rhodium (presence or
absence of bound chloride or solvent). Computational approaches could be of great use here, as well
as further spectroscopic and synthetic/structural investigations.

As reduction of most [Cp*Rh] complexes bearing diimine-type ligands in the presence of acid
can give rise to catalytic H2 production, we examined electrochemical reduction of 3 in the presence
of acid to check for formation of H2 (as has been measured for both 1 and 2). We conducted these
studies with 3 in MeCN electrolyte (in order to rely on the well-defined pKa scale that is available in
this solvent) [18,39]. Addition of 1 atm of H2 gas to the headspace of the electrochemical cell results in
no major changes to the voltammetric profile, confirming that 3 does not readily serve as a catalyst for
H2 oxidation (see SI, Figure S17). However, addition of 15 equiv. of buffered Et3NH+/Et3N results
in a fully irreversible voltammetric profile, and a modest increase in current density across a broad
potential range from −1 V to around −2 V (see SI, Figure S17). Beyond –2 V, there is a significant
enhancement in the current flowing in the voltammetry, although at these potentials similar current
enhancement is also observed for a rhodium-free electrolyte solution containing only buffered acid.

Bulk electrolysis was then carried out to ascertain the fate of the reducing equivalents transferred
to the solution under these acidic conditions. Electrolysis was carried out at −1.75 V, prior to the onset
of significant background currents, to reveal the behavior of the reduced metal complexes with acid.
In a rhodium-free control experiment, 17.2 C of charge were passed through the electrochemical cell,
and a fairly significant amount of H2 was generated corresponding to 87% Faradaic efficiency (product
H2 measured by gas chromatography). The analogous electrolysis carried out with 3 (Figure S18) leads
to passage of only 8.2 C of charge, corresponding to 1.95 e− per Rh center. A Faradaic yield of H2

of only 5% was measured by gas chromatography, confirming that 3 does not serve as an effective
(pre)catalyst for H2 evolution under these conditions.

During electrolysis, the solution of 3 remains homogeneous, but turns a dark red color.
To investigate, aliquots of the working solution were removed from the cell following electrolysis,
the solvent removed in vacuo, and 1H-NMR data collected in CD3CN to ascertain the identity of
products formed by reaction of reduced 3 with acid. The 1H-NMR data reveal that several (≥3)
diamagnetic dnbpy containing species are generated, based on the presence of multiple sets of
dnbpy-like resonances in the aromatic region (see SI, Figure S19). However, no metal hydride signals
were observable in the upfield region near −10 ppm (Figure S20) [25,26], nor were the characteristic
signals corresponding to formation of [Cp*H] (e.g., a doublet near 0.5 ppm) detected (Figure S19b,c
in SI) [24]. Thus, we conclude that decomposition accompanies reduction and protonation of 3,
resulting in formation of multiple products but no H2.

3. Discussion

The observation of four one-electron reduction events with complex 3 contrasts with the single
two-electron, ECE-type reduction [15] events measured for most other diimine and diphosphine
complexes of [Cp*Rh] [8–10,24–26]. Results from our laboratory suggest that the first reduction
is rhodium metal-centered in most of these cases [26,40]. Thus, initial metal-centered reduction
generates a transient 19e− rhodium(II) complex that undergoes subsequent ligand dissociation
(to a 17e− species) and further reduction. 3 circumvents this more common reactivity by undergoing
a first, ligand-centered reduction that leads only to exchange of bound chloride or solvent.
As a side note, we have recently chemically prepared an analogous formal rhodium(II) complex
bearing a bis(pyridyl) ligand; this complex is a metal-centered radical that circumvents further
reduction through use of the bis(pyridyl) ligand that enforces a six-membered metallocyclic ring [40].
Here, we conclude that inclusion of the easily reduced dnbpy ligand and retention of a monodentate
ligand in 4 contribute to the ability of the complexes to undergo sequential, one-electron reductions.

Our formulation of 4 as a ligand-centered radical is consistent with prior work from Yellowlees’s
group [62] on the nature of reduced species formed by reduction of nitrated bpy complexes of PtII.
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Specifically, their group found that the LUMO of Pt(dnbpy)Cl2 is localized on the dnbpy ligand; on the
basis of exhaustive EPR spectroelectrochemistry and computational studies, they further assigned the
radical in Pt(dnbpy·−)Cl2 to be localized on a single 4-NO2-pyridyl ring. The Pt compounds in their
study displayed rich hyperfine structure in EPR spectra, enabling this assignment. In our EPR data
for 4, however, no such fine structure is observable. Thus, further work is needed to obtain details
regarding the exact localization of unpaired electron density within the conjugated dnbpy system.

Cp*Rh(bpy) undergoes reaction with protons to form [Cp*H] species that are active intermediates
in catalytic H2 production [23,24]. Therefore, the observation of virtually no H2-generating reactivity
of reduced forms of 3 with protons is interesting from the perspective of understanding the structure
and bonding features that engender catalysis involving H-atom transfer [24–26] from [Cp*Rh]
complexes. In the chemistry of most [Cp*Rh] complexes, apparently metal-centered reduction is
followed by reactivity with protons to form either [Cp*H] complexes [24] or stable rhodium(III)
hydride species [25,26]. Based on electrochemical studies of 3 in the presence of Et3NH+, we conclude
that one or more of the reduced forms of 3 undergo reaction with protons, but these do not lead to
effective H2 generation.

However, involvement in ligand orbitals in reduction events does not necessarily preclude
proton reactivity in [Cp*Rh] complexes; rather, our results suggest that the electron-donating and
-withdrawing character of ligands on these frameworks must be carefully balanced to accommodate
the intermediates that may arise during catalysis. This conclusion is well supported by the prior work
implicating a delocalized highest occupied molecular orbital (HOMO) across the metal and ligands
in most Cp*Rh(diimine) complexes, and the reactivity of the doubly reduced forms of 1 and 2 with
protons towards hydrogen evolution [10].

4. Conclusions

We have described the preparation, characterization, and electrochemical properties of
[Cp*RhIII(dnbpy)Cl]PF6 (3). This complex displays four one-electron reduction events in organic
electrolytes, contrasting with prior work on a similar complex that showed no reductions in aqueous
electrolyte. Spectroscopic studies show that the singly reduced complex 4 generated from 3 is best
formulated as [Cp*RhIII(dnbpy·−)(L)]+ where L = chloride or solvent, depending upon the conditions
of the experiment. Spectroelectrochemical studies suggest clean interconversion of the various reduced
forms, as isosbestic behavior is obtained in the UV-visible spectra associated with controlled potential
excursions. However, in contrast to other [Cp*Rh] complexes bearing diimine ligands, electrochemical
studies of 3 in the presence of excess Et3NH+ show that reduction in the presence of this weak
acid does not lead to H2 production. Taken together, these studies show that [Cp*Rh] complexes,
and the reactions that they undergo upon electron transfer, are readily tunable by judicious selection
of supporting ancillary ligands. Our ongoing work is examining this strategy to harness the useful
properties of this family of compounds.

5. Materials and Methods

5.1. General Considerations

All manipulations were carried out in dry N2-filled gloveboxes (Vacuum Atmospheres Co.,
Hawthorne, CA, USA) or under N2 atmosphere using standard Schlenk techniques unless otherwise
noted. All solvents were of commercial grade and dried over activated alumina using a PPT Glass
Contour (Nashua, NH, USA) solvent purification system prior to use, and were stored over molecular
sieves. All chemicals were from major commercial suppliers and used as received after extensive drying.
[Cp*RhCl2]2 was prepared according to the literature procedure [11]. The 4,4′-dinitro-2,2′-bipyridyl
ligand (dnbpy) was prepared with literature methods [42–47] from 2,2′-bipyridine (bpy). Deuterated
solvents for NMR studies were purchased from Cambridge Isotope Laboratories (Tewksbury,
MA, USA); CD3CN was dried over molecular sieves. 1H-, 13C-, 19F-, and 31P-NMR spectra were
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collected on 400 or 500 MHz Bruker spectrometers (Bruker, Billerica, MA, USA) and referenced to
the residual protio-solvent signal in the case of 1H and 13C [63]. Heteronuclear NMR spectra were
referenced to the appropriate external standard following the recommended scale based on ratios of
absolute frequencies (Ξ) [64,65]. 19F-NMR spectra are reported relative to CCl3F, and 31P-NMR spectra
are reported relative to H3PO4. Chemical shifts (δ) are reported in units of ppm and coupling constants
(J) are reported in Hz. Elemental analyses were performed by Midwest Microlab, Inc. (Indianapolis,
IN, USA).

Electronic absorption spectra were collected with an Ocean Optics Flame spectrometer (Ocean
Optics, Largo, FL, USA) or a Shimadzu 3600 UV-vis-NIR spectrometer (Shimadzu, Kyoto, Japan),
in 1-cm pathlength quartz cuvettes.

Continuous-wave electron paramagnetic resonance were collected at X-band with a Bruker EMX
spectrometer using a high-sensitivity perpendicular-mode cavity (4119HS-W1). Temperature control
was achieved with an Oxford ESR 900 flow-through cryostat.

5.2. X-ray Crystallography

Single-crystal diffraction data were collected with a Bruker APEX-II CCD diffractometer.
The Cambridge Crystallographic Data Centre (CCDC) entry 1842459 contains the supplementary
crystallographic data for compound 3. These data can be obtained free of charge via www.ccdc.cam.ac.
uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge
Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; Fax: +44 1223 336033.

5.3. Electrochemistry

Electrochemical experiments were performed in a N2-filled glovebox in dry, degassed THF
or MeCN. 0.10 M tetra(n-butyl)ammonium hexafluorophosphate ([nBu4N]+[PF6]−; Sigma-Aldrich,
electrochemical grade) served as the supporting electrolyte. Measurements were carried out with
Reference 600+ Potentiostat/Galvanostat (Gamry Instruments, Warminster, PA, USA) using a standard
three-electrode configuration. The working electrode was the basal plane of highly oriented
pyrolytic graphite (HOPG) (GraphiteStore.com, Buffalo Grove, IL, USA; surface area: 0.09 cm2),
the counter electrode was a platinum wire (Kurt J. Lesker, Jefferson Hills, PA, USA; 99.99%,
0.5 mm diameter), and a silver wire immersed in electrolyte solution served as a pseudo-reference
electrode (CH instruments). The reference was separated from the working solution by a Vycor frit
(Bioanalytical Systems, Inc., West Lafayette, IN, USA). Ferrocene (Sigma-Aldrich, St. Louis, MO, USA;
twice-sublimed) was added to the electrolyte solution at the end of each experiment; the midpoint
potential of the ferrocenium/ferrocene couple (denoted as Fc+/0) was used as an external standard for
comparison of the recorded potentials.

Concentrations of the analytes for cyclic voltammetry were typically 1 mM. Experiments were
typically conducted by first scanning cathodically, then anodically on the return sweep.

Bulk electrolysis experiments were performed in a custom two-chamber electrochemical cell
equipped with connections to achieve gas-tight operation. The working electrode was a HOPG plate
(Graphitestore.com, Buffalo Grove, IL, USA; surface area: 10 cm2). 10 equiv. of ferrocene served as the
sacrificial reductant.

5.4. Spectroelectrochemistry

Spectroelectrochemisty was carried out in the same glovebox as described above (N2 atmosphere),
with 0.10 M [nBu4N][PF6] in THF as electrolyte. A thin layer quartz cell was used with a Teflon cap
for housing the electrodes (ALS Co., Ltd., Tokyo, Japan; path length: 1.0 mm). The working electrode
was a platinum mesh/flag electrode covered with a PTFE shrink tube up to the flag, and the counter
electrode was a platinum wire (ALS Co., Ltd.).

www.ccdc.cam.ac.uk/data_request/cif
www.ccdc.cam.ac.uk/data_request/cif
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5.5. Gas Chromatography

Gas chromatography were collected with a Shimadzu GC-2014 CustomGC. The instrument was
calibrated with a standard checkout gas mixture (Agilent 5190-0519, Santa Clara, CA, USA) prior to
experimental runs to obtain quantitative data for H2 and other gases. Calibration curves over a range
of 100–10,000 ppm were constructed with prepared mixture of H2 and N2 to enable H2 quantification.

5.6. Preparation of [Cp*Rh(4,4′-dinitro-2,2′-bipyridyl)Cl]PF6 (3)

THF solutions of dnbpy (0.0249 g, 0.101 mmol, 2 equiv.) and AgPF6 (0.026 g, 0.103 mmol,
2 equiv.) were added in sequence to a suspension of [Cp*RhCl2]2 (0.0314 g, 0.051 mmol, 1 equiv.) in
THF. A gradual color change occurred over 20 min from dark red to bright yellow and a precipitate
appeared. This suspension was filtered over Celite, and a homogeneous yellow solution was obtained.
Trituration with approximately 50 mL Et2O resulted in formation of a bright yellow solid. The solution
was decanted and excess solvent pumped off to obtain 3 (0.0294 g, 44% yield). Crystals suitable for
X-ray diffraction analysis were obtained by vapor diffusion of Et2O into a solution of 3 in acetonitrile.
1H-NMR (500 MHz, CD3CN) δ 9.31 (d, 4JH,H = 2.3 Hz, 2H), 9.23 (d, 3JH,H = 6.0, 2H), 8.52 (dd, 4JH,H = 2.2,
3JH,H = 6.0 Hz, 2H), 1.73 (s, 15H) ppm. 13C{1H}-NMR (126 MHz, CD3CN) δ 156.90, 156.49, 155.49,
123.01, 119.36, 99.69 (d, 1JC,Rh = 8.26 Hz), 9.26 ppm. 31P{1H}-NMR (162 MHz, CD3CN) δ −146.88 (sept,
1JP,F = 706.3 Hz). 19F-NMR (376 MHz, CD3CN) δ −72.9 (d, 1JF,P = 707.0 Hz). Electronic absorption
spectrum (THF): 239 (36,400), 323 (13,000), 365 nm (5300 M−1 cm−1). Electrospray ionization mass
spectrometry (ESI-MS) (positive) m/z: 519.03 [3 − PF6

−]+.
Elemental analysis for a sample of 3 found 37.20% carbon, 4.43% hydrogen, and 7.78% nitrogen.

Calculated values were 36.14%, 3.18%, and 8.43% respectively. Inclusion of trace THF associated with
the isolated powder (0.3 eq.) provides the appropriate analysis values of 37.20%, 3.46%, and 8.13%
respectively. These are within 0.4% error of the analytical results and are consistent with isolation of
solid 3 from THF.

5.7. Generation and Isolation of [Cp*Rh(4,4′-dinitro-2,2′-bipyridyl)(L)]+ (4)

A solution of cobaltocene (0.0142, 0.075 mmol, 2 equiv.) in THF was added dropwise to a THF
solution of 3 (0.0250 g, 0.037 mmol, 1 equiv.) while stirring. The color immediately changed from
a light yellow to a dark green. After stirring for 10 m, the solution was pumped down to obtain a dark
solid. This was washed with pentane and Et2O. The resulting solid was again dissolved in THF and
filtered over Celite to obtain a dark green homogeneous solution. Removal of volatiles gave 4 as
a dark green solid (0.0156 g, 62% yield). Electronic absorption spectrum (THF): 264 (28,500), 304 (6000),
418 (5200), 693 (13,000), 860 (6000), 944 (7800 M−1 cm−1).

Supplementary Materials: The following are available online: NMR spectra; crystallographic details; electronic
absorption spectra; electrochemical, spectroelectrochemical, and gas chromatography data (PDF); cartesian
coordinates (XYZ).
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