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Abstract: Swelling of retinal Müller cells is implicated in retinal edema and neuronal degeneration.
Müller cell swelling is observed in patients with liver failure and is referred to as hepatic retinopathy.
In the present study, we evaluated the effects of aloin, an anthraquinone-C-glycoside present in
various Aloe species, on Müller cell dysfunction in a rat model of thioacetamide (TAA)-induced
hepatic retinopathy. Experimental hepatic retinopathy was induced by three injections of TAA
(200 mg/kg/day, intraperitoneal injection) for 3 days in rats. After the last injection of TAA,
aloin (50 and 100 mg/kg) was orally gavaged for 5 days. The effects of aloin on the liver injury,
serum ammonia levels, Müller cell swelling, glial fibrillary acidic protein (GFAP) expression, and gene
expression of Kir4.1 and aquaporin-4 were examined. TAA-injected rats exhibited liver failure and
hyperammonemia. In the TAA-injected rats, Müller cell bodies were highly enlarged, and GFAP,
an indicator of retinal stress, was highly expressed in the retinas, indicating a predominant Müller
cell gliosis. However, administration of aloin suppressed liver injury as well as Müller cell swelling
through the normalization of Kir4.1 and aquaporin-4 channels, which play a key role in potassium
and water transport in Müller cells. These results indicate that aloin may be helpful to protect retinal
injury associated with liver failure.
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1. Introduction

The liver is an important vital organ and has the greatest capacity to eliminate harmful toxins and
produce useful substances essential to the human body [1]. Liver cirrhosis is known as the end-stage of liver
failure and results in hepatic dysfunction, abnormal metabolism, and death [2]. Hepatic encephalopathy
is a neurological disorder that presents in patients with liver insufficiency. Hepatic dysfunction leads to
a decline in intellectual capacity, delirium, signs of gliopathy, and the enlargement of brain astrocytes [3].
Hyperammonemia resulting from liver failure also cause morphological alterations in Müller cells in the
retina. This is called hepatic retinopathy [4,5]. The Müller cell is one of the retinal glial cells and contributes to
a functional link between neurons and vessels in the retinal tissues. In the normal retina, Müller cells help to
maintain neuronal activity and support the blood-retinal barrier. However, under several disease conditions,
gliotic changes of Müller cells may lead to retinal degeneration and edema [6]. Müller cells also control ion
balance [7] and maintain homeostasis of water content in the retinal tissues [8]. When this supportive activity
of Müller cells is altered under disease conditions, such as hepatic retinopathy, diabetes-induced retinal
dysfunction, and age-related macular degeneration, Müller cells contribute to a dysregulation of metabolism
and water homeostasis, resulting in the development of retinal edema and neuronal cell injury [9].
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Plants in the genus Aloe have been used for medicinal purposes over many centuries worldwide.
Aloe gel is widely used and sold worldwide in various cosmetic, health care, and therapeutic
products [10]. Aloe ferox (also known as the Cape Aloe) is widespread in southern Africa. A. ferox
has been traditionally used for therapeutic purposes for burns, skin cancer, gastrointestinal diseases,
inflammation, and so on [11,12]. Today, Aloe is reputed for its treatment of constipation [13],
antioxidant properties [14], anti-prediabetes/metabolic syndrome effect [12,13], re-epithelialization of corneal
tissue [15,16], and reduction of liver injury [17]. Aloe gel inhibited liver damage in experimental diabetic
rats [18]. Aloe extract decreased naphthoquinone-induced toxicity in rat hepatocytes [19]. Intraperitoneal
injections of aloe emodin protected against carbon tetrachloride-induced acute liver injury and reduced the
levels of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) [20]. These previous
in vitro and in vivo data suggest that aloe extract possesses a hepatoprotective effect.

Aloin is an anthraquinone-C-glycoside present in various Aloe species (Figure 1). Cui et al.
reported that aloin had a protective effect on alcoholic liver disease in mice [21]. Aloin inhibited
neuronal cell death after cerebral ischemia [22]. According to these previous reports, it is hypothesized
that aloin may have a potent inhibitory effect on hepatic retinopathy. Although extensive studies
have been conducted on the effects of the extracts of Aloe species and its bioactive compounds on
various diseases, the effect of aloin on hepatic retinopathy has not been explored. To elucidate this
issue, we investigated the therapeutic effect of aloin on the development of hepatic retinopathy using
a rat model of thioacetamide (TAA)-induced acute liver injury. We also determined the effects of aloin
on Müller cell response and the expression of aquaporin-4 (glial water channel) and Kir4.1 (potassium
channel) in hepatic retinopathy.
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Figure 1. Chemical structure of aloin.

2. Results

2.1. Histopathological Changes in Liver

Histopathological examination was performed. by hematoxylin and eosin (H&E) staining and
liver injury scoring. The livers of normal healthy animals had a normal histological appearance,
and hepatocytes showed no degeneration or necrosis. In the TAA group, 200 mg/kg TAA treatment
caused acute focal necrosis and vacuolization in some hepatocytes with mild inflammatory cell
infiltration (Figure 2A). However, the observed liver injury induced by TAA injection was ameliorated
by the treatment with aloin. Similarly, the liver injury score of the TAA-injected rats was markedly
increased compared with the normal rats, and rats administered with aloin had significantly decreased
liver injury scores (Figure 2B).
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(B) Liver injury scores. Values in the bar graphs represent the mean ± SEM, n = 7. * p < 0.05 vs. normal 
(NOR) control rats, # p < 0.05 vs. TAA-injected rats. AU: arbitrary unit. 
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treatment (4.43 ± 1.05 and 3.03 ± 0.91 ng/mL, respectively). 
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Figure 2. Effect of aloin on liver injury induced by thioacetamide (TAA). (A) Histopathological changes
in the liver. Liver tissue sections were stained with hematoxylin and eosin. Scale bar = 50 µm. (B) Liver
injury scores. Values in the bar graphs represent the mean ± SEM, n = 7. * p < 0.05 vs. normal (NOR)
control rats, # p < 0.05 vs. TAA-injected rats. AU: arbitrary unit.

2.2. Serum Ammonia Levels

Serum biochemical values were assessed in rats. As shown in Figure 3, rats receiving TAA
had dramatically increased blood ammonia levels compared with the NOR group (1.98 ± 0.78 vs.
6.47 ± 1.15 ng/mL, p < 0.01). Serum ammonia levels were dose-dependently reduced in rats with aloin
treatment (4.43 ± 1.05 and 3.03 ± 0.91 ng/mL, respectively).
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2.3. Müller Cell Swelling

The swelling of Müller cell bodies was evaluated in enzymatically dissociated Müller cells.
As shown in Figure 4, TAA-injected rats with liver injury showed significant swelling of Müller cell
bodies (p < 0.01). The liver failure-evoked swelling of Müller cell bodies was significantly prevented in
the TAA-injected rats with aloin treatment (p < 0.01). The inhibitory effect of aloin on the swelling of
Müller cell bodies was dose-dependent.
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2.4. Müller Cell Activation

Gliotic altered Müller cells have increased GFAP immunoreactivity under pathological
conditions [23]. We further investigated the expression level of the GFAP protein in the TAA-injected rats
by immunohistochemistry. Figure 5 shows that in normal control retinal section, GFAP proteins were
seen mainly at astrocytes in the ganglion cell layers and the end feet of Müller cells. In TAA-injected rats,
the expression of the GFAP protein in Müller cells was highly increased, which was linked to liver injury.
However, aloin treatment dose-dependently reduced GFAP expression in Müller cells (p < 0.01).
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2.5. Retinal Gene Expression of Kir4.1 and Aquaporin-4

We examined changes in the gene expression of potassium and water channels involved in Müller
cell swelling. Kir4.1 and aquaporin-4 are implicated in potassium and water transport in Müller
cells, respectively. To assess this, we analyzed the RNA by real-time PCR, and the expression of
aquaporin-4 and Kir4.1 was quantified. Increased aquaporin-4 and decreased Kir4.1 gene expression
was observed in TAA-injected rat retinas (Figure 6). The downregulation of potassium channels (Kir4.1)
and upregulation of water channels (aquaporin-4) in the retina might contribute to impairment of
the Müller cell osmoregulation. These changes of gene expressions were markedly reversed by the
treatment with aloin in a dose-dependent manner (p < 0.01).
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3. Discussion

In patients with liver failure, a retinal disorder is observed, which is referred to as hepatic
retinopathy [24,25]. Swelling, vacuolization, and necrosis of Müller cells are characteristic features of
hepatic retinopathy [26]. Müller cells have a central role in the survival of photoreceptors and neurons,
modulate the immune response in the retina, and stabilize the structure of the retinal tissue [27]. Thus,
Müller cells have been considered potential therapeutic targets to inhibit these retinal degenerative
diseases [28]. In this study, we showed that aloin, a bioactive compound present in various Aloe
species, prevented Müller cell swelling induced by liver cirrhosis in a rat model with TAA-induced
hepatic retinopathy.

The hallmark of hepatic retinopathy is the swelling of Müller cells. TAA has been widely used
to produce liver cirrhosis in experimental animals similar to human cirrhosis [29]. The retinas of
rats with liver insufficiency induced by TAA were characterized by enlargement of the Müller cell
body [30]. Although the precise pathogenic mechanisms leading to this structural change of the
Müller cells are unknown, this morphological alteration of Müller cells in the TAA-injected rats is
quite resemblant of human hepatic retinopathy. In our study, the rats injected with TAA also showed
severe hepatic necrosis, hyperammonemia, and increased Müller cell volume. We investigated the
therapeutic activities of aloin for the treatment of hepatic retinopathy using this animal model.

Müller cells are a type of retinal glial cells. Ammonia is toxic to glial cells and leads to glial
swelling [31]. Gliosis is a cellular reaction to protect the tissue from further injury and leads to the
morphological, biochemical, and physiological alteration of glial cells [32]. Gliotic alterations of Müller
cells include cellular hypertrophy and proliferation [33]. Upregulation of GFAP is known to be a very
sensitive early indicator of retinal stress [23]. In the present study, we showed that GFAP was highly
expressed in the retinas of the TAA-injected rats with hepatic retinopathy, indicating a predominant
Müller cell gliosis. Aloin treatment dramatically inhibited the expression of GFAP in the TAA-injected
rats. These results indicate that aloin has preventive effects on Müller cell gliosis.

A major role of Müller cells is to maintain ion and water homeostasis in the retinal tissues [7,8].
The fluid absorption is mediated by intramembranous water transport via aquaporins. These water
transporters promote bidirectional water flow across membranes [34]. Müller cells have transmembrane
aquaporin-4 channels [8]. This water transport by aquaporin-4 is tightly coupled to fluxes of osmolytes,
in particular of potassium ions [35]. When a neuron is activated, potassium ions are released from
this neuron. In order to prevent neuronal hyperexcitation by excessive potassium, Müller cells take up
an excess of potassium ions from the extracellular space in the retina and release a similar amount of
potassium into the blood and the vitreous [6]. This spatial buffering of the potassium concentration
is mediated predominantly by inwardly rectifying potassium (Kir) channels localized in Müller cell
membranes. The Kir4.1 channels and aquaporin-4 channels are colocalized in Müller cells around retinal
vessels [36]. When Kir4.1 channels were downregulated in various retinal diseases, Müller cells were
osmotically swollen [37–39]. Because gliotic altered Müller cells with decreased potassium conductance
induced neuronal degeneration and retinal edema, the maintenance of the Kir4.1 channels might
contribute to the inhibition of retinal injury and the maintenance of regular neuronal activity.

In the present study, increased aquaporin-4 and decreased Kir4.1 gene expression was observed
in TAA-injected rat retinas. Our data suggest that the swelling of Müller cells may be associated
with increased water absorption in response to a transmembranal osmotic imbalance, which is
induced by the decreased extracellular release of potassium ions after downregulation of Kir4.1
channels. The osmotic swelling of Müller cell bodies is inhibited in the administration of aloin.
This swelling-inhibitory effect of aloin may be mediated by the upregulation of the retinal expression
of Kir4.1 and maintenance of the potassium currents. Further experiments using immunohistochemical
staining are needed to more precisely determine the subcellular localization and expression pattern of
Kir4.1 and aquaporin-4 channels in Müller cells.

TAA has been used to induce acute liver injury in rats [40]. TAA administration increased the
levels of inflammatory cytokines, such as TNF-α and IL-6. These changes caused liver damage [41].
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Aloin protected chronic alcoholic liver injury by attenuating oxidative stress and the inflammatory
response [21]. These reports suggest that the aloin might inhibit TAA-induced liver injury through its
anti-inflammatory activity. Interestingly, aloin also successfully inhibited TAA-induced liver injury and
hyperammonemia. This result suggests that the amelioration of hyperammonemia by the administration
of aloin contributed to protecting against Müller cell swelling independently of its antiedematous effect.
However, Lucas and Newhouse reported that administration of ammonia did not induce acute toxicity in
the retina [42]. Izumi et al. also reported that when a retinal segment was incubated with 1 mM ammonia
for 60 min, there was little effect on Müller cells [43]. Although a retina-specific inhibitory effect of aloin
was not shown in this study, we demonstrated that aloin led to the reduction of gliotic alterations of
Müller cells and prevented Müller cell swelling mediated by the downregulation of Kir4.1 channels. These
findings suggest that aloin may have a potent direct antiedematous effect on Müller cells.

In conclusion, our study demonstrated that aloin can surely suppress liver injury as well as the
Müller cell swelling that is attributable to the normalization of Kir4.1 channels. Aloin may be helpful
to protect against retinal injury associated with liver failure. Further research. is required to determine
its direct inhibitory roles in Müller cell swelling.

4. Experimental Section

4.1. Animals and Experimental Design

Male 6-week-old Sprague-Dawley rats (Orient Bio, Seoul, Korea) were randomly divided into four
groups (n = 7) as follows: (1) normal control rats, (2) TAA-treated rats, (3) TAA-treated rats treated with
aloin (50 mg/kg body weight), and (4) TAA-treated rats treated with aloin (100 mg/kg body weight).
To induce hepatic retinopathy, the rats received three intraperitoneal injections of TAA (200 mg/kg,
Sigma, St. Louis, MO, USA) for 3 days at 24 h intervals [30]. In the control rats, an equal volume of
sterilized saline was injected for 3 days. After the last injection of TAA, aloin (50 and 100 mg/kg,
Sigma, St. Louis, MO, USA) was orally gavaged for 5 days. All animals were sacrificed one day after
the last administration. All procedures performed on the animals were approved by our Institutional
Animal Care and Use Committee (IACUC; approval no. 15-008).

4.2. Evaluation of Liver Injury

At necropsy, blood samples were drawn from cardiac puncture. Serum ammonia levels were
determined using an Ammonia Assay Kit (Abcam, Cambridge, MA, USA). For histopathological analysis,
liver tissue was fixed into 10% formalin for 24 h and embedded in paraffin. Liver tissue sections were
stained with hematoxylin and eosin (H&E). The degrees of inflammation and fibrosis were scored with
a scale of 0–3 in a double-blind fashion according to a previously reported protocol [44].

4.3. Isolation of Rat Retinal Müller Cells

At necropsy, left eyes were enucleated. The whole retina was carefully isolated under a dissecting
microscope. Retina was immersed in DPBS containing 1 mg/mL papain (Sigma, St. Louis, MO,
USA) for 30 min at 37 ◦C. After removal of the digestion media, the retina was washed twice with
papain-free DPBS. The retinal tissue was mechanically dissociated in papain-free DPBS solution (2 mL).
After 10 cycles through the pipette, the Müller cell-rich suspensions were then spread on glass slides;
the tissue fragments were permitted to settle for 10 min. Thereafter, 4% paraformaldehyde was added
to the suspensions and the cells were fixed for 5 min. The Image J. software (NIH, Bethesda, MD, USA)
was used to measure the Müller cell soma area. The morphometric analysis of 50 randomly selected
cells was performed for each rat.

4.4. Immunohistochemical Staining

At necropsy, right eyes were enucleated and fixed in 4% paraformaldehyde. After fixation, corneas
were removed and embedded in paraffin. Paraformaldehyde-fixed and paraffin-embedded retinal sections
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were deparaffinized in xylene, rehydrated, and treated with 1% H2O2 in methanol. After PBS washing,
sections were incubated with anti-glial fibrillary acidic protein (GFAP) antibody (Abcam, Cambridge, MA,
USA) for 1 h at 37 ◦C. Signal was visualized by 3,3′-diaminobenzidine tetrahydrochloride. The signal
intensity was calculated using ImageJ. software (NIH, Bethesda, MD, USA).

4.5. Real-Time PCR

Frozen retinal samples were weighed and the total RNA was extracted using TRIzol reagent
(Invitrogen, Waltham, MA, USA). Real-time quantitative RT-PCR was conducted according to a previously
described protocol [45]. The primer sequences for aquaporin-4 were: forward 5′-TCT CAG TGG GAA
ATG TAG CC-3′ and reverse 5′-TGT CTG CAG TGC TGC TAT AA-3′. The primer sequences for Kir4.1
were: forward 5′-CTA GTG GCT CCA GGA ATA CG-3′ and reverse 5′-GCA TGT CAA TGA AGG TCG
TC-3′. The primer sequences for ß-actin were: forward 5′-AAA GAG AAG CTG TGC TAT GT-3′ and
reverse 5′-TGT AAA ACG CAG CTC AGT A-3′. The mRNA levels of aquaporin-4 and Kir4.1 were
determined using the iQ5 optical system software (Bio-Rad Laboratories, Inc., Hercules, CA, USA).

4.6. Statistical Analysis

Data in all tables and figures were presented as the mean ± standard error of the mean (SEM).
GraphPad Prism v6.0 software (GraphPad Software, Inc., La Jolla, CA, USA) was used to analyze
quantitative data. Significant differences were assessed by one-way analysis of variance (ANOVA)
followed by Tukey’s multiple comparison test. Because the scoring data for liver injury were
nonparametric, comparative analysis was conducted using the Kruskal-Wallis test. Differences were
considered statistically significant at p < 0.05.
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