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Abstract: The reaction of the previously known bis(6-diphenylphosphinoacenaphthyl-5-)telluride
(6-Ph2P-Ace-5-)2Te (IV) with (CO)5ReCl and (CO)5MnBr proceeded with the liberation of CO and
provided fac-(6-Ph2P-Ace-5-)2TeM(X)(CO)3 (fac-1: M = Re, X = Cl; fac-2: M = Mn, X = Br), in which
IV acts as bidentate ligand. In solution, fac-1 and fac-2 are engaged in a reversible equilibrium with
mer-(6-Ph2P-Ace-5-)2TeM(X)(CO)3 (mer-1: M = Re, X = Cl; mer-2: M = Mn, X = Br). Unlike fac-1, fac-2
is prone to release another equivalent of CO to give (6-Ph2P-Ace-5-)2TeMn(Br)(CO)2 (3), in which IV
serves as tridentate ligand.

Keywords: ligand design; transition metal complex; tellurium; manganese; rhenium

1. Introduction

Transition metal complexes composed of multidentate ligands based upon tellurium are far less
explored than those of sulfur and selenium, which might be due to the lack of easily available ligands
containing tellurium, as well as the historical misconception that organotellurium compounds were
extremely malodorous and toxic [1–8]. Up to the 1970s, studies of coordination chemistry were mostly
restricted to monodentate ligands. The first bidentate telluroether ligand I (Te, P-type) was described
by Gysling and Luss in 1984 [9], whereas the first tridentate telluroethers II (N,Te,N-type), and III
(P,Te,P-type) were reported by Singh et al. [10] as well as Lin and Gabbaï (Scheme 1) [11].
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1. Introduction 

Transition metal complexes composed of multidentate ligands based upon tellurium are far less 
explored than those of sulfur and selenium, which might be due to the lack of easily available ligands 
containing tellurium, as well as the historical misconception that organotellurium compounds were 
extremely malodorous and toxic [1–8]. Up to the 1970s, studies of coordination chemistry were mostly 
restricted to monodentate ligands. The first bidentate telluroether ligand I (Te, P-type) was described 
by Gysling and Luss in 1984 [9], whereas the first tridentate telluroethers II (N,Te,N-type), and III 
(P,Te,P-type) were reported by Singh et al. [10] as well as Lin and Gabbaï (Scheme 1) [11]. 

 
Scheme 1. Bidentate and tridentate telluroether ligands I–IV. Scheme 1. Bidentate and tridentate telluroether ligands I–IV.
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In preceding work, we reported on the synthesis of bis(6-diphenylphosphinoacenaphth-5-yl)
telluride (IV) [12], which also holds potential as a tridentate telluroether ligand. Herein, we describe
the reaction of IV with (CO)5MnBr and (CO)5ReCl, giving rise to the formation of three octahedral
transition metal carbonyl complexes with this ligand.

2. Results and Discussion

The reaction of bis(6-diphenylphosphinoacenaphth-5-yl)telluride (6-Ph2P-Ace-5-)2Te (IV)
with (CO)5ReCl in THF at 65◦ for 7 days afforded an 1:1 isomeric mixture of the
complex fac/mer-(6-Ph2P-Ace-5-)2TeRe(Cl)(CO)3 (fac-1/mer-1), which slowly interconvert in solution.
The progress of the reaction was followed by 31P NMR spectroscopy. Upon cooling to r.t. solely fac-1
precipitates from the reaction mixture and was isolated in 45% isolated yield (Scheme 2).
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The analogous reaction of IV with (CO)5MnBr in THF at 65◦ occurred within 32 h and gave rise
to the isomeric mixture of fac/mer-(6-Ph2P-Ace-5-)2TeMe(Br)(CO)3 (fac-2/mer-2) and as was already
observed for the Te-Re complex fac-1, fac-2 precipitates solely from the reaction mixture upon cooling
to r.t. and was isolated in 47% yield (Scheme 2). In both complexes fac-1 and fac-2, the telluroether
IV serves as bidentate ligand. In the solid-state, fac-1 and fac-2 are reasonably stable toward moist
air and show no signs of decomposition even after prolonged times of storage. Unfortunately, both
complexes show only poor solubility in the most common solvents used for NMR spectroscopy.
In CDCl3 solution, both fac-1 and fac-2 are in equilibrium with their related meridional complexes
mer-1 and mer-2, which can be inferred by 31P-NMR spectroscopy (Scheme 3). The 31P-NMR spectrum
of a freshly prepared solution of fac-1 in CDCl3, shows almost exclusively two chemical shifts at
δ = −0.9 and −25.0 ppm of equal intensity, which are assigned to the P atom that coordinates to
the Re atom and the P atom that engages in interaction with the Te atom (the assignment is based
upon the comparison with fac-[Re(Cl)(CO)3(PPh2C10H6PPh2)] [13], ([(Ph2P(Me2pz)2)Re(CO)3Br] and
[(Ph2P(Me2pz))Re(CO)4Br (pz = pyrazole) [14]). However, the formation of mer-1 can already be
detected even from the freshly prepared solution of fac-1, showing chemical shifts at δ = 14.7 and
−26.4 ppm, which increase in intensity over time (Figure 1). It should be noted that the chemical shifts
of fac-1 consist of singlets, whereas the doublets were observed for mer-1 with a coupling constant
of J(31P-31P) = 11.6 Hz. In contrast, the Te–Mn complex 2 shows significantly faster formation of
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mer-2 (δ (31P) = 50.0 and −28.0 ppm) from a freshly prepared solution of fac-1 (δ (31P) = 36.2 and
−25.6 ppm, Figure S2d).Molecules 2018, 23, x FOR PEER REVIEW  3 of 9 
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Figure 1. Equilibration between fac-1 and mer-1 in the CDCl3 solution.

When the reaction of IV with (CO)5MnBr was repeated with a longer reaction time of 7 days, a
different product, namely (6-Ph2P-Ace-5-)2TeMn(Br)(CO)2 (3) formed, which was obtained in 40%
isolated yield (Scheme 2). The formation of 3 can be rationalized by the liberation of CO from fac-2
and/or mer-2. In 3, the telluroether serves as tridentate ligand. Notably, a similar reactivity of fac-1
was not observed. The solubility of 3 in the most common solvents is slightly higher than those of fac-1
and fac-2, which allowed the acquisition of full set of NMR data. The 31P-NMR spectrum (CDCl3) of 3
shows a broad signal at δ = 59.7 ppm (ω1/2 = 110 Hz), whereas the 125Te-NMR spectrum exhibits a
singlet at δ = 753.1 pm that is slightly high-field shifted in comparison to IV (δ = 704.4 ppm) [12].

The molecular structures of fac-1, fac-2, and 3 are shown in Figures 2–4. Selected bond parameters
are collected in Table 1. The spatial arrangement of the Re and Mn atoms is octahedral. In fac-1 and
fac-2, only one P atom coordinates to the Re and Mn atoms, whereas the other P atoms engage in a
through-space interactions with the Te atoms. Consistent with -the covalent radii of Mn and Re, the
Mn–Te bond length of fac-2 (2.599(1) Å) and 3 (2.546(1) Å) are smaller than the Re–Te bond length of
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fac-1 (2.733(1) Å). The Mn–Te distances are in between values reported for [Mn(CO)4TePh]2 (mean
2.674(2) Å) [15–17] and [Cp′(CO)2Mn]2TeMes+ (2.44 Å) [18].Molecules 2018, 23, x FOR PEER REVIEW  4 of 9 
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Table 1. Experimental interatomic distances [Å] and angles [◦] of fac-1, fac-2, and 3.

fac-1 (M = Re) fac-2 (M = Mn) 3 (M = Mn)

Bond Lengths and Angles

M(1)–Te(1) 2.733(1) 2.599(1) 2.546(1)
M(1)–P(1) 2.466(1) 2.343(1) 2.293(1)
M(1)–P(2) - - 2.277(1)
M(1)–X(1) 2.487(1) 2.498(1) 2.540(1)
M(1)–C(5) 1.930(2) 1.819(5) 1.800(4)
M(1)–C(6) 1.930(2) 1.817(6) 1.811(4)
M(1)–C(7) 1.951(2) 1.915(7) -
C(5)–O(5) 1.142(2) 1.127(7) 1.146(6)
C(6)–O(6) 1.121(2) 1.108(7) 1.037(5)
C(7)–O(7) 1.141(2) 0.993(8) a -

P(1)–M(1)–P(2) - - 170.8(1)
P(1)–M(1)–C(7) 171.9(1) 171.2(2) -
X(1)–M(1)–C(6) 176.2(1) 173.9(2) 176.3(1)
Te(1)–M(1)–C(5) 174.0(1) 175.9(2) 175.6(1)

peri Region distances

P(1)···Te(1) 3.363(1) 3.466(1) 3.247(2)
P(1)···Te(2) 3.111(1) 3.141(1) 3.429(1)

peri Region bond Angles

P(1)–C(18)–C(19)/P(2)–C(48)–C(49) 122.9(1)/119.5(1) 124.6(3)/118.8(3) 124.3(3)/121.0(3)
C(10)–C(19)–C(18)/C(40)–C(49)–C(48) 130.2(1)/129.0(1) 129.8(4)/129.9(4) 130.3(4)/129.8(4)
Te(1)–C(10)–C(19)/Te(1)–C(40)–C(49) 127.6(1)/122.0(1) 129.6(3)/124.1(3) 123.2(3)/126.1(3)

∑ of bay angles 380.7(3)/370.5(3) 380.0(10)/372.8(1) 377.8(1)/376.9(1)
Splay angle b 20.7(3)/10.5(3) 20(10)/12.8(1) 17.8(1)/17.4(1)

Out-of-Plane Displacement

Te(1) c 0.198(1)/−0.626(1) −0.191(1)/−0.390(1) 0.0899(3)/−0.666(1)
P(1) −0.203(1) 0.097(1) −0.160(1)
P(2) 0.278(1) 0.263(1) 0.543(1)

Central Acenaphthene Ring Torsion Angles

C:(13)–(14)–(19)–(18)/(43)–(44)–(49)–(48) 175.5(1)/177.9(1) −179.3(6)/−173.3(5) 179.4(4)/169.4(5)
C:(15)–(14)–(19)–(10)/(45)–(44)–(49)–(40) 178.7(1)/176.2(1) 178.5(5)/−177.5(5) 179.4(4)/178.6(5)

a This value might be erroneously low due to unresolved disorder. b Splay angle: sum of the three bay region angles
−360◦. c fac-1, fac-2, and 3 show a transoid out-of-plane displacement.

Likewise, the Mn–P bond length of fac-2 (2.343(1) Å) and 3 (2.341(1) Å) is smaller than the
Re–P bond length of 1 (2.466(1) Å). The average Mn–P distances are comparable with those of
[Mn(Cl)(CO)3(κ1-PPh2C10H6PPh2)] (2.328(1) Å) [13] and iPrPNHPMn(CO)2Br (2.263 (1) Å) [19].
The Re(1)–C(5)/C(6) bond distances of fac-1 (2 × 1.930(2) Å) and the Mn(1)–C(5)/C(6) bond distances
of fac-2 (1.817(6), 1.819(5) Å) are very similar to those of [ReCl(CO)3(PPh2C10H6PPh2)] (mean 1.952(16)
Å)[13] and fac-[MnCl(CO)3(PPh2C10H6PPh2)] (mean 1.815(2) Å) [20]. Due to the trans-effect of
the P atom, the Re(1)–C(7) bond distance of fac-1 (1.951(2) Å) and the Mn(1)–C(7) distance of
fac-2 (1.915(7) Å) are slightly longer. The Mn(1)–C(5) and Mn(1)–C(6) bond lengths of 3 (1.800(4),
1.811(5) Å) are in average very similar than that of fac-[Mn(CO)3(dppbz)Br] (mean 1.807(4) Å;
dppbz = 1,2-(diphenylphosphino)benzene) [21]. In the carbonyl region of the IR spectrum of fac-1
three strong absorption bands at ṽ = 2018, 1928, and 1882 cm−1 are visible, respectively, consistent
with a facial arrangement of three carbonyl groups [12,22]. The IR spectrum of 3 reveals asymmetric
and symmetric stretching vibrations at ṽ = 1936 and 1852 cm−1, which compare well with those of
(iPrPONOP)Mn(CO)2Br (1866, 1946 cm−1) and iPrPNHPMn(CO)2Br (1824, 1916 cm−1) [19].

3. Conclusions

The present study demonstrates the ability of bis(6-diphenylphosphinoacenaphthyl-5-)telluride
(6-Ph2P-Ace-5-)2Te (IV) [12] to act as a bidentate and tridentate ligand toward transition metals
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carbonyls. The reaction of IV with (CO)5ReCl and (CO)5MnBr provided three complexes,
namely fac-(6-Ph2P-Ace-5-)2TeM(X)(CO)3 (fac-1: M = Re, X = Cl; fac-2: M = Mn, X = Br) and
(6-Ph2P-Ace-5-)2TeMn(Br)(CO)2 (3). In solution, the facial complexes, fac-1 and fac-2, are engaged in
a reversible equilibrium with their meridional complexes, mer-(6-Ph2P-Ace-5-)2TeM(X)(CO)3 (mer-1:
M = Re, X = Cl; mer-2: M = Mn, X = Br).

4. Experimental Section

General. Reagents were obtained commercially (Sigma-Aldrich, Taufkirchen, Germany) and
were used as received. Dry solvents were collected from an SPS800 mBraun solvent system.
Bis(6-diphenylacenaphth-5-yl)telluride, (6-Ph2P-Ace-5-)2Te (IV) was prepared according to literature
procedures [12]. 1H-, 13C-, 31P-, and 125Te-NMR spectra were recorded at room temperature using a
Bruker Avance-360 and a Bruker Avance-200 spectrometer and are referenced to tetramethylsilane
(1H, 13C), phosphoric acid (85% in water) (31P), and dimethyltelluride (125Te). Chemical shifts are
reported in parts per million (ppm), and coupling constants (J) are given in Hertz (Hz). The FTIR
spectra were recorded on Thermo Scientific NicoletTM iS10. The ESI-MS spectra were obtained with a
Bruker Esquire-LC MS. Dichloromethane/acetonitrile solutions (c = 1 × 10−6 mol L−1) were injected
directly into the spectrometer at a flow rate of 3 µL min−1. Nitrogen was used both as a drying gas
and for nebulization with flow rates of approximately 5 L min−1 and a pressure of 5 psi. Pressure
in the mass analyzer region was usually about 1 × 10−5 mbar. Spectra were collected for 1 min and
averaged. The nozzle-skimmer voltage was adjusted individually for each measurement.

Synthesis of (6-Ph2P-Ace-5-)2TeRe(CO)3Cl (fac-1): Re(CO)5Cl (9.20 mg, 25.4 µmol) was added to a solution
of (6-Ph2P-Ace-5-)2Te (20.0 mg, 24.9 µmol) in THF (5 mL). The mixture was continually stirred at
65 ◦C for 7 d. The product precipitated upon cooling to room temperature as colorless microcrystals.
(12.5 mg, 11.3 µmol, 45%; Mp. 197 ◦C (dec.)). Due to the low-solubility and the equilibrium of fac-1
and mer-1 in solution, reliable 13C- and 125Te-NMR spectra could not be obtained.

fac-1: 1H-NMR (200.1 MHz, CDCl3) δ = 7.99 (d, 3J = 7.9 Hz, 1H), 7.42 (m, 18H), 7.18 (dd, J = 7.9,
3.4 Hz, 4H), 6.71 (d, 3J = 7.4 Hz, 1H), 6.22 (d, 3J = 7.5 Hz, 1H), 3.50 (s, 4H), 3.45–3.15 (m, 4H) ppm.
31P-NMR (81.0 MHz, CDCl3) δ = −0.9 (s), −25.0 (s) ppm. ESI-MS (CH2Cl2/CH3CN 1:10, positive mode):
m/z = 1073.4 (C51H38O3P2ReTe) for [(6-Ph2P-Ace-5-)2Te-Re(CO)3]+. FTIR: ṽ (CO) = 2018, 1928, 1882 cm−1.
mer-1: 31P-NMR (81.0 MHz, CDCl3) δ = 14.7 (d, J(31P-31P) = 11.6 Hz), −26.4 (d, J(31P-31P) = 11.6 Hz) ppm.

Synthesis of (6-Ph2P-Ace-5-)2TeMn(CO)3Br (fac-2): Mn(CO)5Br (17.5 mg, 64.4 µmol) was added to a
solution of (6-Ph2P-Ace-5-)2Te (50 mg, 62.3 µmol) in THF (10 mL). The mixture was continually stirred
at 65 ◦C for 32 h. The product precipitated upon cooling to room temperature as orange microcrystals
(30 mg, 29.4 µmol, 47%; Mp. 185 ◦C (dec.)). Due to the low-solubility, the equilibrium between fac-2
and mer-2 in solution and the concomitant formation of 3 reliable 13C- and 125Te-NMR spectra could
not be obtained.

fac-2: 31P-NMR (81.0 MHz, CDCl3) δ = 50.4 (s, br), 39.9 (s, br), −27.4 (d, J(31P-31P) = 7.2 Hz) ppm. mer-2:
1H-NMR (200.1 MHz, CDCl3) δ = 7.95 (d, 3J = 7.2 Hz, 2H), 7.80–6.85 (m, 26H), 3.41 (m, 8H) ppm. 31P-NMR
(81.0 MHz, CDCl3) δ = 50.0 (s, br), −27.9 (d, J(31P-31P) = 7.2 Hz) ppm. ESI-MS (CH2Cl2/CH3CN 1:10,
positive mode): m/z = 943.1 (C51H38O3P2MnTe) for [(6-Ph2P-Ace-5-)2Te–Mn(CO)3]+. FTIR: ṽ (CO) = 2011,
1939, 1895 cm−1.

Synthesis of (6-Ph2P-Ace-5-)2TeMn(CO)2Br (3). Mn(CO)5Br (7.00 mg, 25.5 µmol) was added to a
solution of (6-Ph2P-Ace-5-)2Te (20.0 mg, 24.9 µmol) in THF (5 mL). The mixture was continually stirred
at 65 ◦C for 7 d. The product precipitated upon cooling to room temperature as yellow microcrystals
(10.0 mg, 10.0 µmol, 40%; Mp. 150 ◦C (dec.)).
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1H-NMR (360.3 MHz, CD2Cl2) δ = 8.03 (s, 4H, Ho), 7.60 (d, J = 7.1 Hz, 2H, H4), 7.52 (s, 6H, Hm+p),
7.35–7.19 (m, 8H, Hm’+p’+ H8), 7.19–7.05 (m, 6H, Ho’+ H4), 7.00 (m, 2H, H7), 3.50–3.34 (m, 8H, H1+2).
13C-NMR (90.6 MHz, CD2Cl2) δ = 150.8 (s, Cc), 150.2 (s, Cd), 139.9 (t, J = 4.0 Hz, Cb), 139.0 (s, C4), 136.8
(t, J = 5.1 Hz, Ca), 136.2 (s, C7), 135.7 (t, J = 18.1 Hz, Ci), 135.7 (d, J = 18.0 Hz, Ci’), 134.5 (t, J = 4.9 Hz,
Co), 133.1 (t, J = 4.6 Hz, Co’), 129.8 (s, Cm), 129.0 (s, Cm’), 127.8 (t, J = 4.4 Hz, Cp), 127.5 (t, J = 4.2 Hz,
Cp’), 127.0 (d, J = 17.5 Hz, C6), 119.5 (t, J = 3.9 Hz, C3), 119.4 (s, C8), 104.6 (t, J = 7.0 Hz, C5), 29.8
(s, C1), 29.7 (s, C2). 31P-NMR (81.0 MHz, CD2Cl2) δ = 59.7 (s, br). 125Te-NMR (113.7 MHz, CD2Cl2)
δ = 753.1 (s). ESI-MS (CH2Cl2/CH3CN 1:10, positive mode): m/z = 859.4 (C50H36MnO2P2Te) for
[[(6-Ph2P-Ace-5-)2Te–Mn(CO)2]–2CO]+. FTIR: ṽ (CO) = 1936 (s), 1852 (s) cm−1.

X-ray crystallography. Single crystals of fac-1, fac-2, and 3 were grown by slow evaporation of CH2Cl2
solutions that contained small amounts of n-hexane. Intensity data of fac-1, fac-2·CH2Cl2, and 3·2 CH2Cl2
were collected at 100 K on a Bruker Venture D8 diffractometer with graphite-monochromated Mo-Kα
(0.7107 Å) radiation. All structures were solved by direct methods and refined based on F2 by use of the
SHELX program package as implemented in WinGX [23]. Strongly disordered solvent molecules were
accounted using the SQUEEZE routine for 1 and 2 [24]. All non-hydrogen atoms were refined using
anisotropic displacement parameters. Hydrogen atoms attached to carbon atoms were included in
geometrically calculated positions using a riding model. Crystal and refinement data are collected in
Table 2.

Table 2. Crystal data and structure refinement of fac-1, fac-2, and 3.

fac-1 fac-2·CH2Cl2 3·2 CH2Cl2

Formula C51H36ClO3P2ReTe C52H38BrCl2MnO3P2Te C52H40BrCl4MnO2P2Te
Formula weight, g mol−1 1107.99 1106.11 1163.03

Crystal system Triclinic Monoclinic Triclinic
Crystal size, mm 0.09 × 0.08 × 0.06 0.10 × 0.08 × 0.05 0.09 × 0.08 × 0.08

Space group P1 P21/n P1
a, Å 12.2258(3) 10.2073(2) 12.542(5)
b, Å 14.3531(3) 22.4724(5) 12.738(5)
c, Å 14.8486(3) 19.7629(5) 15.516(5)
α, ◦ 78.509(1) 90 100.490(5)
β, ◦ 77.874(1) 101.421(1) 100.078(5)
γ, ◦ 89.216(1) 90 100.930(5)

V, Å3 2495.33(9) 4443.5(2) 2336(2)
Z 2 4 2

ρcalcd, Mg m−3 1.475 1.653 1.653
µ (Mo Kα), mm−1 3.163 2.077 2.089

F(000) 1080 2200 1156
θ range, deg 2.31 to 29.57 2.29 to 27.56 2.38 to 30.12
Index ranges −16 ≤ h ≤ 16 −13 ≤ h ≤ 12 −17 ≤ h ≤ 17

−19 ≤ k ≤ 19 −29 ≤ k ≤ 29 −17 ≤ k ≤ 17
−20 ≤ l ≤ 20 −25 ≤ l ≤ 25 −21 ≤ l ≤ 21

No. of reflns collected 275,626 120,248 202,873
Completeness to θmax 99.8% 99.8% 99.8%

No. indep. Reflns 13,983 10,262 13,719
No. obsd reflns with (I > 2σ(I)) 13,702 8891 11,512

No. refined params 532 553 556
GooF (F2) 1.074 1.042 1.054

R1 (F) (I > 2σ(I)) 0.0148 0.0559 0.0553
wR2 (F2) (all data) 0.0385 0.1690 0.1529

Largest diff peak/hole, e Å−3 0.844/−0.846 1.724/−1.561 1.955/−1.665
CCDC number 1861602 1861603 1861604

Figures 1–4 were created using DIAMOND [25]. Crystallographic data (excluding structure
factors) for the structural analyses have been deposited with the Cambridge Crystallographic Data
Centre. Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union
Road, Cambridge CB2 1EZ, UK (Fax: +44-1223-336033; e-mail: deposit@ccdc.cam.ac.uk).
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