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Abstract: Helicteres velutina K. Schum (Sterculiaceae), commonly known in Brazil as ‘pitó’,
is traditionally used by indigenous peoples as insecticides and repellents. The present work reports
on the the phytoconstituents from aerial parts of H. velutina and evaluation of the larvicidal potential
of its extract. The compounds were isolated using chromatographic techniques and identified by
NMR, IR and LC-HRMS. This study led to the isolation of a fatty acid, one aliphatic alcohol, four
chlorophyll derivatives, one steroid, triterpenes, a lignan, and flavonoids, highlighting the new
compounds in the literature, 5,4′-di-hydroxy-7-methoxy-8-O-sulphate flavone (mariahine) (15a)
and 5,3′-di-hydroxy-7,4′-dimethoxy-8-O-sulphate flavone (condadine) (15b). The work presented
here contributes to the chemotaxonomic knowledge of the Sterculiaceae family by describing the
occurrence of sulphated flavonoids in this family for the first time. The crude ethanolic extract of
H. velutina featured robust larvicidal activity against Aedes aegypti larvae, showing that the extract can
be useful as a domestic larvicide, just as indicated by traditional use, to combat A. aegypti, a vector
insect of severe viral diseases, such as dengue and Zika.
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1. Introduction

The Sterculiaceae family is composed of 70 genera and approximately 1500 species spread all
over the world, with 14 genera and 165 species found in Brazil [1,2]. According to the system,
Angiosperm Phylogeny Group (APG) IV, the families Sterculiaceae, Bombacaceae and Tiliaceae
were insert into the family Malvaceae sensu lato [3]. The Helicteres genus has a predominantly
pantropical distribution in American and Asian countries. There is no record of the species occurring
in both continents [4]. Phytochemical studies on Helicteres species have demonstrated the presence
of terpenes [5], steroids [6], alkaloids [7], saponins [8] and flavonoids [9]. Many Helicteres species
are traditionally used as medicines, for example, Helicteres sacarolha is used to treat hypertension
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and ulcers [9] and Helicteres angustifólia has been employed as an analgesic and anti-inflammatory
herb [6]. The traditional uses of Helicteres species have raised scientific interest in their pharmacological
activities. Helicteres isora has been shown to possess antioxidant, antimicrobial and hepatoprotective
activities [8], and H. angustifólia was active against the hepatitis B virus [10].

Helicteres velutina, popularly known as ‘pitó’, is an endemic species from Brazil. The plant is
traditionally used as an insect repellent by indigenous peoples from the Pankararé tribe in Paulo
Afonso, Bahia [11]. There are literature reports of the biological activities of roots and stem extracts
against the larvae of Aedes aegypti [11]. However, no subsequent biological studies were carried out
and no phytochemical studies are available.

Considering the lack of phytochemical information and the interesting uses of H. velutina,
this work aims to isolate and identify compounds from their aerial parts and evaluate the larvicidal
activity of the obtained extract against larvae of A. aegypti.

2. Results

2.1. Identification of Compounds

The compounds identified from aerial parts of H. velutina are shown in Figure 1. They were
identified by 1D and 2D NMR data and comparisons with the literature (spectra available as
Supplementary material).

Fraction 15 was analyzed by NMR, IR and LC-HRMS. It was found to be a mixture of three
compounds (14, 15a and 15b) and their spectral data are presented in Table 1.
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Table 1. NMR data (1H, 13C and HMBC- Heteronuclear Multiple Bond Correlation) of 14, 15a and 15b (δ, DMSO-d6, 500 and 125 MHz).

C
14 15a 15b

δH δc HMBC δH δC HMBC δH δc HMBC

2 - 164.3 - - 164.8 - - 164.7 -
3 6.74 (s, 1H) 101.8 C-2 6.74 (s, 1H) 101.8 C-2, C-1′ 6.69 (s, 1H) 102.7 -
4 - 182.6 - - 182.6 - - 182.6 -
5 - - - - - - - - -
6 6.48 (s, 1H) 95.8 - 6.48 (s, 1H) 95.8 - 6.48 (s, 1H) 95.8
7 - 159.1 - 159.1 - 159.1 -
8 - 123.1 - - 123.2 - - 123.2 -
9 - 148.8 - - 148.8 - - 148.8 -

10 - 104.7 - - 104.7 - - 104.7 -
1′ - 123.6 - - 121.6 - - 123.6 -
2′ 8.26 (d, J = 1.75 e 9.0 Hz, 2H) 129.3 C-2, C-4′, C-6′ 8.13 (d, J = 8.9 Hz, 2H) 129.3 C-2, C-4′, C-6′ 7.56 (d, J = 2.2 Hz 1H) 113.8 C-3′, C-4′, C-6′

3′ 7.09 (d, J = 9.0 Hz, 2H) 116.2 C-4′, C-1′ 6.86 (d, J = 8.8 Hz, 2H) 116.0 C-4′, C-1′, C-5′ - 146.8 -
4′ - 162.7 - - 162.3 - - 151.6 -
5′ 7.09 (d, J = 9.0 Hz, 2H) 116.2 C-4′, C-1′ 6.86 (d, J = 8.8 Hz, 2H) 116.0 C-4′, C-1′ 7.07 (d, J = 8.5 Hz, 1H) 111.8 C-1′

6′ 8.26 (d, J = 1.75 e 9.0 Hz, 2H) 129.3 C-2, C-4′ 8.13 (d, J = 8.9 Hz, 2H) 129.3 C-2, C-4′ 7.83 (dd, J = 2.2 e 8.5 Hz, 1H) 119.8 C-2′, C-4′

OCH3-4′ 3.84 (s, 3H) 56.4 - - - - 3.85 (s, 3H) 55.7 -
OCH3-7 3.82 (s, 3H) 56.4 - 3.82 (s, 3H) 56.4 - 3.82 (s, 3H) 56.4

OH-5 12.91 (s, 1H) - - 12.91 (s, 1H) - - 12.91 (s, 1H) - -
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Spectral Data

Palmitic acid (1), white solid; IR (KBr, cm−1): 3500, 2953, 2848, 1707, 1472, 1300. 1H-NMR (400 MHz)
(CDCl3) δ: 2.34 (t, J = 7.4 Hz, 2H, H-2), 1.63 (q, 2H, H-15), 1.25 (bs), 0.87 (t, J = 6.6 Hz, H-16). 13C-NMR
(δ, CDCl3, 100 MHz): 178.6 (C-1), 33.9 (C-2), 32.0 (C-4), 29.8 (C-5, C-12, C-13, C-14), 29.5 (C-11), 29.7
(C-6), 29.5 (C-7), 29.4 (C-8), 29.2 (C-9, C-10), 24.8 (C-3), 22.8 (C-15), 14.2 (C-16). The 1H- and 13C-NMR
spectral data were consistent with published data [12].

Decanol (2), white solid; IR (KBr, cm−1): 3500, 2954, 2848, 1472. 1H-NMR (400 MHz) (CDCl3) δ: 3.63 (t,
J = 6.56 Hz, 2H, 1H), 1.25–1.59 (m), 0.87 (t, J = 6.72 Hz, 3H, H-10). 13C-NMR (100 MHz) (CDCl3) δ: 63.0
(C-1), 32.7 (C-2), 29.3 (C-4), 29.4 (C-5), 29.6, 29.7, 31.9, 25.7 (C-3), 22.6 and 14.1 (C-10). The 1H- and
13C-NMR data were in accordance with published data [12].

Pheophytin a (3), 132-hydroxy-(132-S)-pheophytin a (4a), 132-hydroxy-(132-R)-pheophytin a (4b),
Pheophytin b (5), green solids, were identified by 1D and 2D NMR and comparison with the
literature [12–14].

Sitosterol-3-O-β-D-glucopyranoside (6), colorless crystal, was identified by 1D and 2D NMR and
comparison with the literature [15].

3-β-hydroxy-olean-12-en-28-oic acid (7), white powder; 1H-NMR (500 MHz) (C5D5N) δ: 0.99 (s, 3H,
Me-26), 1.22 (s, 3H, Me-24), 0.88 (s, 3H, Me-29), 0.93 (s, 3H, Me-25), 1.01 (s, 3H, Me-30), 1.01 (s, 3H,
Me-23), 1.26 (s, 3H, Me-27), 3.29 (dd, 1H, H-18), 3.43 (dd, 1H, J = 5.6 e 10. 5 Hz, H-3), 5.48 (dd, 1H,
J = 3.4 Hz, H-12); 13C-NMR (125 MHz) (C5D5N) δ: 16.5 (C-24), 15.5 (C-25), 17.4 (C-26), 18.7 (C-6), 23.6
(C-11), 23.7 (C-16), 23.7 (C-30), 26.1 (C-27), 28.0 (C-2), 28.7 (C-23), 30.9 (C-20), 33.1 (C-22), 33.1 (C-29),
33.2 (C-7), 34.1 (C-21), 37.7 (C-10), 38.8 (C-1), 39.3 (C-4), 39.7 (C-8), 41.9 (C-18), 42.1 (C-14), 46.4 (C-19),
48.0 (C-9), 55.7 (C-5), 78.0 (C-3), 122.5 (C-12), 144.8 (C-13), 180.2 (C-28). The 1H- and 13C-NMR spectral
data were consistent with published data [16].

3-β-acethoxy-olean-12-en-28-oic acid (8), white powder; 1H-NMR (400 MHz) (CDCl3) δ: 0.73 (s, 3H,
Me-26), 0.85 (s, 3H, Me-24), 0.91 (s, 3H, Me-29), 0.89 (s, 3H, Me-25), 0.93 (s, 3H, Me-30), 0.84 (s, 3H,
Me-23), 1.11 (s, 3H, Me-27), 2.80 (dd, 1H, H-18), 4.49 (t, 1H, J = 8.5 Hz, H-3), 5.25 (dd, 1H, J = 3.4 Hz,
H-12); 2.03 (s, 3H, OAc); 13C-NMR (δ, CDCl3, 100 MHz): 16.7 (C-24), 15.5 (C-25), 17.2 (C-26), 18.2 (C-6),
22.9 (C-11), 23.6 (C-16), 23.7 (C-30), 26.0 (C-27), 23.5 (C-2), 28.1 (C-23), 30.7 (C-20), 32.5 (C-22), 33.1
(C-29), 32.6 (C-7), 33.9 (C-21), 37.8 (C-10), 38.1 (C-1), 37.8 (C-4), 39.3 (C-8), 41.7 (C-18), 41.7 (C-14), 45.9
(C-19), 47.6 (C-9), 55.4 (C-5), 81.0 (C-3), 122.7 (C-12), 143.7 (C-13), 184.6 (C-28), 171.2 (OAc). The 1H-and
13C-NMR spectral data were consistent with published data [17].

3-β-sterearyloxy-olean-12-ene (9), white powder; 1H-NMR (400 MHz) (CDCl3) δ: 0.86 (s, 6H, Me-28, 18′),
0.87 (s, 6H, Me-23, 24), 0.95 (s, 3H, Me-25), 1.10 (s, 3H, Me-26), 0.96 (s, 3H, Me-27), 0.83 (s, 6H, Me-29,
30), 1,63 (m, H-3′), 2.30 (d, 2H, J = 7.8 Hz, H-2′), 1.25 (s, H-4′ a 17′) 4.59 (dd, 1H, J = 4.2, 7.3 Hz, H-3),
5.23 (t, J = 3.6 Hz, H-12); 13C-NMR (δ, CDCl3, 100 MHz): 16.9 (C-24), 15.6 (C-25), 17.2 (C-26), 18.5
(C-6), 23.9 (C-11), 27.1 (C-16), 23.8 (C-30), 26.1 (C-27), 23.5 (C-2), 28.0 (C-23), 31.2 (C-20), 47.3 (C-22),
33.4 (C-29), 32.6 (C-7), 34.8 (C-21), 36.5 (C-10), 38.7 (C-1), 37.2 (C-4), 40.5 (C-8), 47.6 (C-18), 41.0 (C-14),
46.9 (C-19), 47.9 (C-9), 55.8 (C-5), 80.6 (C-3), 122.1 (C-12), 144.5 (C-13), 28.4 (C-28), 173.8 (C-1′), 35.0
(C-2′), 25.3 (C-3′), 29.3 (C-4′), 29.4 (C-5′), 29.5 (C-6′), 29.7 (C-7′), 29.8 (C-8′ a C-13′), 29.8 (C-14′), 29.6
(C-15′), 32.0 (C-16′), 22.8 (C-17′), 12.2(C-18′). The 1H- and 13C-NMR spectral data were consistent with
published data [18].

Pinoresinol (10), yellowish oil; 1H-NMR (400 MHz) (CD3COD3) δH: 6.98 (d, J = 1.9 Hz, 2H, H-2, 2′), 6.78
(d, J = 8.1 Hz, 2H, H-5, 5′) 6.83 (dd, J = 8.1 e 2 Hz, 2H, H-6, 6′), 4.66 (d, J = 4.3 Hz, 2H, H-7, 7′), 3.08 (m,
2H, H-8, 8′), 4.20 (dd, J = 9 Hz, 2H, H-9, 9′), 3.78 (dd, J = 9.1 Hz, 2H, H-9, 9′), 3.84 (s, 6H, OMe-3, 3′);
13C-NMR (δ, CD3COD3, 100 MHz): 134.1 (C-1, 1′), 110.6 (C-2, 2′), 148.4 (C-3, 3′), 146.8 (C-4, 4′), 115.5
(C-5, 5′), 119.7 (C-6, 6′), 86.7 (C-7, 7′), 55.3 (C-8, 8′), 72.3 (C-9, 9′), 56.2 (C-3, 3′). The 1H- and 13C-NMR
spectral data were in agreement with literature data [19].
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Kaempferol (11), yellow powder: 1H-NMR (500 MHz) (CD3OD), δH: 6.17 (d, J = 2.0 Hz, 1H), 6.39 (d,
J = 2.0 Hz, 1H), 8.09 (d, J = 9.0 Hz, 2H, H-2′, 6′), 6.90 (d, J = 9.0 Hz, 2H, H-3′, 5′); 13C-NMR (125 MHz,
CD3OD): 148.2 (C-2), 137.3 (C-3), 177.5 (C-4), 162.7 (C-5), 99.4 (C-6), 165.7 (C-7), 94.6 (C-8), 158.4 (C-9),
104.7 (C-10), 123.9 (C-1′), 130.9 (C-2′-6′), 115.7 (C-3′-5′), 160.7 (C-4′). The 1H- and 13C-NMR spectral
data were in agreement with literature data [20].

Tiliroside (12), yellow powder; 1H-NMR (500 MHz) (DMSO-d6) δH: 12.54 (s, 5-OH), 6.11 (d, J = 2.0
Hz, H-6), 6.35 (d, J = 2.0 Hz, H-8), 7.97 (d, J = 8.8 Hz, H-2′/6′), 6.84 (d, J = 8.8 Hz, H-3′/5′), 5.43 (d,
J = 7.5 Hz, H-1′ ′), 3.14–3.26 (m, H-2′ ′, 3′ ′, 4′ ′, 5′ ′), 4,27 (dd, J = 2.0 e 12.0 Hz; 1H H-6′’) e 4,02 (dd, J = 6.5
e 12.0 Hz 1H, H-6′ ′) 7.35 (d, J = 8.5 Hz, H-2′ ′ ′/6′ ′ ′), 6.77 (d, J = 8.5 Hz, H-3′ ′ ′/5′ ′ ′), 7.33 (d, J = 15.5 Hz,
H-7′ ′ ′), 6.09(d, J = 16 Hz, H-8′ ′ ′); 13C-NMR (125 MHz, DMSO-d6): 156.4 (C-2), 133.0 (C-3), 177.3 (C-4),
161.1 (C-5), 98.8 (C-6), 164.5 (C-7), 93.7 (C-8), 156.3 (C-9), 103.7 (C-10), 120.7 (C-1′), 130.1 (C-2′/6′),
115.7 (C-3′/5′), 159.9 (C-4′), 101.0 (C-1′ ′), 74.2 (C-2′ ′), 76.2 (C-3′ ′), 69.9 (C-4′ ′), 74.1 (C- 5′ ′), 62.9 (C-6′ ′),
124.9 (C-1′ ′ ′), 130.7 (2′ ′ ′, 6′ ′ ′), 115.0 (C-3′ ′ ′, 5′ ′ ′), 159.7 (C-4′ ′ ′), 144.5 (C-7′ ′ ′), 113..6 (C-8′ ′ ′), 166.1 (C-9′ ′ ′).
The 1H- and 13C-NMR spectral data are were in agreement with literature data [21].

7,4′-di-O-methyl isoscutellarein (13), yellow powder; 1H-NMR (400 MHz) (DMSO-d6) δH: 12.42 (s, 1H,
5-OH), 6.54 (s, 1H, Hz, H-6), 6.85 (s, 1H, Hz, H-3), 8.10 (dd, J = 2.1 and 6.8 Hz, 2H, H-2′, 6′), 7.12
(dd, J = 2.1 and 6.9 Hz, 2H, H-3′, 5′), 3.84 (s, 3H, OMe-4′), 3.89 (s, 3H, OMe-7′); 13C-NMR (100 MHz,
DMSO-d6): 163.5 (C-2), 103.0 (C-3), 182.4 (C-4), 153.1 (C-5), 95.7 (C-6), 154.4 (C-7), 126.3 (C-8), 144.5
(C-9), 103.9 (C-10), 123.0 (C-1′), 128.5 (C-2′/6′), 114.6 (C-3′/5′), 163.5 (C-4′), 55.6 (OMe-4′), 56.4 (OMe-7).
The NMR spectral data were in agreement with literature data [21].

7,4′-di-O-methyl-8-O-sulphate flavone (14), yellow powder; 1H-NMR (300 MHz δH: 12.85 (s, 1H, 5-OH),
6.52 (s, 1H, Hz, H-6), 6.82 (s, 1H, Hz, H-3), 8.27 (d, J = 9.8 Hz, 2H, H-2′, 6′), 7.07 (d, J = 8.9 Hz, 2H, H-3′,
5′), 3.86 (s, 3H, OMe-4′), 3.85 (s, 3H, OMe-7′); 13C-NMR (75 MHz) (DMSO-d6): 164.3 (C-2), 102.7 (C-3),
182.1 (C-4), 156.9 (C-5), 96.0 (C-6), 159.1 (C-7), 122.7 (C-8), 149.4 (C-9), 103.7 (C-10), 123.1 (C-1′), 129.1
(C-2′/6′), 116.3 (C-3′/5′), 162.3 (C-4′), 55.5 (OMe-4′), 56.4 (OMe-7). The NMR spectral data were in
agreement with literature data [21].

2.2. Biological Assay

The mean mortalities of A. aegypti larvae (L4) at each Crude Ethanolic Extract (CEE) concentration
are depicted in Table 2. A concentration of 10.0 mg/mL was able to kill 100% of the larvae.
Concentrations of 7.5, 5.0, 3.5, 3.0, 2.5, 1.0 and 0.1 mg/mL caused the death of 80.0%, 77.5%, 68.3%,
66.6%, 26.6, 11.6% and 0%, respectively. Only concentrations of 2.5 and 10.0 mg/mL were considered
statistically different (p < 0.05), as can be seen in Figure 2. The calculated LC50 of CEE was 2.983 mg/mL.

Table 2. Mean number of mortalities of A. aegypti larvae (L4) in different concentrations of Crude
Ethanolic Extract (CEE) of H. velutina.

Concentration (mg/mL) Mean Mortality (n) Standard Deviation (Triplicate)

0.1 (a) * 0 0
1.0 (a) 2.3 (11.6%) 0.57

2.5 5.3 (26.6) 1.15
3.0 (b) (c) 13.3 (66.6%) 0.57

3.5 (b) (d) (e) 13.6 (68.3%) 1.52
5.0 (c) (d) (f) 15.5 (77.5%) 1.29

7.5 (e) (f) 16.0 (80.0%) 1.26
10.0 20 (100%) 0

Negative Control 0 0
Positive Control 20 (100%) 0

* Means followed by the same letter are not significantly different by Tukey test, at a level of 5% of probability.
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Figure 2. Larvicidal activity of different concentrations of Crude Ethanolic Extract (CEE) of H. velutina
on A. aegypti larvae after 24 h. PC = Positive Control, NC = Negative Control. (*) Indicates results that
are significantly different from controls.

3. Discussion

Sample 15 was obtained as a yellow powder. Its IR spectra recorded bands at 3466 cm−1,
characteristic of hydroxyl axial deformation, and in the region of 2851 cm−1, typical of C-H from
a methoxyl group [21]. It could be seen that there were absorptions at 1606, 1500 and 1450 cm−1,
indicating a C=C of aromatic compounds, as well as at 1697 cm−1, suggestive of C=O of conjugated
and bridged ketones present in flavonoids [22]. The absorbances of asymmetric stretches at 1384 cm−1

and symmetrical stretches at 1182 cm−1 indicated the occurrence of an S=O group, and together with
absorptions at 1026 to 1001 cm−1, assigned to an S-O bond, pointed to the possible presence of a
sulphate group in the structure [22].

The 1H-NMR spectra, obtained in DMSO-d6 exhibited a busy set of signals in the aromatic region,
with different intensities suggesting that 15 might be a mixture of compounds. The signals of δH 8.26
(dd, J = 9.0 and 1.75 Hz, 2H) coupled with δH 7.09 (d, J = 9.0 Hz, 2H) and 8.13 (d, J = 8.9 Hz, 2H) with
6.86 (d, J = 8.8 Hz, 2H) suggested two AA′BB′ systems. The first system was indicative of a methoxyl
substituent in C-4′, deshielding the 3′,5′ and 2′,6′ positions. The second system proposed the presence
of an OH-4′ group, which protects H-3′,5′ and H-2′,6′. The substituents were later confirmed by 2D
NMR analysis. The additional presence in the 1H-NMR spectra of signals at δH 7.56 (d, J = 2.2 Hz,
1H), 7.06 (d, J = 8.5 Hz, 1H) and 7.83 (dd, J = 2.2 and 8.5 Hz, 1H), compatible with an ABX system [21],
suggested the existence of a third molecule in the mixture (Table 1). The 1H-NMR and IR spectral
data provided evidence for the presence of a mixture of three flavones, renamed compounds 14, 15a
and 15b, respectively. A singlet at δH 3.82, with an intensity for three methoxyls in a chemically and
magnetically equivalent environment, was consistent with the presence of this group at C-7 of the
flavone nucleus of the three molecules. The signal at δH 3.84 was attributed to the methoxyl group of
C-4′ of an AA′BB′ system, and the singlet at δH 3.85 suggested the ABX system, with OCH3-4′ and
OH-3′, later confirmed by 2D NMR [21].

The APT 13C-NMR spectrum revealed weak peaks and aligned with HMBC, HMQC and
COSY spectra, thereby allowing identification of the substances and confirming the position of the
substituents. The 13C-NMR data showed carbons with high intensity at δC 129.3/115.9, characteristic
values for the 2′/6′ and 3′/5′ carbons of the para-substituted B ring of flavonoids assigned to the major
compound. The 13C-NMR spectrum showed methoxyl carbons at δC 56.4, 56.4 and 55.7.

The HRMS of the compounds were obtained by LC-HRMS, confirming the O-sulphate group in 14,
15a and 15b. The accurate mass for compound 14 (minor compound) as an [M−H]− ion, found with a
retention time (RT) of 4.90 min, was 393.0260 (C16H14O9S); for the major compound, 15a, the [M−H]−

ion (RT: 3.63 min) was 379.0129 (C16H13O9S); and for compound 15b, also as an [M−H]− ion (RT:
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4.07 min) the mass found to be 409.0236 (C17H15O10S). The obtained results confirmed the O-sulphate
group in the three molecules of the mixture and contributed to their identification.

Compound 14 was identified as 7,4′-di-O-methyl-8-O-sulphate-isoscutelarein, previously
reported from Wissadula periplocifolia [21] and Sidastrum micranthum [23], both belonging to the
Malvaceae family and here reported in the Sterculiaceae family. Compound 15a was identified
as 5,4′–di-hydroxy-7-methoxy-8-O-sulphate flavone, or Mariahine (named in honor of the author’s
mother) and compound 15b was identified as 5,3′–di-hydroxy-7,4′-dimethoxy-8-O-sulphate flavone,
named as Condadine (in honor of the author’s hometown). Compounds 15a and 15b are being
reported here for the first time in the literature.

Flavonoids with O-sulphated groups attached to the main skeleton are probably the most
uncommon flavonoid derivatives and are found in few vegetal families. This is the first report
of sulphated flavonoids in the Sterculiaceae family. These compounds are produced by cytosolic
sulphotransferase (SOT) enzymes able to produce sulphated flavonoids as well as other sulphated
metabolites. Different types of SOTs exist in the Golgi apparatus, where their role is to attach sulphate
to protein and sugar structures [24].

The bioassays were performed using the concentration of 0.1 mg/mL, where no activity was
observed. The concentration was gradually increased to reach a satisfactory mortal concentration.
The larvae (L4) presented with compromised mobility and lethargy, followed by complete paralysis.
This result became more intense when the CEE concentration was raised. Similar results have been
described by other studies with the species Swinglea glutinosa [25], Copaifera reticulata and Copaifera
langsdorfii (Leguminosae) [26,27].

According to Tukey’s testing, the concentrations 0.1 and 1.0 mg/mL did not differ significantly,
and neither did the concentrations 3.0, 3.5, 3.5, 5.0 or 7.5 mg/mL when compared to 5.0 mg/mL
and 7.5 mg/mL (Figure 2). This similarity of results from tested concentrations has already been
reported in other studies [28–31]. The larvicidal percentage reached 100% after 24 h of exposure and
the dose of 10.0 mg/mL was significantly more effective versus the other concentrations and negative
control group.

According to the statistical analysis, the LC50 for the H. velutina aerial parts CEE was 2.983 mg/mL.
The closest concentration tested was 3.0 mg/mL which killed 13.3 larvae (mean) corresponding to
66.6% of larvae. This concentration was much lower than those reported in previous studies evaluating
larvicidal activity of extracts, such as Croton linearifolius (Euphorbiaceae), which presented an LC50

value of 17.420 mg/mL [29], and Trichilia pallida (Meliaceae) with an LC50 of 4.660 mg/mL [32].
The dose found was higher when compared to the Duguetia furfuraceae (Anonaceae) dose of
597 mg/mL [33] and the Vitex gardneriana (Verbenaceae) dose of 369 mg/mL [34].

The LC10, LC50 and LC90 calculated herein from the CEE of the aerial parts of H. velutina were
more promising than the results from an earlier study [11], in which extracts of the stem and roots of
the same species were evaluated (Table 3). This study shows that the aerial parts have significantly
more larvicidal activity, arousing interest in evaluating the larvicidal activity of its constituents as well
as the mechanisms of action involved. This difference in activity, depending on the part of the plant
used, is common [35]; as exemplified by the larvicidal activity against A. aegypti, of the ethanolic extract
of the leaves or roots of Piper alatabaccum (Piperaceae), with the leaves LC50 found as 869 mg/mL,
while the LC50 value for the roots was 33 mg/mL. A study with Azadirachta indica (Meliaceae) showed
there was a greater larvicidal potential for the ethanol extract of leaves (LC50 = 50 mg/mL) when
compared with the root extract (LC50 = 600 mg/mL) [36].

Bioactive plant extracts usually present a synergistic or additive action by their compounds,
being necessary for the subsequent evaluation of fractions and isolated compounds in order to
determine if the complex matrix or the isolated compounds are more efficacious as larvicides [37].
Undoubtedly, the larvicidal activity of the H. velutina CEE in low concentrations justifies interest in
using it as a domestic larvicide to combat A. Aegypti [37], a vector insect of severe viral diseases, such as
dengue and Zika.
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Table 3. Lethal concentrations (LC10, LC50 and LC90) of Helicteres velutina CEE against Aedes aegypti
larvae (24 h of exposure) [11].

Used Part LC10 LC50 LC90

Stem * 60.406 mg/mL 138.896 mg/mL 319.372 mg/mL
Roots * 73.029 mg/mL 171.683 mg/mL 403.607 mg/mL

Aerial parts 0.965 mg/mL 2.983 mg/mL 9.691 mg/mL

* Santos et al., 2012 [11].

4. Materials and Methods

4.1. General

For the isolation and analysis of the compounds, the adsorbents Silica gel 60 (Merck), silica flash
and/or Sephadex LH-20 (Merck, Kenilworth, NJ, USA) were used.

Infrared spectral data were obtained with a Perkin-Elmer FT-IR-1750 (Perkin-Elmer, São Paulo,
SP, Brazil) using 1.0 mg of sample in KBr pellets measured in cm−1.

Nuclear magnetic resonance spectra were obtained using the spectrometers VARIAN-SYSTEM
(Palo Alto, CA, USA) 500 MHz (1H) and 125 MHz (13C) , BRUKER 500 (Bruker, Coventry, UK) MHz (1H)
and 100 MHz (13C) at Multiuser Laboratory Center of Characterization and Analysis (LMCA-UFPB)
and VARIAN-GEMINI 300 MHz (1H) and 75 MHz (13C) at the Centro Nordestino de Aplicação e Uso da
Ressonância Magnética Nuclear (CENAUREMN-UFC). Deuterated solvents were used in the dissolution
of the samples for NMR. Chemical shifts (δ) were recorded in ppm (parts per million) and coupling
constants (J) in Hz.

4.2. Collection, Extraction, and Compound Isolation

The aerial parts of H. velutina were collected in February 2015 in Serra Branca/Raso da Catarina
(Jeremoabo City, Bahia, 09◦53′15.5′ ′; 09◦44′34.6′ ′ S and 38◦49′36,1′ ′; 38◦52′20.4′ ′ W) [38]. The material
was identified by Prof. Adilva de Souza Conceição (UNEB) and a specimen voucher (28709-1) was
kept in the Herbarium of the State University of Bahia (HUNEB, Paulo Afonso Collection).

The aerial parts of H. velutina were oven dried at 40 ◦C and 1976.0g of the powder was
macerated with 95% ethanol (5 L) for 72 h. The extract solution was dried under reduced pressure
at 40 ◦C and provided 39.7 g of CEE that was submitted to liquid-liquid chromatography using
hexane, dichloromethane, ethyl acetate and n-butanol, resulting in their respective phases and a
hydroalcoholic phase.

The hexane phase (11.0 g) was chromatographed in a silica gel column (CC), followed by
medium pressure chromatography (MPC) with silica flash using hexane, ethyl acetate and methanol in
increasing polarity mixtures. This process resulted in the isolation of substances 1 (7 mg), 2 (13 mg),
3 (30.0 mg), 4 (4a and 4b—30.0 mg), 5 (12.0 mg), 7 (17.0 mg), 8 (22.0 mg) and 9 (6.0 mg).

The dichloromethane phase (8.0 g) was chromatographed in a silica flash CC using petroleum
ether, dichloromethane and methanol in increasing polarity mixtures. The resulting fractions were
analyzed and combined by similarity on TLC. Fractions 24/30 (815 mg) were chromatographed in
flash silica CC with an elution system composed of hexane, ethyl acetate and methanol. The procedure
resulted in the isolation of compounds 10 (8 mg) and 11 (6 mg).

The polar fractions were chromatographed in Sephadex (LH-20) CC employing, as the mobile
phase, methanol and methanol:chloroform (1:1), providing compounds 6 (11 mg), 12 (85 mg), 13
(32 mg), 14 (37 mg) and 15 (14, 15a and 15b) (15 mg).

LC-MS (Accela 600 HPLC system combined with an Exactive (Orbitrap)—Thermo Fisher Scientific
(Bremen, Germany)) was used to obtain the high-resolution mass spectra in negative or positive mode.
The samples were solubilized in methanol (HPLC grade) to obtain a concentration of 1 mg/mL.
The injection volume was 20 µL. The column used was a reverse phase ACE C-18 (150 × 3 mm, 3 µm)
from HiChrom (Reading, UK). The mobile phase gradient was a mixture of 0.1% formic acid in H2O
(solvent A) and acetonitrile (solvent B). The flow rate was 300 µL/min. The method is summarized
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in Table 4. The obtained results were analyzed using Xcalibur 2.2 (Thermo Fisher Scientific) (Bremen,
Germany).

Table 4. LC-HRMS gradient method.

Time (min) A% B%

0 75 25
15 25 75

4.3. Biological Assay

The larvicidal activity of the CEE of H. velutina was evaluated following the recommendations
of the World Health Organization (1970). The fourth-stage A. aegypti larvae (L4) (Rockefeller strain)
were obtained from the Laboratory of Biotechnology Applied to Parasites and Vectors, Biotechnology
Center, Federal University of Paraiba.

H. velutina CEE was diluted in distilled water (10 mL) at different concentrations (0.1 to 10 mg/mL).
Twenty L4-stage larvae were transferred into Falcon tubes containing the solutions of H. velutina CEE.
One control group was prepared using only water. The positive control group was prepared using a
solution of the insecticides Imiprothrin 0.02%, Permethrin 0.05% and Esbiothrin 0.1%. The tubes were
incubated for 24 h at 28 ± 4 ◦C, over 12 h of natural light and 12 h of darkness. Larvae mortality was
verified after 24 h of incubation. All tests were carried out in triplicate. GraphPad Prism 5.0 software
(GraphPad Software, San Diego, CA, USA) was used to calculate LC10, LC50 and LC90. Analysis
of variance (ANOVA) and Tukey’s test (p < 0.05) were applied to determine significant differences
between groups.

5. Conclusions

The phytochemical study of the crude ethanolic extract of H. velutina aerial parts led to
the identification of 16 compounds. Among them were one fatty acid, one aliphatic alcohol,
four chlorophyll derivatives, one steroid, triterpenes, a lignan, and flavonoids, highlighting the
novel sulphated flavonoids, 5,4′-di-hydroxy-7-methoxy-8-O-sulphate flavone (mariahine) (15a) and
5,3′-di-hydroxy-7,4′-methoxy-8-O-sulphate flavone (condadine) (15b). The present work contributed
to consolidating the chemotaxonomic knowledge of the Sterculiaceae family, reporting for the first
time the production of sulphated flavonoids in this family. The CEE of H. velutina aerial parts exhibited
robust larvicidal activity against A. aegypti larvae, demonstrating that the extract can be useful for
developing domestic larvicides to combat A. Aegypti [37], a vector insect of severe viral diseases,
such as dengue and Zika.
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