
molecules

Review

Selective Double Addition Reaction of an E-H Bond
(E = Si, B) to a C≡N Triple Bond of Organonitriles

Masumi Itazaki * and Hiroshi Nakazawa *

Department of Chemistry, Graduate School of Science, Osaka City University, Sumiyoshi-ku,
Osaka 558-8585, Japan
* Correspondence: mitazaki@sci.osaka-cu.ac.jp (M.I.); nakazawa@sci.osaka-cu.ac.jp (H.N.);

Tel.: +81-6-6605-3123 (M.I.); +81-6-6605-2547 (H.N.)

Academic Editors: Akio Baba and Makoto Yasuda
Received: 21 August 2018; Accepted: 23 October 2018; Published: 25 October 2018

����������
�������

Abstract: The catalytic double hydrometalation such as hydrosilylation and hydroborylation of
organonitriles has attracted considerable attention because the obtained products are widely used in
organic synthesis and it is thought to be one of the effective methods for reduction of organonitriles.
However, the examples of these reactions are quite limited to date. This paper summarizes the
development of selective double hydrosilylation, double hydroborylation, and dihydroborylsilylation
of organonitriles, including their reaction mechanisms and the role of the metal species in the
catalytic cycle.
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1. Introduction

The catalytic hydrosilylation and hydroborylation of the carbon-nitrogen triple bond (C≡N
bond) in organonitriles is becoming important in the synthetic chemistry. Although the term
“hydroboration” is also widely used, we use “hydroborylation” in this paper from comparison with
hydrosilylation. There is an advantage that these reactions do not generate by-products theoretically
and the compounds with an N−Si or N−B bond thus obtained are useful products for the synthetic
intermediates in organic chemistry. For examples, disilylamines (double hydrosilylation product) act
as precursors for the production of Si,N-containing polymers [1–4], amine ligands for organometallic
compounds [5,6], and silylating [7] and coupling [8] agents. Borylamines (hydroborylation products)
have been reported to show a unique reactivity as iminium ion generators [9]. In addition, it is
known that hydrosilylation and hydroborylation of a C≡N bond are one of effective methods to reduce
organonitriles [10–13]. However, these hydrometalations do not occur under typical reaction conditions
for hydrosilylation [14] and hydroborylation [15] because of the strong C≡N bond dissociation energy
(179.3 kcal/mol, 750.0 kJ/mol) [16]. Actually, examples of catalytic double hydrometalation of the
carbon-nitrogen triple bond (C≡N bond) in organonitriles are limited: one example of Fe [12],
Pt [17], Ir [18], and Ru [19], two examples of Co [20,21], four examples of Rh [22–25], and main
group elements and fluoride [13,26–28] for double hydrosilylation and one example of Mg [29],
Co [30], and Ni [31], and two examples of Ru [32,33] and Mo [34,35] for double hydroborylation
have been reported to date. Those metal catalysts are depicted in Figure 1. Although it is known
that borylsilylamines are advantageous precursors for obtaining B/Si/N/C ceramics having a highly
heat-resistant property [36,37], catalytic dihydroborylsilylation of organonitriles has not been achieved
yet. (Scheme 1). In addition, the dual catalyst having both hydrosilylation and hydroborylation
activities has not been found.
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2. Double Hydrosilylation of Organonitriles

In 1982, Corriu and co-workers reported that the reaction of 1,4-dicyanobutane with
1,2-bis(dimethylsilyl)benzene in the presence of a catalytic amount of RhCl(PPh3)3 afforded a mixture of
trans-N,N-disilylenamines (major product) and N,N-disilylamines (minor product) (Equation (1)) [23].
In the case of benzonitrile, only double hydrosilylation product was obtained, although the yield of
the product was low (Equation (2)):
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The proposed reaction mechanism of Rh-catalyzed double hydrosilylation of organonitriles with
1,2-bis(dimethylsilyl)benzene is shown in Scheme 2. Intermediates A and B are generated via the
first hydrosilylation and they may be in equilibrium. The second hydrosilylation of A takes place to
give the N,N-disilylamine (double hydrosilylation product) C. On the other hand, intermediate B is
converted into the N,N-disilylenamine D as a result of aminolysis.
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Scheme 2. Proposed mechanism for double hydrosilylation of organonitriles with 1,2-
bis(dimethylsilyl)benzene.

Murai’s group found the double hydrosilylation of aromatic and aliphatic nitriles catalyzed by
a cobalt carbonyl Co2(CO)8 in 1985 and 1990 [20,21]. The desired products were obtained in the
reaction of various aromatic nitriles with 10 equiv. of hydrosilane at 60 ◦C for 20 h in the presence of
Co2(CO)8 (Table 1). The system possesses an excellent degree of functional group tolerance for the
functionalized benzonitriles with electron-withdrawing or -donating groups such as Me, OMe, Cl,
NMe2, CN, and CO2Me in the para position on the aryl ring. A Me group in meta position shows good
reactivity, whereas that in the ortho position shows low reactivity.

Table 1. Cobalt carbonyl catalyzed double hydrosilylation of aromatic nitriles a,b.
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a Reaction conditions: nitrile (2.5 mmol), HSiMe3 (25 mmol), Co2(CO)8 (0.2 mmol), toluene (10 mL). b GLC yields in
parentheses. c 40 h. d 48 h. e Co2(CO)8 (0.625 mmol) was used.

Furthermore, aliphatic nitriles are adaptable to this reaction system and gave the corresponding
products in moderate to excellent yields when PPh3 is added to the reaction system (Table 2). It is
thought that a silylcobalt complex R3SiCo(CO)4, which is prepared by the reaction of Co2(CO)8 with
R3SiH, is an important catalytic active spices in this system.
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Table 2. Cobalt carbonyl catalyzed double hydrosilylation of aliphatic nitriles a,b.
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a Reaction conditions: nitrile (2.5 mmol), HSiMe3 (25 mmol), Co2(CO)8 (0.2 mmol), PPh3 (0.4 mmol), toluene (10 mL).
b The yields of enamine in parentheses. c HSi(OEt)3 (10 mmol) and toluene (5 mL) were used. d P(OEt)3 (0.4 mmol)
was used.

A platinum-catalyzed reaction of various nitriles with 1,2-bis(dimethylsilyl)benzene was reported
by Tanaka’s group in 1992 (Scheme 3) [17]. In the presence of Pt(H2C=CH2)(PPh3)2 catalyst, reactions
of aliphatic nitriles with 1,2-bis(dimethylsilyl)benzene gave the N-silyl enamies, while aryl nitriles
were converted into the corresponding imines in high to excellent yields. The double hydrosilylation
product was yielded in 64% when 9-anthroylnitrile was used.
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In 1999, double hydrosilylation of arylnitriles catalyzed by heterogenous Rh powder and rhodium
on γ-alumina was achieved by Pertici and co-workers (Table 3) [22]. The tendency of the reaction is
similar to the Murai’s report [20]. The desired product was not obtained when the substrate with a Me
group in the ortho position on the aryl ring was used. In addition, the yields decreased when HSi(OEt)3

as a hydrosilane or rhodium on γ-alumina instead of Rh powder was used.

Table 3. Double hydrosilylation of aromatic nitriles promoted by rhodium metal particles a,b.
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Selective catalytic hydrosilylation of nitriles was found by Nikonov and Gutsulyak in 2010 [19].
The reaction of organonitriles with HSiMe2Ph in a 1:1 molar ratio afforded the corresponding imines.
In addition, the N,N-disilylamines were produced by the reaction of organonitriles with 2.5 equiv.
of HSiMe2Ph although a long reaction time was required (Table 4). In the case of isobutyronitrile,
the mixture of N,N-disilyenamine (57%) and N,N- disilylamines (43%) were yielded.

Table 4. Ru-catalyzed double hydrosilylation of nitriles a.
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a Reaction conditions: nitrile (0.13 mmol), HSiMe2Ph (0.33 mmol), Ru cat. (7.0 mg). b Nitrile (0.08 mmol), HSiMe2Ph
(0.19 mmol), Ru cat. (3.0 mg), and CD3Cl instead of CD2Cl2 were used.

Rhodium-catalyzed hydrosilylation of α,β-unsaturated nitriles into vinylamines was achieved by
Carmona’s group in 2011 (Scheme 4) [24]. Acetonitrile showed low activity (<40%) and benzonitrile
did not undergo hydrosilylation in this catalytic system.
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Beller’s group achieved the conversion of aromatic and aliphatic primary amides into amines
catalyzed by two iron cooperative catalytic system in 2012 [12]. In this system, the combination of
Fe(OAc)2 and phenanthroline ligand acts as a catalyst for the double hydrosilylation of aromatic
and aliphatic nitriles, which are prepared by reduction of amides catalyzed by an iron complex
[Et3NH][HFe3(CO)11] (Scheme 5).
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In 2013, Hollis and co-workers reported that a homobimetallic Rh complex having an NHC ligand
also acted as a catalyst for the double hydrosilylation (Scheme 6) [25]. Benzonitrile was converted into
the corresponding product in good yield. For aliphatic nitriles, the activity of diphenylacetonitrile
was higher than that of propionitrile (the yields of the corresponding disilylamines were 42% and 5%,
respectively).
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In 2017, Djukic and co-workers reported an iridacycle complex as a catalyst for the conversion of
organonitriles into N,N-disilylamines by the double hydrosilylation [18]. The reaction was adaptable
to a wide variety of aromatic nitriles (Table 5). In this system, Cl and F groups in ortho position on the
aryl ring did not disturb the double hydrosilylation, whereas a nitrile having a coordination-feasible
substituent did the reaction.

Table 5. Ir-catalyzed double hydrosilylation of aryl nitriles a.
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70 ◦C; (c) conditions similar to those in (b), except that instead of 2.2 equiv. of HSiEt3, 4.4 equiv. (0.60 mL,
3.7 mmol) was used; (d) conditions similar to those in (b), except that instead of 2.2 equiv. of HSiEt3, 8.8 equiv.
(1.20 mL, 7.5 mmol) was used. Yields were determined by 1H NMR spectroscopy using 1,3,5-tri-tert-butylbenzene
as internal reference.
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Scheme 7 depicts a plausible reaction pathway of the double hydrosilylation of nitriles catalyzed
by a cationic iridium complex A. The reaction of A with 3 equiv. of HSiEt3 affords the silane−iridacycle
adduct B and EtN(SiEt3)2 as a result of electrophilic and heterolytic activation of the Si−H bond.
Subsequently, the abstraction of the SiEt3 group in B by nitrile gives the hydrido complex C and the
N-silylnitrilium cation and then the hydrido transfer from C to the N-silylnitrilium cation produces the
N-silylimine and unsaturated Ir complex D. Finally, D reacts with HSiEt3 to regenerate B. A similar
reaction proceeds once again to give the desired N,N-disilylamine.
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Scheme 7. Plausible reaction pathway of the double hydrosilylation of nitriles catalyzed by a cationic
iridium complex.

Recently, some metal-free hydrosilylation reactions of organonitriles were achieved. Beller’s group
reported TBAF catalyzed hydrosilylation for the reduction of aromatic nitriles in 2013 (Scheme 8) [13].
Various aryl nitriles were converted into the corresponding benzylamines via N,N-disilylamines.
Heterocyclic nitriles such as 3-thiophenecarbonitrile and picolinonitrile, as well as hexanenitrile
showed no activity.

Molecules 2018, 23, x FOR PEER REVIEW  7 of 18 

 

Scheme 7 depicts a plausible reaction pathway of the double hydrosilylation of nitriles 

catalyzed by a cationic iridium complex A. The reaction of A with 3 equiv. of HSiEt3 affords the 

silane−iridacycle adduct B and EtN(SiEt3)2 as a result of electrophilic and heterolytic activation of the 

Si−H bond. Subsequently, the abstraction of the SiEt3 group in B by nitrile gives the hydrido complex 

C and the N-silylnitrilium cation and then the hydrido transfer from C to the N-silylnitrilium cation 

produces the N-silylimine and unsaturated Ir complex D. Finally, D reacts with HSiEt3 to regenerate 

B. A similar reaction proceeds once again to give the desired N,N-disilylamine. 

 

Scheme 7. Plausible reaction pathway of the double hydrosilylation of nitriles catalyzed by a cationic 

iridium complex. 

Recently, some metal-free hydrosilylation reactions of organonitriles were achieved. Beller’s 

group reported TBAF catalyzed hydrosilylation for the reduction of aromatic nitriles in 2013 

(Scheme 8) [13]. Various aryl nitriles were converted into the corresponding benzylamines via 

N,N-disilylamines. Heterocyclic nitriles such as 3-thiophenecarbonitrile and picolinonitrile, as well 

as hexanenitrile showed no activity. 

 

Scheme 8. TBAF catalyzed hydrosilylation for the reduction of aromatic nitriles. 

In 2015, Grimme, Stephan and co-workers found that an electrophilic phosphonium salt, 

[(C6F5)3PF][B(C6F5)4] acted as a catalyst for the double hydrosilylation of organonitriles. In this 

system, benzonitrile and propionitrile were converted into the corresponding N,N-disilylamines in 

quantitative yields. The N-silylimine was selectively formed in excellent yield when sterically bulky 

mesityl nitrile was used (Scheme 9) [26]. 

 

Scheme 9. [(C6F5)3PF][B(C6F5)4]-catalyzed hydrosilylation of nitriles. 

Scheme 8. TBAF catalyzed hydrosilylation for the reduction of aromatic nitriles.

In 2015, Grimme, Stephan and co-workers found that an electrophilic phosphonium salt,
[(C6F5)3PF][B(C6F5)4] acted as a catalyst for the double hydrosilylation of organonitriles. In this
system, benzonitrile and propionitrile were converted into the corresponding N,N-disilylamines in
quantitative yields. The N-silylimine was selectively formed in excellent yield when sterically bulky
mesityl nitrile was used (Scheme 9) [26].
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In the same year, Chang’s group reported that tris(pentafluorophenyl)borane [B(C6F5)3]-catalyzed
silylative reduction of conjugated nitriles to β-silyl amines as a result of selective double hydrosilylation
of the C≡N bond and hydrosilylation of the C=C bond [27]. Table 6 summarizes the scope and
limitation of substrates for this reaction. The system possesses a good degree of functional group
tolerance for the functionalized conjugated nitrile with an electron-withdrawing or -donating group
on the aryl ring. Furthermore, this catalytic system was also applicable to aryl and alkyl nitriles
(Scheme 10) [28].

Table 6. [B(C6F5)3]-catalyzed hydrosilylation of conjugated nitriles a.
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as an internal standard. b B(C6F5)3 (7 mol%).
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In the cases of the catalytic double hydrosilylation, an excess amount of the hydrosilane over
the organonitrile was required for the selective formation of the desired disilylamines. Therefore,
a new synthetic strategy without using an excess amount of the hydrosilane and a new catalyst have
been demanded.

In order to create a new approach to double hydrosilylation of organonitriles, we focused
on transition metal complexes with Z-type ligand(s). The interaction of a Z-type ligand (acts as
a two-electron acceptor, a Lewis acid) with a late transition metal (acts as a two-electron donor, a Lewis
base) has attracted considerable attention as a new approach for controlling the electronic characteristics
and reactivity of the metal center [38–47]. This approach is becoming increasingly important in the
field of catalysts [48–56]. Previously, we reported that triruthenium dodecacarbonyl Ru3(CO)12 reacted
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with InX3 (X = Cl, Br) to yield the first ruthenium(0) indane complex, fac-[Ru(NCCH3)3(CO)2(InX3)]
(X = Cl (1Cl), Br (1Br)). In addition, the reaction of 1Cl and 1Br with 1 equiv. of PPh3 afforded
cis,cis,trans-[Ru(NCCH3)2(CO)2(InX3)(PPh3)] (X = Cl (2Cl), Br (2Br)) as a result of selective replacement
of CH3CN(trans to InX3) by PPh3 (Equation (3)) [57]. It is considered that the InX3 in 1Cl, 1Br, 2Cl,
and 2Br is a Z-type ligand.
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On the other hand, the reaction of triiron dodecacarbonyl Fe3(CO)12 with InX3 afforded the
iron complex containing indium ligands [Fe(NCCH3)6][cis-Fe(CO)4(InX3)2] (X = Cl (3Cl), Br (3Br),
I (3I)) (Equation (4)) [58]. These complexes represent the first example of transition metal complexes
containing two terminal indium fragments. For the anionic iron complex [cis-Fe(CO)4(InCl3)]2–,
the 57Fe Mössbauer and IR data suggest that the Fe0(CO)4 has two [Fe–In–X3]− portions like [InX4]−

called as “indate”.
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(RC≡N, for which R = Me, Et, iPr, iBu, Ph, p-Tol, m-Tol or o-Tol) underwent the double 

hydrosilylation without the formation of the single hydrosilylation compound (Table 7). In the 

double hydrosilylation of propanenitrile (EtCN), the expected product EtCH2N(SiMe2Ph)2 was 

obtained as the main product along with a little amount of MeCH2N(SiMe2Ph)2 (2% yield as 

determined by NMR). The latter product is considered to be derived from the dissociated CH3CN 

obtained by the MeCN/EtCN ligand exchange on the iron center of the cationic part in 3Cl. The 

yields of the products decreased when going from p- to m- and o-tolunitrile (55, 49, and 41%, 

respectively), presumably due to steric effects. This catalytic system was also applicable to 

4-pyridinecarbonitrile although the yield of the corresponding disilylamine was low (21%). No 

reaction occurred for tBuCN, CCl3CN, and C6F5CN with HSiMe2Ph. These results indicate that 

organonitriles having a bulky or an electro-withdrawing group are unfavorable for the double 

hydrosilylation. The double hydrosilylation reaction of MeCN did not proceed when a bulkier 

hydrosilane (HSiMePh2) was used. Instead, the reactions of HSiMe2Fc with p-TolCN and H2SiMePh 

with MeCN provided the double hydrosilylation compounds in 43% and 76% yields, respectively. 

  

(4)

As there had been no organic reactions catalyzed by a combination of an iron complex and an
indium source, the catalytic ability of the iron complex was examined for double hydrosilylation of
organonitriles, and it was found interesting knowledge. The results were described in a bit more
detail below.

The reaction of CH3CN with HSiMe2Ph in the presence of a catalytic amount of 3Cl produced
CH3CH2N(SiMe2Ph)2 in 85% yield (Equation (5)) [59]. It should be noted that this catalytic reaction
provided the double hydrosilylation product selectively in spite of using an excess amount of
acetonitrile over the hydrosilane.
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(5)

Complex 3Cl was a better catalyst than 3B and 3I. The catalytic activity of a mixture of
dodecacarbonyltriiron Fe3(CO)12 and indium trichloride (InCl3) was similar to that of 3Cl, whereas
the double hydrosilylation did not proceed when either Fe3(CO)12 or InCl3 was used. It was revealed
that not the cationic iron complex [Fe(NCCH3)6]2+ but the anionic iron complex [cis-Fe(CO)4(InCl3)]2−

of 3Cl played a crucial role in the double hydrosilylation. Various aliphatic and aromatic nitriles
(RC≡N, for which R = Me, Et, iPr, iBu, Ph, p-Tol, m-Tol or o-Tol) underwent the double hydrosilylation
without the formation of the single hydrosilylation compound (Table 7). In the double hydrosilylation
of propanenitrile (EtCN), the expected product EtCH2N(SiMe2Ph)2 was obtained as the main product
along with a little amount of MeCH2N(SiMe2Ph)2 (2% yield as determined by NMR). The latter
product is considered to be derived from the dissociated CH3CN obtained by the MeCN/EtCN
ligand exchange on the iron center of the cationic part in 3Cl. The yields of the products decreased
when going from p- to m- and o-tolunitrile (55, 49, and 41%, respectively), presumably due to steric
effects. This catalytic system was also applicable to 4-pyridinecarbonitrile although the yield of the



Molecules 2018, 23, 2769 10 of 18

corresponding disilylamine was low (21%). No reaction occurred for tBuCN, CCl3CN, and C6F5CN
with HSiMe2Ph. These results indicate that organonitriles having a bulky or an electro-withdrawing
group are unfavorable for the double hydrosilylation. The double hydrosilylation reaction of MeCN
did not proceed when a bulkier hydrosilane (HSiMePh2) was used. Instead, the reactions of HSiMe2Fc
with p-TolCN and H2SiMePh with MeCN provided the double hydrosilylation compounds in 43% and
76% yields, respectively.

Table 7. Double hydrosilylation of organonitriles in the presence of 3Cl a,b,c.
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c Fc stands for a ferrocenyl group; d Little amounts of by-product EtN(SiMe2Ph)2 were removed by distillation.

3. Double Hydroborylation of Organonitriles

Nikonov and co-worker found that the imido-hydrido Mo(IV) complex acted as a catalyst for the
double hydroborylation of organonitriles in 2012 [34] and 2015 [35]. The reaction of organonitriles
RCN (R = Me, Ph, tBu) with 2 equiv. of HBcat (catecholborane) in the presence of a catalytic amount of
imido-hydrido Mo(IV) complex afforded the corresponding N,N-diborylamines in good to excellent
yields (Scheme 11).
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Scheme 11. Double hydroborylation of nitriles catalyzed by an imido-hydrido Mo(IV) complex.

A plausible reaction pathway of the double hydroborylation of nitriles catalyzed by the
imido-hydrido Mo(IV) complex was shown in Scheme 12. The abstraction of the coordinated PMe3

ligand by HBcat results in the formation of unsaturated Mo complex A. Subsequently, the reaction of A
with PhCN affords benzylideneamide complex B and then B reacts with HBcat to yield agostic
amido-borane adduct complex C. Complex C is converted into borylimine complex E through
N-coordinated borylimine complex D. Finally, the elimination of the desired N,N-diborylamine from
the Mo center in E regenerates catalytic intermediate A to complete the catalytic cycle.



Molecules 2018, 23, 2769 11 of 18

Molecules 2018, 23, x FOR PEER REVIEW  11 of 18 

 

 

Scheme 12. Plausible reaction pathway of the double hydroborylation of nitriles catalyzed by an 

imido-hydrido Mo(IV) complex. 

In 2015, Szymczak’s group reported that catalytic nitrile hydroborylation using a ruthenium 

complex having a bifunctional pincer ligand took place for several p-substituted aryl nitriles with 

HBpin (pinacolborane) to give the corresponding diborylamines in moderate to excellent yields 

(Scheme 13) [33]. 

 

Scheme 13. Ru-catalyzed double hydroborylation of nitriles. 

The double hydroborylation of organonitriles by HBpin was also reported by Hill’s group in 

2016. In this reaction, a β-diketiminato n-butylmagnesium complex was found to be an efficient 

catalyst and the desired products were obtained in good to excellent yields (Scheme 14) [29]. This 

reaction showed good functional group tolerance. In addition, benzonitrile having a Me group in 

the ortho position on the aryl ring also showed good reactivity (86%). 

 

Scheme 14. Double hydroborylation of nitriles catalyzed by a Mg complex. 

At almost the same time, Gunanathan’s group reported the selective conversion of nitriles into 

amines by double hydroborylayion [32]. Various organonitriles reacted with 2 equiv. of HBpin in the 

presence of a catalytic amount of homobimetallic Ru complex [Ru(p-cymene)Cl2]2 to obtain the 

correspsonding N,N-diborylamines in good to excellent yields (Scheme 15). It was thought that a 

boryl hydrido complex [Ru(p-cymene)H(Bpin)], which was prepared by the reaction of 

[Ru(p-cymene)Cl2]2 with HBpin, was an important catalytically active species in this system. 

Scheme 12. Plausible reaction pathway of the double hydroborylation of nitriles catalyzed by an
imido-hydrido Mo(IV) complex.

In 2015, Szymczak’s group reported that catalytic nitrile hydroborylation using a ruthenium
complex having a bifunctional pincer ligand took place for several p-substituted aryl nitriles with
HBpin (pinacolborane) to give the corresponding diborylamines in moderate to excellent yields
(Scheme 13) [33].
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Scheme 13. Ru-catalyzed double hydroborylation of nitriles.

The double hydroborylation of organonitriles by HBpin was also reported by Hill’s group in 2016.
In this reaction, a β-diketiminato n-butylmagnesium complex was found to be an efficient catalyst and
the desired products were obtained in good to excellent yields (Scheme 14) [29]. This reaction showed
good functional group tolerance. In addition, benzonitrile having a Me group in the ortho position on
the aryl ring also showed good reactivity (86%).
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Scheme 14. Double hydroborylation of nitriles catalyzed by a Mg complex.

At almost the same time, Gunanathan’s group reported the selective conversion of nitriles into
amines by double hydroborylayion [32]. Various organonitriles reacted with 2 equiv. of HBpin in
the presence of a catalytic amount of homobimetallic Ru complex [Ru(p-cymene)Cl2]2 to obtain the
correspsonding N,N-diborylamines in good to excellent yields (Scheme 15). It was thought that a boryl
hydrido complex [Ru(p-cymene)H(Bpin)], which was prepared by the reaction of [Ru(p-cymene)Cl2]2

with HBpin, was an important catalytically active species in this system.
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Scheme 15. Homobimetallic Ru-catalyzed hydroborylation of nitriles.

In 2017, Fout’s group reported the double hydroborylation of organonitriles catalyzed by
a Co(I) complex [30]. In this system, alkyl and (hetero)aryl nitriles were converted into the desired
N,N-diborylamines in moderate to high yields (Table 8).

Table 8. Double hydroborylation of organonitriles in the presence of a Co complex.
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In the same year, a nickel catalyzed double hydroborylation of organonitriles was achieved by
Nakajima, Shimada and co-workers [31]. The reaction of organonitriles with 2.2 equiv. of HBcat
yielded N,N-diborylamines in moderate to excellent yields (Scheme 16). The reaction was applicable
to a wide variety of nitriles whereas benzonitrile having a Me group in the ortho position on aryl ring
(40%) and 2-thienyl nitrile (47%) showed lower reactivities.
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Scheme 16. Ni complex-catalyzed hydroborylation of nitriles.

A proposed mechanism is shown in Scheme 17. The reduction of A by 2 equiv. of HBcat produces
the active Ni(0) species B. Oxidative addition of H–Bcat toward the Ni(0) center gives boryl hydrido
intermediate C. Insertion of a nitrile into the Ni–H bond in C affords D. The subsequent reductive
elimination of the borylimine from D regenerates an intermediate B to complete the catalytic cycle.
The obtained borylimine further reacts with HBcat to give the N,N-diborylamine.
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Scheme 17. Proposed mechanism for Ni-catalyzed double hydroborylation of nitriles.

We also reported the catalytic activity of 3Cl for the double hydroborylation of organonitriles
(Table 9) [60]. The tendency of the double hydroborylation by 3Cl was similar to that of the double
hydrosilylation. In the double hydroborylation, tBuCN was also converted into the corresponding
product in good yield. No reaction occurred for CCl3CN, C6F5CN, and 4-PyCN with HBpin, suggesting
that a strong electron-withdrawing substituent, or a coordination-feasible substituent on the nitrile
carbon retards or disturbs the double hydroborylation of the nitrile portion. The molecular structures
of EtN(Bpin)2 and PhCH2N(Bpin)2 were confirmed by single-crystal X-ray structure diffraction
analyses. These structures showed the formation of diborylamine as results of the selective double
hydroborylation of organonitriles.

Table 9. Double hydroborylation of organonitriles in the presence of 3Cl a,b.
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4. Dihydroborylsilylation of Acetonitrile

With the hope of selective formation of borylsilylamine in the Fe-In cooperative catalytic system,
the reaction of acetonitrile with both hydrosilane and hydroborane was investigated [60]. The mixture
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of acetonitrile (4.0 mmol), HSiMe2Ph (0.4 mmol), HBpin (0.4 mmol), and 3Cl (0.04 mmol) was
stirred at 80 ◦C for 24 h under an argon atmosphere (Equation (6)). The desired borylsilylamine
EtN(SiMe2Ph)(Bpin) was obtained with high selectivity although diborylamine was also generated
in 6% NMR yield. The isolation of EtN(SiMe2Ph)(Bpin) in 81% yield was achieved by the distillation
using a Kugelrohr in a glove box. This reaction is the first one-pot synthesis of borylsilylamine via
catalytic hydrosilylation and hydroborylation.
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In order to obtain insight into the reaction pathway of our catalytic system, we checked the double
hydrosilylation under the similar reaction conditions in Entry 1 in Table 1 in the presence of 5 equiv. of
InCl3 (Equation (7)). The expected double hydrosilylation product was not obtained. Therefore, we
thought that the dissociation of InCl3 from the iron center in 3Cl was one of the key steps in our system.
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(7)

Baba and co-worker reported that the indium trihalide InX3 reacted with hydrosilane to give
indium hydride HInX2 and this compound acted as a radical [61]. If the elimination of InCl3 occurs from
the iron center in 3Cl, the released InCl3 seems to react with hydrosilane to yield the corresponding
indium hydride HInCl2. Therefore, we examined our reaction system in the presence of TEMPO
(2,2,6,6-tetramethylpiperidine-1-oxyl) as a radical scavenger and found that the trace amount of
the disilylamine was yielded (Equation (8)). This result showed that HInCl2 was involved in the
reaction pathway:
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When deuterated acetonitrile (CD3CN) was used in place of CH3CN under the same reaction
conditions in Entry 1 in Table 1, CD3CH2N(SiMe2Ph)2 was obtained in 73% yield (Equation (9)):
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(9)

Based on the results mentioned above, we proposed a tentative catalytic cycle for the double
hydrosilylation, double hydroborylation, and dihydroborylsilylation of organonitriles in the presence
of 3Cl (Scheme 18). Dissociation of one of the coordinated InCl3 ligands from [Fe(InCl3)2(CO)4]2–

occurs to give free InCl3 and monoindium-iron complex [Fe(InCl3)(CO)4]2– A. Then, the reaction of
the eliminated InCl3 with HE (E = SiR’3, Bpin) provides HInCl2 and ClE. The formation of ClBpin
was confirmed by the NMR measurement of the reaction mixture of HBpin and InCl3 in acetnitrile-d3.
On the other hand, release of one carbonyl ligand from A and successive coordination of nitrile takes
place to form nitrile complex [Fe(InCl3)(CO)3(NCR)]2– B. Complex B reacts with HInCl2 to generate
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indylimine iron intermediate C, followed by the reaction with HE to yield imine iron complex D
and HInCl2. A similar reaction proceeds once again to give indane amine iron complex F through
E. Finally, the elimination of the corresponding amine compound from the iron center in F and then
recoordination of an organonitrile to the iron center yields catalytic intermediate B to complete the
catalytic cycle. We believe that the imine moiety in D may not dissociate, causing selective formation
of the corresponding amine compounds in this catalytic system.
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5. Conclusions

There is growing interest in the selective double addition reaction of an E-H bond (E = Si, B) to
a C≡N triple bond of organonitriles because two N-Si bonds or two N-B bonds can be generated in
one pot. Great efforts to establish catalytic system of such double addition by many research groups
have resulted in several outstanding findings to date. Although some reaction mechanisms have been
proposed, there are many unclear points from a mechanistic point of view.

We also have been engaged in creation of new catalytic systems for double hydrosilylation and
double hydroborylation of organonitriles, and found a new catalytic system in which both iron and
indium serve cooperatively. In addition, we found that this catalytic system could be applicable to the
first single-step synthesis of borylsilylamine. The consideration of the reaction mechanism suggested
that the anionic iron complex [cis-Fe(CO)4(InCl3)]2- was an important catalytic precursor.

Selective double addition of an E-H bond to a C≡C triple bond and a C≡E triple bond (not
only a C≡N triple bond but also other C≡heteroatom triple bonds) is becoming promising. More
investigation concerning creation of new catalytic systems and elucidation of reaction mechanisms are
expected to be continued.
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