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Abstract: Nickel catalysis has shown remarkable potential in amide C–N bond activation and
functionalization. Particularly for the transformation between ester and amide, nickel catalysis has
realized both the forward (ester to amide) and reverse (amide to ester) reactions, allowing a powerful
approach for the ester and amide synthesis. Based on density functional theory (DFT) calculations,
we explored the mechanism and thermodynamics of Ni/IPr-catalyzed amidation with both aromatic
and aliphatic esters. The reaction follows the general cross-coupling mechanism, involving sequential
oxidative addition, proton transfer, and reductive elimination. The calculations indicated the
reversible nature of amidation, which highlights the importance of reaction thermodynamics in
related reaction designs. To shed light on the control of thermodynamics, we also investigated the
thermodynamic free energy changes of amidation with a series of esters and amides.
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1. Introduction

Amide C–N bond activation and functionalization provide a powerful strategy to utilize amide
as a central synthon [1–6]. Despite the remarkable value of this strategy, the development of amide
C–N bond activation has progressed slowly due to the resonance nature of amide and the resulting
difficulty for bond dissociation [7–16]. Recently, Garg and coworkers discovered the outstanding
performance of nickel catalysis for amide C–N bond activation [17], leading to the development of
a series of exciting Ni-catalyzed cross coupling reactions [18–26]. Szostak and coworkers developed
a family of geometrically twisted amides which serves as a powerful synthetic platform [27–39] for
both metal-catalyzed and metal-free transformations. Independent studies from Shi, Zou, Rueping,
Maiti, Stanley, and Molander also contribute significantly to the synthetic advances involving amide
C–N bond activation [40–52].

In addition, amide C–N bond activation stimulated the synthetic developments of amide C–N
bond formation. Szostak and coworkers reported a series of transamidation reactions from twisted
amides, which provides a distinctive approach for amide synthesis [39] (Scheme 1a). Garg, Houk,
and coworkers discovered that Lewis acid plays an important role on the kinetics and thermodynamics
of amidation of ester, which reverses the thermodynamic equilibrium of esterification of amide [53]
(Scheme 1b). Newman and coworkers recently disclosed a Ni/IPr-catalyzed amidation of ester
under Lewis acid-free conditions [54] (Scheme 1c). This transformation attracts our mechanistic
interests [55–66]; particularly for the Lewis-acid free Ni-mediated C–O bond cleavage and C–N bond
formation. Here we report a computational study on the mechanism of Ni/IPr-catalyzed amidation of
ester and the thermodynamic equilibrium of amidation.
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Scheme 1. (a) Transamidation of N-acyl-glutarimides with amines; (b) Ni/SIPr-catalyzed amidation 
of ester under Lewis acid conditions; and (c) Ni/IPr-catalyzed amidation of ester under Lewis 
acid-free conditions. 

2. Results and Discussion 

2.1. Reaction Mechanism of Aromatic Ester 

Using methyl benzoate and morpholine as the model substrates, we first explored the free 
energy changes of Ni/IPr-catalyzed amidation with aromatic ester. The free energy profile is shown 
in Figure 1, and the optimized structures of selected species in the catalytic cycle are shown in Figure 
2. From the Ni(IPr)(toluene) complex 1 [67], the initial ligand exchange with substrate is exergonic 
and leads to the substrate-coordinated complex 2. Subsequent oxidative addition via TS3 requires a 
barrier of 20.4 kcal/mol, which generates the acylnickel species 4. 5 then undergoes a facile 
inner-sphere proton transfer through TS6, and the dissociation of methanol leads to the 
LNiII(acyl)(amino) intermediate 8. From 8, the C–N bond formation occurs via the reductive 
elimination transition state TS9, and the final exergonic product liberation produces the amidation 
product 11 as well as regenerates the catalytically active species 2. We have confirmed the stability of 
wavefunctions for all Ni(II) species involved in the catalytic cycle. We were not able to locate the 
transition states for the ligand exchange steps (4 to 5, 7 to 8) due to the flat energy surface. A series of 
constrained optimizations were performed to verify the flat energy surface of ligand exchange. 
Details are included in Supplementary Materials (Figure S1). Based on the DFT-computed free 
energy changes of the overall catalytic cycle, the on-cycle resting state is the substrate-coordinated 
complex 2, and the rate-limiting step is the C–O bond activation step via TS3 with an overall barrier 
of 20.4 kcal/mol. Our computations also suggested that the overall amidation is reversible and 
almost thermodynamic neutral. The reaction barrier for the reversed transformation from 11 to 2 is 
only 20.3 kcal/mol. This corresponds well with the reversible nature of this amidation 
transformation, as reported by Newman [54]. It should be pointed out the generated methanol may 

Scheme 1. (a) Transamidation of N-acyl-glutarimides with amines; (b) Ni/SIPr-catalyzed amidation
of ester under Lewis acid conditions; and (c) Ni/IPr-catalyzed amidation of ester under Lewis
acid-free conditions.

2. Results and Discussion

2.1. Reaction Mechanism of Aromatic Ester

Using methyl benzoate and morpholine as the model substrates, we first explored the free energy
changes of Ni/IPr-catalyzed amidation with aromatic ester. The free energy profile is shown in Figure 1,
and the optimized structures of selected species in the catalytic cycle are shown in Figure 2. From the
Ni(IPr)(toluene) complex 1 [67], the initial ligand exchange with substrate is exergonic and leads to
the substrate-coordinated complex 2. Subsequent oxidative addition via TS3 requires a barrier of
20.4 kcal/mol, which generates the acylnickel species 4. 5 then undergoes a facile inner-sphere proton
transfer through TS6, and the dissociation of methanol leads to the LNiII(acyl)(amino) intermediate 8.
From 8, the C–N bond formation occurs via the reductive elimination transition state TS9, and the final
exergonic product liberation produces the amidation product 11 as well as regenerates the catalytically
active species 2. We have confirmed the stability of wavefunctions for all Ni(II) species involved in the
catalytic cycle. We were not able to locate the transition states for the ligand exchange steps (4 to 5, 7 to
8) due to the flat energy surface. A series of constrained optimizations were performed to verify the
flat energy surface of ligand exchange. Details are included in Supplementary Materials (Figure S1).
Based on the DFT-computed free energy changes of the overall catalytic cycle, the on-cycle resting
state is the substrate-coordinated complex 2, and the rate-limiting step is the C–O bond activation step
via TS3 with an overall barrier of 20.4 kcal/mol. Our computations also suggested that the overall
amidation is reversible and almost thermodynamic neutral. The reaction barrier for the reversed
transformation from 11 to 2 is only 20.3 kcal/mol. This corresponds well with the reversible nature of
this amidation transformation, as reported by Newman [54]. It should be pointed out the generated
methanol may leave the reaction system due to its volatility, which serves as an additional driving
force for the amide formation.
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Figure 1. DFT-computed free energy profile of Ni/IPr-catalyzed amidation of aromatic ester. 

 
Figure 2. Optimized structures of selected intermediates and transition states in the catalytic cycle of 
Ni/IPr-catalyzed amidation of ester. 

2.2. Reaction Mechanism of Aliphatic Ester 

We next explored the Ni-catalyzed amidation with aliphatic ester, using methyl 
3-phenylpropionate as the model substrate. The DFT-computed free energy profile is shown in 
Figure 3, and the optimized structures of selected species in the catalytic cycle are shown in Figure 4. 
The reaction mechanism of aliphatic ester is similar to that of aromatic ester, which involves 
sequential oxidative addition, proton transfer, reductive elimination and product liberation. The 
resting state is toluene-coordinated complex 1, and the rate-limiting step is the proton transfer step 

Figure 1. DFT-computed free energy profile of Ni/IPr-catalyzed amidation of aromatic ester.
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Figure 2. Optimized structures of selected intermediates and transition states in the catalytic cycle of
Ni/IPr-catalyzed amidation of ester.

2.2. Reaction Mechanism of Aliphatic Ester

We next explored the Ni-catalyzed amidation with aliphatic ester, using methyl 3-phenylpropionate
as the model substrate. The DFT-computed free energy profile is shown in Figure 3, and the optimized
structures of selected species in the catalytic cycle are shown in Figure 4. The reaction mechanism
of aliphatic ester is similar to that of aromatic ester, which involves sequential oxidative addition,
proton transfer, reductive elimination and product liberation. The resting state is toluene-coordinated
complex 1, and the rate-limiting step is the proton transfer step with an overall barrier of 16.9 kcal/mol.
The free energy change of the amidation with methyl 3-phenylpropionate is exergonic by 1.8 kcal/mol.
Comparing the free energy profiles of aromatic and aliphatic esters, the major difference is the resting
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state and overall reaction barrier. Due to the lack of electron-deficient aromatic functionality in
methyl 3-phenylpropionate, the substrate-coordinated complex 12 is 6.1 kcal/mol higher in free energy
comparing with the toluene-coordinated species 1. This leads to the low overall barrier of the amidation
with aliphatic ester.
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Ni/IPr-catalyzed amidation of ester.

2.3. Reaction Thermodynamics

Based on the computed free energy profiles of Ni-catalyzed amidation of ester, we noticed that the
major bottleneck for this type of transformation is the control of thermodynamics. The thermodynamic
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equilibrium has to be designed cautiously because the overall transformation does not have a strong
force, unlike many other organic transformations. Therefore, the synthetic efforts could be unfruitful
even the designed amidation or esterification has a surmountable reaction barrier. In order to understand
the controlling factors of the thermodynamic equilibrium of amidation as well as provide a general
thermodynamic guideline for related reaction designs, we computed the free energy changes with a
series of esters and amides. The results are summarized as a heat map in Figure 5. Green represents the
thermodynamic equilibrium that favors the formation of ester, and red indicates the opposite trend.Molecules 2018, 23, x FOR PEER REVIEW  6 of 10 
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For the explored esters and amides, the alcohol component (derivatization of ester) have limited
effects on the reaction thermodynamics. The effects from the change of primary alcohols are less than
1 kcal/mol for most amides (a to h). Comparing with the primary alcohols, the esters with secondary
alcohols are less stable (i to l), especially for cyclohexanol. The thermodynamic equilibrium involving
cyclohexanol favors the amide formation the most among all the studied alcohols. This suggest that
the cyclohexanol derived esters can be useful substrates for amide synthesis. Interestingly, the tertiary
alcohol is not the best alcohol for amide formation, potentially due to the steric repulsions in the
corresponding esters.

Unlike the alcohols, the structure of amides has profound effects on the thermodynamic
equilibrium of amidation. Without strong electron-activating groups or geometric twisting, amides are
more stable than the corresponding esters regardless of the effects from alcohol (23 and 24).
This follows the consensus that amide is generally more stable than ester due to the strong resonance
nature. However, the electronically activated amides (28–36) and twisted amides (37–40) are
significantly less stable in terms of thermodynamics. The equilibrium involving these amides all
favor the ester formation, providing significant driving force for amide C–N bond activation and
functionalization. Based on the computed thermodynamics, we found that the N-substitution has
important effect on the thermodynamic stability of amides. This corroborates Szostak’s design of
twisted amides [27–39], and also highlights the importance of amide design for future synthetic
transformations involving amides.

3. Computational Methods

All density functional theory (DFT) calculations were carried out using Gaussian16 software
package [68]. Geometry optimizations and frequency calculations were conducted using B3LYP [69,70]
functional with Grimme’s D3(BJ) empirical dispersion correction [71], the LANL2DZ [72] basis set
for nickel, and 6-31G(d) basis set for all the other elements. The solvation energy corrections were
also included in the geometry optimizations and frequency calculations. Based on the solution
phase-optimized geometries, single-point energies were calculated with the M06 [73] functional,
the SDD [74,75] basis set for nickel, and 6-311G++(d,p) basis set for all other elements. Solvation
energies were calculated using the SMD solvation model [76] with toluene as the solvent. No frequency
scaling factor was used to calculate Gibbs energy corrections. The 3D diagrams of computed species
were visualized using CYLview [77].

4. Conclusions

In summary, the mechanism and thermodynamics of Ni/IPr-catalyzed amidation of esters
have been explored with DFT calculations. The reaction proceeds via the general cross-coupling
mechanism. Nickel catalyst first cleaves the C–O bond of ester via oxidative addition, and subsequent
proton transfer between LNi(acyl)(OR) species and amine leads to LNi(acyl)(amino) intermediate.
This intermediate undergoes C–N reductive elimination to produce the amidation product. The studied
aromatic and aliphatic esters both have fairly low reaction barriers, 20.4 kcal/mol for methyl benzoate
and 16.9 kcal/mol for methyl 3-phenylpropionate. However, the overall amidation with morpholine is
almost thermodynamic neutral. This suggests that the amidation only has limited thermodynamic
driving force, and the evaporation of methanol could be critical for productivity. Therefore, the key to
reaction success of Ni/NHC-catalyzed amidation of ester is the control of thermodynamic equilibrium.

For the thermodynamic free energy changes of the esterification of amide, the O-substitution of
ester has limited effects, and cyclohexanol derivative is the most stable ester among all the studied
cases. In contrast to the O-substitution of ester, the N-substitution of amide has profound effects on the
thermodynamic stability of amides. Electron-activating groups and geometric twisting can significantly
destabilize amides and provide the desired driving force towards the amide C–N bond activation.
These computations highlight the design of amide for future reaction development involving amide
C–N bond activation.
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