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Abstract: Pyrrole and its polysubstituted derivatives are important five-membered heterocyclic
compounds, which exist alone or as a core framework in many pharmaceutical and natural product
structures, some of which have good biological activities. The Van Leusen [3+2] cycloaddition
reaction based on tosylmethyl isocyanides (TosMICs) and electron-deficient compounds as a
substrate, which has been continuously developed due to its advantages such as operationally simple,
easily available starting materials, and broadly range of substrates, is one of the most convenient
methods to synthetize pyrrole heterocycles. In this review, we discuss the different types of two
carbon synthons in the Van Leusen pyrrole reaction and give a summary of the progress of these
synthesis methods in the past two decades.

Keywords: pyrrole heterocycles; TosMICs; electron-deficient compounds; Van Leusen pyrrole
synthesis; [3+2] cycloaddition

1. Introduction

Pyrrole and its polysubstituted derivatives are important five-membered heterocyclic compounds,
which exist alone or as a core skeleton in many pharmaceutical and natural product structures, some
of them have good bioactivity such as antibacterial [1,2], antifungal [3,4], anti-inflammatory [5,6],
antiviral [7], antimalarial [8], anticancer [9,10], antiparasitic [11], etc., and can also be used as
enzyme inhibitor in the organism [12,13]. Some typical pyrrole derivative chemical structures and the
physiological functions are summarized in the following Table 1.

Since pyrrole and its multi-substituted derivatives play an important role in organic synthesis
as well as in biology, syntheses of five-membered heterocyclic pyrrole compounds have always been
valued by researchers. Over the last decades, there are many methods for synthesizing pyrrole
compounds in laboratory routes [14], and the classical methods include Knorr pyrrole synthesis [15],
Paal-Knorr pyrrole synthesis [16], Hantzsch pyrrole synthesis [17], Barton-Zard reaction [18],
Van Leusen pyrrole synthesis [19], and Piloty–Robinson pyrrole synthesis [20]. These synthesis
methods are summarized in Scheme 1.
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Table 1. Some typical pyrrole derivative chemical structures and the physiological functions.

Physiological Functions Chemical Structures References
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Scheme 1. Typical cycloaddition methods for pyrrole heterocycle and its derivatives.

As shown in Scheme 1, the method for synthesizing pyrrole based on the [3+2] cycloaddition
reaction of TosMIC as 3-atom synthon with electron-deficient olefins is also known as the Van Leusen
pyrrole synthesis. It was first reported by the Van Leusen et al. in 1972. Van Leusen and co-workers
used TosMICs with ester-containing double bond compounds to synthesize a series of 3,4-disubstituted
pyrrole compounds under basic conditions [19]. Subsequently, they extended the substrate scope to
include electron-withdrawing groups on electron-deficient olefins, such as α,β-unsaturated cyano,
sulfonyl, nitro, and sulfonyl groups, which enriched the structure diversity of the resulting pyrrole
compounds [21,22]. Therefore, the Van Leusen [3+2] cycloaddition reaction is one of the most
convenient methods to synthetize pyrrole heterocycles, which has been continuously developed
over the ensuing years due to its advantages such as operationally simple, easily available starting
materials, and broad range of substrates.

TosMIC is a colorless, odorless, stable solid that can be stored at room temperature. It is
an important organic synthesis intermediate, and widely used in the synthesis of five-membered
nitrogen-containing heterocycles [23]. Under the Van Leusen pyrrole synthesis reaction conditions,
TosMIC loses a proton to form a carbanion under the action of a base because of the
electron-withdrawing effect of the sulfone and isocyanide. The carbon anion attacks on the
α,β-unsaturated compound, undergoes an intramolecular [3+2] cycloaddition reaction, and causes
the leaving of the tosyl group to form the final heterocyclic compound. The mechanism of [3+2]
cycloaddition reaction between TosMICs and electron-deficient alkenes to form pyrrole derivatives is
shown in Scheme 2.
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Scheme 2. Mechanism of pyrrole compounds formed by [3+2] cycloaddition between TosMICs and
electron-deficient alkenes.

In recent reports, it has been found that this reaction occurs selectively at the position of a less
polar double bond. The use of electron-deficient compounds having an electron-withdrawing group
and a relatively stable structure, or a solvation effect in the reaction system to stabilize the structure of
the electron-deficient compound, can significantly increase the rate and yield of the reactions.



Molecules 2018, 23, 2666 4 of 19

In this paper, we review the research progress of the synthesis of pyrrole derivatives through the
[3+2] cycloaddition reaction between TosMICs and different kinds of 2-carbon synthons based on the
Van Leusen pyrrole synthesis method in the past two decades.

2. Synthesis of Pyrrole Derivatives by [3+2] Cycloaddition of TosMICs with Alkenes

In 1972, Van Leusen and co-workers firstly reported that TosMICs can react with electron-deficient
alkenes under basic conditions to produce 3-substituted pyrrole derivatives [19]. They found that
there are [3+2] cycloadditions occurring in alkenes with different electron-withdrawing groups.
As shown in Scheme 3, the electron-withdrawing groups may be esters, amides, ketones, nitros,
cyanos, aryls, etc. [24–60]. Based on the different types of electron-withdrawing group attached to the
alkenes, they are classified and described in order (Scheme 3).
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2.1. Alkenes with an Ester Group

As early as in the 1990s, Van Leusen and co-workers developed a process in which TosMIC 16
reacts with a Michael acceptor to form 3,4-disubstituted pyrrole compounds 17 or 3-substituted pyrrole
compounds 18. This procedure necessarily installs the activating Z group of the Michael acceptor at
the 3-position of the pyrrole ring formed (Scheme 4) [22,24].
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Scheme 4. Synthesis of 3, 4-substituted and 3-disubstituted pyrrole compounds 17 and 18.

In 1997, the Trudell group described an expeditious method for the synthesis of 3-aryl-substituted
pyrroles. The 3-arylpyrroles 22 were prepared in a short reaction sequence from the readily available
aryl aldehydes 19. The aldehydes 19 were converted into the corresponding methyl 3-arylacrylate esters
20 using a Wadsworth-Emmons olefination procedure. Treatment of 20 with TosMIC 16 afforded the
4-aryl-3-(methoxycarbonyl)-pyrroles 21. Then the ester moieties were hydrolyzed to the corresponding
carboxylic acids with excess KOH in 50% MeOH. The acid derivatives were then decarboxylated by
heating in 2-ethanolamine to give the 3-arylpyrroles 22 in good yield (Scheme 5) [25].
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The electron neutral or electron-deficient aryl vinyl esters such as cinnamic acid esters could be
successfully employed in the cyclization reaction. However, the TosMIC 16 addition reaction with
20 which possessed electron-rich substituents on the aryl ring did not yield the desired pyrroles, but
rather gave intractable mixtures.

The next year, Di Santo et al. pioneered the synthesis of 2H-pyrrolo[3,4-b][1,5]pyrrolo-
benzothiazepine 27. They started with tetrabutylammonium fluoride (TBAF)-catalyzed reaction
of 2-nitrothiophenol 23 with ethyl 2-propynoate to afford ethyl 3-(2-nitrophenylthio)propenoate 24.
Then they performed a transformation of the sulfur derivative into the sulfone analogue by the
use of m-chloroperbenzoic acid (MCPBA). Afterwards, the novel E/Z mixture 25 was reacted with
TosMIC 16 to form ethyl 4-(2-nitrophenylsulfony1)-1H-pyrrole-3-carboxylate 26 as the sole product.
2H-pyrrolo[3,4-b][1,5]pyrrolobenzothiazepine 27 can be synthesized by using compound 26 as raw
material (Scheme 6) [26].
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Scheme 6. Synthesis of 2H-pyrrolo[3,4-b][1,5]pyrrolobenzothiazepine 27.

In 2007, Krishna’s group found that aldehyde 28 on treatment with (ethoxycarbonylmethylene)-
triphenylphosphorane in refluxing benzene was converted to the α,β-unsaturated ester 29 (72%),
and treatment of 29 with potassium salt of TosMIC 16 afforded the corresponding pyrrole C-nucleosides
30a (36%) and 30b (32%) (Scheme 7) [27].
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In 2008, Shin’s group developed a synthesis of ethyl 4-substituted-1H-pyrrole-3-carboxylates
33 from aldehyde 31, in which they synthesized α,β-unsaturated ester 32 from aromatic or aliphatic
aldehydes by the Horner-Wadsworth-Emmons reaction and subsequently reacted it with TosMIC 16 in
the presence of sodium t-amylate in toluene. In this reaction, the solvent, toluene, can be used in both
reaction and crystallization, which makes it more practical and greener (Scheme 8) [28].
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Scheme 8. Synthesis of ethyl 4-substituted-1H-pyrrole-3-carboxylate 33.

Hu’s group developed a procedure for the preparation of N-arylated 3,4-disubstituted pyrroles 35
from alkenes in the same year. They found that these compounds can be obtained when a mixture
of ethyl 3-phenylacrylate 34, TosMIC 16, PhI, CuI, and 1,10-phenanthroline in toluene was treated
with 3.0 equivalents of base at −30 ◦C for 10 min and then the resultant mixture was refluxed until
the intermediate was completely exhausted. When a (1:2) mixture of t-BuONa to Cs2CO3 was used as
base, 35 was obtained as a single product. In this procedure, t-BuONa served as a base for Van Leusen
pyrrole synthesis and Cs2CO3 for the N-arylation, respectively (Scheme 9) [29].
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Scheme 9. Synthetic route of N-arylated 3,4-disubstituted pyrrole 35.

In 2009, Poulard et al. designed a synthetic route for 3,4-disubstituted pyrrole compounds 40,
in which the 1,2-disubstituted Michael acceptors 38 are prepared by cross-methylation with compounds
36 and 37 that were used to react with TosMIC 16 to obtain 40. Under the same conditions, compounds
41 can be also obtained when the R2 group was the ketone carbonyl-substituted Michael acceptor 39
(Scheme 10) [30].
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Scheme 10. Synthesis of 3,4-disubstituted pyrrole compounds 40 and 41.

In the same year, the Sánchez-García group reported that 2,2′-bipyrroles compounds 43 were
synthesized through the reaction of enesters 42 and TosMIC 16. 2,7,12,17-tetraarylporphycenes 44
can be synthesized by using compounds 43 as raw materials. Porphycenes are of great value in the
chemical industry and in biomedicine. During this reaction, there will also be a monopyrrole product
formed, but if post-treated with dilute ammonia, the bipyrrole compound can be precipitated in ethyl
acetate (Scheme 11) [31].
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In 2012, Di Santo et al. described the formation of a pyrrole derivative 46 from
(E)-ethyl-3-(2-nitrophenyl)acrylate 45 and TosMIC 16 under basic conditions. Then, nitro
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reduction and intramolecular cyclization into a lactam were further performed to synthesize
2H-pyrrolo[3,4-c]quinoline compound 47 (Scheme 12) [32].Molecules 2018, 23, x FOR PEER REVIEW  7 of 19 
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Scheme 12. Synthetic route of pyrrole derivative 47.

In 2014, the Ji group found that 2-aminoaryl acrylate 48 and TosMIC 16 undergo [3+2]
cycloaddition under basic condition and could effectively synthesize pyrrolo[3,4-c]quinolinone 49 or
pyrrolo[3,4-c]quinolines 50. It is worth mentioning that the reacted pyrrole intermediate will both
undergo an intramolecular condensation reaction of the ester or ketone with the amine during the
formation of the quinoline ring. The reactions have good efficiency and practicality, and the yields can
reach up to 73% (Scheme 13) [33].
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Scheme 13. Synthesis of pyrrolo[3,4-c]quinolinone 49 and pyrrolo[3,4-c]quinolines 50.

In 2015, our group developed an expedient and divergent tandem one-pot synthesis
of benz[e]indole derivative 53 (79%) and spiro[indene-1,3’-pyrrole] derivative 54 (6%) from
alkyne-tethered chalcones/cinnamates 51 and TosMIC 16. The formation of intermediate 52 in this
reaction involves a [3+2] cycloaddition with TosMIC 16 and electron-deficient ester 51 (Scheme 14) [34].
To our knowledge this reaction is the first example of intramolecular electrophilic cyclizations of
alkynes with in-situ generated pyrroles.
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In 2018, the Lamberth group reported a new synthesis route of pyrrolocarboxamide compounds
57. They firstly used diethyl maleate 55 as starting material, which was converted with TosMIC 16
into the 3,4-dicarbethoxy-substituted pyrrole 56. Then, after a series of reactions on the substituents,
pyrrole carboxamide compound 57 was synthesized (Scheme 15) [35].Molecules 2018, 23, x FOR PEER REVIEW  8 of 19 
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2.2. Alkenes with an Amide Group

Donohoe and co-workers continued to expand the reaction to TosMIC 16 with acrylic acid
pyrrolidide 58 to generate two pyrroles in reasonable yields in 1998. The compound was subsequently
protected under standard conditions to yield the N-Boc pyrrole 60. Under the similar conditions,
N-Adoc pyrrole 61 could be obtained from cyclohexyl acrylate 59 and TosMIC 16, respectively
(Scheme 16) [36].
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In 2011, Padmavathi et al. condensed cinnamoyl chloride 63 with an aromatic heterocyclic
compound 62 containing an amino group to prepare a series of aromatic heterocyclic
cinnamic acid amide compounds 64. Then, these electron-deficient alkenes were reacted
with TosMIC 16 in the presence of NaH, DMSO and diethyl ether to prepare a series of
4′-phenyl-N-(4-heteroaryl-2-yl)-1′H-pyrrole-3′-carboxamide compounds 65. According to a bioassay,
compounds 65 have certain antibacterial activity against Gram-negative bacteria, and most of the
compounds have the effect of inhibiting spore germination (Scheme 17) [37].
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In 2017, Adivireddy et. al. developed a synthesis of pyridinylcarbamoylmethyl pyrrolyl
compounds 69. In this route, the synthetic intermediate (E)-N-((4-(aryl)-3-cyano-6-(aryl)pyridin-
2-ylcarbamoyl)methyl)cinnamamide 68 was prepared by the condensation of 2-amino-4,6-diaryl-
pyridine-3-carbonitrile 66 with 2-(cinnamamido)acetic acid 67 in the presence of o-(7-azabenzo-
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triazol-1-yl)-N,N,N,N-tetramethyluraniumhexafluorophosphate (HATU) and N,N-diisopropyl-ethylamine
(DIPEA) in DMF under ultrasonication at room temperature. Then occurs the reaction of 68 with
TosMIC 16 in the presence of NaH and in a solvent mixture of ether and dimethylsulfoxide (2:1)
produced N-((4-(aryl)-3-cyano-6-(aryl) pyridin-2-ylcarbamoyl)methyl)-4-phenyl-1H-pyrrole-3-carboxamide
69. The bis amido linked aromatized heterocycles pyrrolyl pyridines 69 exhibited excellent radical
scavenging activity (Scheme 18) [38].Molecules 2018, 23, x FOR PEER REVIEW  9 of 19 
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2.3. Alkenes with a Keto Group

In 2000, Dannhardt and co-workers reported that 1,3-diarylprop-2-en-1-ones 70 and TosMIC
16 were dissolved in THF as solvent to produce 3-aroyl-4-arylpyrroles 71 in the presence of NaH at
room temperature for 0.5 h. Then compounds 71 were alkylated at the pyrrole nitrogen to afford an
N-substituted aryl-aroyl-pyrroles 72 (Scheme 19) [39].
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Scheme 19. Synthesis of 3-aroyl-4-arylpyrroles 71 and N-substituted aryl-aroyl-pyrroles 72.

The [3+2] cycloaddition of TosMIC with unsymmetrically substituted divinyl ketones occurs
selectively on the less polar double bond. In 2007, the Rao group found that TosMIC 16
and cinnamoylketene dithioacetal 73 can selectively synthesize 3,3-bis(methylthio)-1-(4-aryl-1H-
pyrrol-3-yl)prop-2-en-1-one 74 via [3+2] cycloaddition. This reaction occurs selectively on the less
polar 4-position ene bond (Scheme 20) [40].
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In the same year, Terzidis et al. reported that chromone-3-carboxaldehydes 75 were allowed to
react with equimolar amounts of TosMIC 16 in the presence of DBU, in the aprotic nonpolar solvent
THF at room temperature. As a result 2-tosyl-4-(2-hydroxybenzoyl)pyrroles 76 were isolated in good
yield (Scheme 21) [41].
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In 2009, the Pérez group synthetized a series of pyrrole derivatives 78 by using TosMIC 16 with
α,β-unsaturated carbonylic compounds 77, which were obtained through Claisen-Schmidt condensation
from the respective acetophenones and benzaldehydes substituted in m-position (Scheme 22) [42].
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Scheme 22. Synthetic route of pyrrole derivatives 78.

In 2012, Kelly et al. found that the cyclic α,β-unsaturated ketone 79 can be used as a Michael
acceptor for 1,3-dipolar cycloaddition to form pyrrole. The 3,4-fused cycloalkanopyrroles 80 were
synthesized by reaction of 79 with TosMIC 16 and sodium hydride in a 3:1 solution of diethyl ether
and dimethyl sulfoxide at room temperature, but the yield of the cyclization appeared to depend on
the base-sensitivity of the Michael acceptor (Scheme 23) [43].
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Scheme 23. Synthesis of 3,4-fused cycloalkanopyrroles 80.

Similar reactions can occur with TosMIC derivatives. In 2013, the Ji group reported
the reaction of TosMIC 16 with (Z)-3-(2-oxo-2-ethylidene)indolin-2-one derivatives 81 to give
pyrrole derivatives 82, and developed a simple and convenient synthetic approach to access of
3H-pyrrolo[2,3-c]quinolin-4(5H)-one derivatives 83 by the reaction of 81 with functionalized TosMIC
derivatives 16 under basic conditions (Scheme 24) [44].
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In the following year, Ji et al. also discovered a method for synthesizing bridged 3,3′-dipyrrole
derivatives 85 by the reaction of dienone derivatives 84 with TosMIC 16. In addition to the classical
[3+2] cycloaddition reaction, this reaction also involves C-C bond cleavage caused by traces of water
in the system. They also captured a spirocyclic intermediate, which is providing a new idea for the
study of the construction of bispirocyclic compounds by isonitrile (Scheme 25) [45].Molecules 2018, 23, x FOR PEER REVIEW  11 of 19 
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Scheme 25. Synthesis of bridged 3,3′-dipyrrole derivatives 85.

In 2016, our group described a silver-catalyzed tandem reaction of TosMIC derivatives
16 with 2-methyleneindene-1,3-diones 86 to produce benzo[f ]indole-4,9-diones compounds 87.
The reaction undergoes a domino [3+2]-cycloaddition/imidoyl anion cyclization/ring opening of
cyclo-propanolate/aromatization and three C-C bonds are formed successively. The pyrrole ring is
constructed while expanding a carbon atom to the original carbon ring (Scheme 26) [46].
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Scheme 26. Synthesis of benzo[f ]indole-4,9-diones compounds 87.

In 2017, Mao and co-workers reported a synthesis of 4-substituted thienyl pyrrole compounds
90 via Vilsmeier-Haack formylation, aldol condensation and Van Leusen pyrrole synthesis using
2-methoxythiophene 88 as starting material. Compounds 90 have good selectivity and inhibition to
tumor cells (Scheme 27) [47].
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In 2017, Shanmugam et al. described that chalcone 91 and TosMIC 16 undergo [3+2]
cycloaddition under mild conditions to synthesize 3-aroyl-4-arylpyrrole compounds 92. A new
substituted carbamoylpyrrole 93 exhibiting moderate antibacterial activity against gram-positive
bacteria and gram-negative bacteria was then synthesized by a substitution reaction with methyl
iodide (Scheme 28) [48].
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Solvation or dynamic solvent effects can affect the rate of [3+2] cycloaddition reaction
between TosMIC and aromatic ketones. In 2013, Nair’s group discovered a lithium hydroxide
mediated 3,4-disubstituted pyrrole synthesis method [49]. As shown in Scheme 29, acetophenone
94 was reacted with benzaldehyde 95 in the presence of LiOH·H2O in ethanol medium to
afford 1,3-diphenylprop-2-enone 96 by an aldol condensation between the enolate and the
electrophile. Then, TosMIC 16 and an additional equivalent of LiOH·H2O were added to
the same system. As the reaction progressed, a white solid precipitated from the reaction
medium, the product obtained was filtered, washed with water and ethanol, and characterized
as phenyl(4-phenyl-1H-pyrrol-3-yl)methanone 97. In this reaction system, due to the small size of Li+

ion, LiOH·H2O has obvious covalent character, which slows down the release of OH-. At the same
time, a solvation effect occurs in the polar solvent to increase the yield.

A plausible mechanism for the reaction is depicted in Scheme 30. LiOH·H2O abstracts a proton
from the methylene group of TosMIC to generate a carbanion which can be stabilized by the sulfonyl
group. The intermediate 1,3-dipole undergoes [3+2] cycloaddition reaction to provide the cycloadduct
100. Elimination of lithium p-toluenesulfinate under the action of a base to produce a C-3 substituted
pyrrole derivative 101. Finally, 1,3-hydride shift occurs to afford the product 97. The β-substituent of
the electrophile ends up at the C-4 position of the pyrrole ring.
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In 2016, Nair and co-workers also reported an aroyl-substituted pyrroles 105 synthetic route from
phosphonium salt 102 as starting material. The phosphonium salt was neutralized with aqueous NaOH
and extracted with dichloromethane to afford 1-phenyl-2-(triphenyl-phosphoranylidene)ethenone
103. Further the compound was reacted with isobutyraldehyde in dichloromethane to generate the
corresponding α,β-unsaturated ketone 104. Upon completion of the reaction, dichloromethane was
evaporated and the reaction mixture was triturated with hexane to remove triphenylphosphine oxide.
Moreover, they found that LiOH·H2O gave good yields of the desired product as compared to NaOH
and KOH. This might be due to better coordination power of lithium (Scheme 31) [50].
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Multi-component Van Leusen pyrrole synthesis can also occur in alkenes with aromatic ketones.
In 2014, the Shanmugam research group found that cinnamoylketene dithioacetal 106 undergo
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multi-component cycloaddition with TosMIC 16, guanidine nitrate 107 and alkyl alcohol 108 in the
presence of NaH/THF to furnish the target 6-pyrrolylpyrimidines 109 in excellent yields of 70–97%
(Scheme 32) [51]. Because of the electron donating characteristics of the two methyl sulfanyl groups
and the structural features of α,β-unsaturated carbonyl group, the arylvinyl double bond is more
polarized than the ketene acetal double bond, which causes TosMIC 16 to selectively react at the
arylvinyl double bond.
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2.4. Alkenes with a Nitro Group

In 2009, Xiaoqi Yu and co-workers reported that 4(3)-substituted 3(4)-nitro-1H-pyrrole 111
can be synthesized from nitroene 110 and TosMIC 16 in the presence of the ionic liquid
1-butyl-3-methylimidazolium bromide ([bmIm]Br). This reaction can be widely applied to aromatic,
aliphatic or heterocyclic substituted nitroolefins, and the recovered ionic liquid can be repeatedly used
as a solvent without significantly reducing the yield (Scheme 33) [52].
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2.5. Alkenes with a Cyano Group

In 2012, the Yongping Yu group reported that two equivalents of a cyano-substituted trisubstituted
alkene 112 and TosMIC 16 were dissolved in anhydrous acetonitrile as a solvent and reacted in the
presence of NaH at room temperature for 3 h to form disubstituted pyrrole derivatives 113. And the
1,3’-bipyrrole 114 is obtained if the reaction time is extended to 12 h (Scheme 34) [53,54]. In the
experiments, researchers also found that when keto and ester groups are simultaneously present in
alkenes, due to the higher reactivity, keto group can be eliminated more easily than ester groups
alone. In addition, group with larger steric hindrance can reduce the reactivity when they are present
on alkenes.
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compound 114.
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2.6. Alkenes with an Aryl Group

In 2002, Smith and co-workers developed a method for the one-step synthesis of 3-aryl and
3,4-diarylpyrroles 116 with good yields by readily available aryl or diaryl alkenes 115 with TosMIC
16 (Scheme 35) [55]. They found that the stronger the electron-withdrawing ability of the aryl group
attached to the alkene in the substrate, the lower the temperature required for the reaction, the shorter
the reaction time, and the higher yield. At the same time, the steric hindrance of the aryl group
will act as a deterrent to the reaction. This phenomenon is particularly evident when the aryl group
is ortho-substituted.
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2.7. Other Alkene Synthons

Magnus et al. reported the effect of metal ion on the conjugate addition of TosMIC 16 anions to
ethyl sorbate 117 in 1987. The sodium salt of TosMIC 16 in DMSO:ether reacted with 117 to afford
pyrrole 118 (pathway a) in 80% yield, whereas the lithium salt of TosMIC 16 in THF afforded the
addition adduct 119 in 61% yield (pathway b) (Scheme 36, left) [56]. On the basis of the research,
Ganem and co-workers reported that condensation of 117 with the sodium anion of TosMIC in DMSO:
ether gave regioisomers 120 in 1997. While using LiN(TMS)2 in THF at −78 ◦C, pyrrole derivate 121
was obtained as the only detectable product. The combination of more polar solvent and more highly
dissociated anion favored reaction at the terminally polarized δ-position of dienoate 117, leading to
the desired 1,6-addition product (Scheme 36, right) [57].
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Quinone can be also used for the Van Leusen pyrrole synthesis. In 1996, Di Santo et al. reported
a synthesis of 2H-benz[f ]isoindole-4,9-dione 123 from TosMIC 16 that reacts with Michael acceptor
1,4-naphthoquinone 122. N-Methylation of the latter compound with iodomethane in the presence of
anhydrous potassium carbonate afforded 2-methyl-2H-benz[f ]isoindole-4,9-dione 124 (Scheme 37) [58].
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In 2012, Yongping Yu and co-workers reported synthesis of polysubstituted pyrroles
126 from TosMIC 16 and vinyl azides 125 under mild conditions in the presence of base
(Scheme 38) [59]. Additionally, they developed a Van Leusen three-component reaction as a synthesis of
2,3,4-trisubstituted pyrrole 129, where a mixture of 3-nitrobenzaldehyde 127 and ethyl 2-azidoacetate
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128 was stirred under the Knoevenagel condensation conditions using NaH as the base for 2 h at
−15 ◦C, followed by addition of TosMIC 16. The reaction mixture was then stirred at room temperature
for 24 h to give the desired product 129 (Scheme 39) [59].
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In 2017, our research group discovered that TosMIC 16 can undergo a [3+2] cycloaddition reaction
with a styrylisoxazole compounds 130 to construct a series of 3-isoxazole disubstituted pyrrole
derivatives 131 (Scheme 40) [60]. Under the same optimized reaction condition, the synthesis of
the 3-isoxazole trisubstituted pyrrole derivatives 132 was achieved by using the TosMIC derivatives
16 (Scheme 41) [60]. This transformation is operationally simple, high-yielding, and displays broad
substrate scope.
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3. Synthesis of Pyrrole Derivatives by [3+2] Cycloaddition of TosMICs with Alkynes

Similar to alkenes, alkynes can also undergo [3+2] cycloaddition with TosMIC to synthesize
pyrrole derivatives. As early as in 1979, Saikachi and co-workers found that acetylene ester 133
(2 equiv each) and TosMIC 16 can produce 2,3,4-trisubstituted pyrrole compounds 134 in the presence
of DBU. The 1,2,3,4-tetrasubstituted pyrrole compounds 135 can be synthesized by another one-step
addition reaction (Scheme 42) [61].
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Scheme 42. Synthesis of 2,3,4-trisubstituted pyrrole derivatives 134 and 1,2,3,4-tetrasubstituted pyrrole
derivatives 135.

In 2006, Alizadeh et al. found that dialkyl acetylenedicarboxylates 136 react with TosMIC 16 in
the presence of Ph3P to form dialkyl 2-[(4-methylphenyl)sulfonyl]-1H-pyrrole-3,4-dicarboxylates 137.
In this reaction, the nucleophilic addition of Ph3P to the acetylenic esters further increases the reactivity
of the substrate as an electron-withdrawing group (Scheme 43) [62].
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Scheme 43. Synthesis of 2,3,4-trisubstituted pyrrole derivatives 137.

In 2011, the Adib group developed a protocol that is different with respect to the common
shortcomings such as long reaction time, low yield, expensive raw materials, and harsh reaction
conditions. A mixture of TosMIC 16, and a dialkyl acetylenedicarboxylate 138, in the presence of a
catalytic amount of 1-methylimidazole 139 undergoes a smooth addition reaction in anhydrous CH2Cl2
at room temperature to afford 2,3,4-trisubstituted pyrroles 140 in yields of 90–95% (Scheme 44) [63].
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Scheme 44. Synthesis of 2,3,4-trisubstituted pyrrole derivatives 140.

4. Conclusions

In summary, the Van Leusen [3+2] cycloaddition reaction based on TosMICs and electron-deficient
compounds is involved in the construction of pyrrole and its derivatives because of its advantages
such as simple and convenient synthesis substrate, diverse products, etc., and will play an increasingly
important role in the synthesis of bioactive pyrrole derivatives in the pharmaceutical synthesis.
In recent years, some research progress has been made, which provides new ideas for the synthesis
of polysubstituted pyrrole ring framework. In the future, there will be a focus on developing more
types and higher selectivity 2-carbon synthons in subsequent research to increase the expansion of
the reaction.
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