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Abstract: Polylactide (PLA) is one of the most widely used organic bio-degradable polymers.
However, it has poor flame retardancy characteristics. To address this disadvantage, we performed
melt-blending of PLA with intumescent flame retardants (IFRs; melamine phosphate and
pentaerythritol) in the presence of organically modified montmorillonite (OMMT), which resulted
in nanobiocomposites with excellent intumescent char formation and improved flame retardant
characteristics. Triphenyl benzyl phosphonium (OMMT-1)- and tributyl hexadecyl phosphonium
(OMMT-2)-modified MMTs were used in this study. Thermogravimetric analysis in combination
with Fourier transform infrared spectroscopy showed that these nanocomposites release a smaller
amount of toxic gases during thermal degradation than unmodified PLA. Melt-rheological behaviors
supported the conclusions drawn from the cone calorimeter data and char structure of the various
nanobiocomposites. Moreover, the characteristic of the surfactant used for the modification of
MMT played a crucial role in controlling the fire properties of the composites. For example,
the nanocomposite containing 5 wt.% OMMT-1 showed significantly improved fire properties with
a 47% and 68% decrease in peak heat and total heat release rates, respectively, as compared with
those of unmodified PLA. In summary, melt-blending of PLA, IFR, and OMMT has potential in the
development of high-performance PLA-based sustainable materials.

Keywords: polylactide nanocomposites; intumescent flame retardancy; synergistic effect

1. Introduction

Polylactide (PLA) is one of the most promising sustainable polymers, owing to its excellent
physical properties and mechanical capabilities, low cost, large production volume, and its
transparency [1,2]. Because of these characteristics, PLA can be used in numerous applications,
including paper coatings, fibers, films, foams, molded parts, and packaging [3-5]. However, some
inherent properties of PLA, such as its low thermal stability and high flammability, limit its expansion
into diverse applications, such as flexible electronics, constructions, and engineered plastic materials.
Efforts have been made to improve the flammability characteristic of PLA by the introduction of P-
and N-containing flame retardant components; nanomaterials such as montmorillonite (MMT) [6,7],
graphene oxide (GO) [8], zinc oxide (ZnO) [9], molybdenum sulphide (MoS;) nanosheets [10], and
layered double hydroxide (LDH) [11]; and various synergistic combinations [12-14].

MMT is a type of multilayer aluminosilicate smectite clay with inorganic nano-sized particulates
and widely used as a flame retardant (FR) for polymer nanocomposites because of its low cost,
abundance, and excellent FR performance [15,16]. The MMT mainly inhibits the release of toxicants,
heat, and smoke from the polymer composites during combustion [6]. However, compared with those
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of pristine MMTs, OMMTs show greatly improved FR properties. Pristine MMTs often exist in polymer
matrices at the micro scale because they are hydrophilic in nature and do not have thermodynamically
favorable interactions with the hydrophobic polymer matrices. Hence, the silicate platelets easily
agglomerate or separate in the polymer matrix and it is difficult to achieve the required properties
of the polymer nanocomposites (PNCs). To render MMTs compatible with hydrophobic polymer
matrices, one must convert the normally hydrophilic surface to a hydrophobic one (commonly known
as OMMTs), making the intercalation of polymer chains possible. Generally, this can be done by
ion-exchange reactions with cationic surfactants, which lower the surface energy of two-dimensional
silicate layers and improve the wetting characteristic of the polymer matrix, and result in a high silicate
interlayer spacing. Some OMMTs are effective when added to various polymers, and significantly
enhance the FR properties of the PNCs [17]. To pass a fire test, a polymer combined with OMMT must
also be combined with other types of FRs because MMT alone cannot improve the fire properties of
PNCs necessary for specific applications.

Melamine phosphate (MP), derived from the reaction between melamine (MEL) and phosphoric
acid, is typically used as an intumescent FR (IFR), alone or combined with pentaerythritol (PER) in
many applications, such as FR coatings and plastics. The typical IFR system comprises three types of
components: an acid source, a char forming agent, and a blowing agent [18]. MP provides two of these
three components, an acid and gas source, and MP can be an excellent FR for carbon sources containing
polymers [19]. Casetta et al. [20] studied the efficiency of IFR formulations with PLA, which contained
ammonium polyphosphate (APP), PER, lignin, and starch. The results showed that the FR activity of
the PLA composites was greatly improved with a high loading of 40 wt.%. Using a combination of
microencapsulated ammonium polyphosphate (m-APP) and lignin as the IFR, a PLA/IFR composite
was prepared, and it displayed excellent FR activity with a high loading of 23 wt.% [21]. Similarly,
another FR system, using a PLA matrix consisting of polyhedral oligomeric silsesquioxane/m-APP and
MMT/APP was studied [12,22]. The IFR contained a mixture of MP and PER used for polyolefins (such
as polypropylene, PP), and the obtained composite exhibited excellent FR activity. It was also reported
that the PP/MP composite system containing PER or its derivative compounds (DPER and TPER)
displayed efficient FR activity through the formation of highly compact intumescent char, resulting in
lower smoke and heat release rates, a high LOI value, and a UL-94 rating, compared with those of the
PP composite containing MP alone [23]. There are various factors that influence the char formation
mechanism during combustion, such as composition and ratios of IFR, their decomposition behavior,
and the characteristics of the polymer resins [24]. The advantage of these IFR compositions is that the
presence of PER inhibits the melamine sublimation and accelerates FR activity in the condensed phase
with improved char residue and strength. However, to the best of our knowledge, there is no report on
a PLA/IFR/clay composite system.

In this study, we used MP/PER as an IFR to inhibit melamine sublimation. We prepared PLA /IFR/
OMMT nanocomposites using two different types of OMMTs and different weight-percentage loadings.
The resulting nanocomposite FR activity, toxic gas evolution, and thermal stability were characterized
using thermogravimetric analyzer (TGA), cone calorimetry, and TGA hyphenated with Fourier
transform infrared spectroscopy (TG-FTIR). We also studied the char morphologies of the char residues
after cone calorimetry tests, and their FR behavior is thoroughly discussed.

2. Materials and Methods

2.1. Materials

PLA resin (7032D) with a specific gravity of 1.24 and an MFI (melt-flow index) of 13.81 g/10 min
(190 °C, load = 2.16 kg) was obtained from Nature Works LLC (Minnetonka, MN, USA). The pristine
sodium montmorillonite (MMT) used in this study is Cloisite®Na, purchased from Southern Clay
Products (Gonzales, TX, USA). According to the supplier the cation exchange capacity (CEC) value
of MMT is 92.6 meq/100 g of clay. Other chemicals, such melamine, phosphoric acid, triphenyl



Molecules 2018, 23, 2648 3o0f15

benzyl phosphonium chloride, tributyl hexadecyl phosphonium bromide, hydrochloric acid, silver
nitrate, and pentaerytritol (PER) (Figure 1A, molecular structure) were purchased from Sigma Aldrich
(Johannesburg, South Africa) and were used without further purification.
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Figure 1. Molecular structure of (A) pentaerytritol and (B) melamine phosphate.

2.2. Synthesis of Melamine Phosphate

Melamine phosphate was synthesized based on a method reported in literature [25]. First, 15 g of
melamine was dissolved in 200 mL of water and stirred for 1 h at 95 °C. Phosphoric acid (85 wt.%,
4 g) was dissolved in water separately, then this solution was slowly added to the reaction mixture,
left for 3 h with continuous stirring, and allowed to cool and crystalize. Next, we separated melamine
phosphate (MP) (Figure 1B, molecular structure) crystals by filtration and kept them in an oven at
100 °C for complete drying.

2.3. Surface Modification of MMT

The MMT was organically modified using two different types of phosphonium derivatives,
following previously reported methods [26-28]. Briefly, the procedure is as follows: the MMT (5 g)
was dispersed in water and stirred at 90 °C for 12 h to improve the silicate layer dispersion. Next,
the required quantity (6 mmol) of triphenyl benzyl phosphonium chloride surfactant was dissolved in
water separately and then slowly added to the MMT mixture, followed by continuous stirring for 24 h
to achieve complete intercalation of triphenyl benzyl phosphonium cations into the clay galleries. Then,
the mixture was washed with water and ethanol until the chorine anions were absent in the filtrate
in a chorine test with AgNO3 solution, and the resultant triphenyl benzyl phosphonium modified
MMT was kept in oven at 100 °C for complete drying to prepare the nanocomposites. This triphenyl
benzyl phosphonium modified MMT was designated as OMMT-1. To remove bromine from tributyl
hexadecyl phosphonium bromide, after completely dissolving in water, we added HCl and stirred
for 1 h to complete the exchange of bromine ions with chlorine ions, because of the low ion exchange
capacity of bromine compared with that of chlorine, as shown in Scheme 1. Then, the above procedure
was followed to prepare tributyl hexadecyl phosphonium-modified MMT and the modified MMT was
designated as OMMT-2.

2.4. Nanocomposite Processing

A co-rotating twin-screw extruder with L/D of 40 (Process 11, Thermo Scientific, Waltham,
MA., USA) was used for nanocomposite processing. A screw speed of 200 rpm was used and the
temperature profile for extruder was 160, 170, 190, 190, 190, and 170 °C, and that for the die was
190 °C. To avoid thermal degradation of the PLA matrix, there was a constant flow nitrogen gas in
extruder. The extruded samples were collected via a water bath, pelletized, and then dried at 100 °C
for overnight in a fan oven. Table 1 summarizes the composition and abbreviation of various samples
used in this study. Finally, dried nanocomposite pellets were compression molded at 190 °C to prepare
samples for various characterizations.
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Scheme 1. Molecular structure of triphenyl benzyl phosphonium chloride and tributyl hexadecyl
phosphonium bromide surfactants and the preparation of organically-modified montmorillonite from
Na-montmorillonite. Drawings are not based on proper scale.

Table 1. Compositions and abbreviations of various samples used in this study.

Sample Name Composition PLA IFR (MP:PER/1:1) Pristine Clay OMMT-1 OMMT-2
PLA-0 PLA 100 - - - -
PLA-1 PLA/IFR 86 14 - - -
PLA-2 PLA/IFR/MMT 86 9 5% - -
PLA-3 PLA/IFR/OMMT-1 86 13 - 1% -
PLA-4 PLA/IFR/OMMT-1 86 11 - 3% -
PLA-5 PLA/IFR/OMMT-1 86 9 - 5% -
PLA-6 PLA/IFR/OMMT-2 86 13 - - 1%
PLA-7 PLA/IFR/OMMT-2 86 11 - - 3%
PLA-8 PLA/IFR/OMMT-2 86 9 - - 5%

2.5. Characterization

Small-angle X-ray scattering (SAXS) experiments were performed using a line-collimated SAXSess
system (Anton Paar, Graz, Austria) operated at 40 kV and 50 mA; Cu K, radiation with a wavelength
of 0.1542 nm (PAN analytical X-ray source, Eindhoven, The Netherlands) was used. A sample
holder (paste-cell) for powder samples was used to examine MMT and OMMTs. A transmission
electron microscopy (TEM) instrument, JEOL JEM 2100 HRTEM (JEOL, Tokyo, Japan) operating
at 200 kV, was used to evaluate the morphology of nanocomposite microtome samples using a
carbon-coated grid. Images were captured using a TEM camera (Ultrascan, Gatan, Pleasanton, CA,
USA) and Digital Micrograph software (Gatan, Pleasanton, CA, USA). TGA analysis was performed
using a TA instrument (model TGA Q500, New Castle, DE, USA) from 30 to 800 °C with heating
rate of 20 °C/min under a nitrogen and oxygen gas atmosphere. After a cone calorimetry test,
the microstructure of the char residues was recorded using Scanning Electron Microscopy (SEM,
AURIGA Crossbeam workstation from Carl Zeiss, Germany) operated at 3 kV. To identify the
degradable volatile components of the neat PLA and PLA/OMMT nanocomposites, TGA-FTIR was
carried out using a PerkinElmer Pyris 1 TGA connected to a Nicolet IS50 Spectrometer (PerkinElmer,
Waltham, MA, USA) with a temperature range of 50 to 800 °C and a heating rate of 20 °C/min
under a nitrogen atmosphere. About 20 mg of each sample was tested. The fire performance of
all the PLA/IFR/OMMT nanocomposite samples and PLA were evaluated by iCone Calorimetry
(Fire Testing Technology, East Grin stead, UK according to ISO 5660). Calorimetry test samples with
the dimensions of 100 mm x 100 mm x 3 mm were prepared; the samples were wrapped in aluminum
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foil, leaving the top surface open, and were exposed to radiant cone heating with a 25 kW/m? heat
flux. Melt-rheological analysis was performed using a Physica MCR 501 Rheometer (Anton Paar, Graz,
Austria) equipped with 25 mm parallel plates. Time sweep tests were carried out under a normal
atmosphere and strain amplitude of 0.5% (linear region) within a 20 min period at 190 °C.

3. Results and Discussion

3.1. Structural and Morphological Analysis

SAXS patterns can generally be used for structural analysis of PNCs, including mode of dispersion
(intercalation or exfoliation) of the silicate layers in the polymer matrix. The scattering patterns of MMT
(Na*-MMT), two OMMTs, and PLA /IFR/OMMT nanocomposites with different weight percentages
of IFR and OMMT loadings are shown in Figure 2. The peak at g = 5.35 nm ™! (doo1) = 1.17 nm)
corresponds to Na*™-MMT, and after surface modification with different phosphonium derivatives,
OMMT-1 and OMMT-2, the peak shifts to lower angles, g = 3.39 nm ! (d(o1) = 1.85 nm) and 3.24 nm !
(d(oo1y = 1.94 nm), respectively, as shown in Figure 2A. This indicates that intercalation of phosphonium
compounds into the clay galleries occurs, resulting in an increase in the d(yg)-spacing, which is in
good agreement with previous reports [27,29]. After addition of the OMMT-1 with varying the weight
percentages to the PLA, significant changes in the PLA /IFR/OMMT-1 composites were observed in the
lower scattering vector region with increasing OMMT-1 concentration, which indicates a formation of
highly intercalated nanocomposite structure, as shown in Figure 2B. For the nanocomposites containing
1 and 3 wt.% of OMMT-1 (samples PLA-3 and PLA-4, respectively), the characteristic OMMT-1 peak
shifted to a lower scattering vector, g = 3.23 (d(gg1) = 1.94 nm) and 3.08 (d(go1) = 2.04 nm), respectively,
which may be due to further intercalation of the PLA chains in the two-dimensional silicate galleries.
In the nanocomposite containing 5 wt.% OMMT-1 (PLA-5), the characteristic peak of OMMT-1 was
significantly shifted to lower side with a broader peak, appeared at g = 2.10 nm™! (d(oo1) = 2.99 nm).
Such a result indicates high-level of intercalation occurred in presence of MP and PLA chains enter
into the silicate layers. On the other hand, Figure 2C illustrates scattering patterns for different weight
percentages of OMMT-2 containing PLA composites (PLA-6 to PLA-8). In all these nanocomposites,
an intercalated nanocomposite structure was observed and in peak not much shifted lower side as
compared to earlier.
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Figure 2. XRD patterns of PLA and different surface-modified OMMT-containing PLA nanocomposites
with different weight percentages. (A) OMMTs, (B) PLA /IFR/OMMT-1 nanocomposites, and (C) PLA/
IFR/OMMT-2 nanocomposites.

The TEM images of the representative nanocomposites PLA-5 and PLA-8 are shown in Figure 3 at
two different magnifications. The images show dark strips in some regions, either related to MMT and
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IFR agglomeration or partially exposed surfaces of intercalated silicate layers, and the thick, light dark
lines indicate some degree agglomeration of intercalated silicate layers in the PLA matrix. Moreover,
TEM images show that agglomerated and intercalated silicate layers are well distributed in the PLA
matrix and the disordered nature of intercalation, which agrees with the presence of lower angle (001)
characteristic peaks in the scattering patterns of PLA-5 and PLA-8.

Figure 3. TEM images of PLA/clay nanocomposites. (A) PLA-3, (B) PLA-5, (C) PLA-6, and (D) PLA-8.

The different dispersion characteristics of PLA-5 and PLA-8 nanocomposites can be explained on
the basis of flow behavior during processing. Detailed melt-state flow behavior of various samples
can be found in Section 3.5. It can be seen that the transient viscosity of PLA-8 at 190 °C is higher
than that of PLA-5 and remains constant throughout the experiment. However, in the case of PLA-5,
the viscosity increases with time. Such increase in viscosity results in increase shear-stress during
processing, which facilitates the peeling of silicate layers from the clay-stacks as shown in PLA-3
(Figure 3A) and PLA-5 (Figure 3B). On the other hand, initial higher viscosity, and hence the stress,
breaks down clay-stacks into small clay-stacks which hinders the peeling mechanism. For this reason,
a large number of small intercalated clay-stacks observed in the TEM image of PLA-6 (Figure 3C) and
PLA-8 (Figure 3D).

3.2. Thermal Degradation Characteristic

The thermal degradation characteristic of the nanocomposites was studied using TGA and the
relevant thermal degradation data includes T4eg, defined as the temperature at which degradation
started, Trmax, defined as the temperature at which maximum weight loss occurred, and the percentage
of char residue present at 800 °C in different environmental conditions, such as under an air and
nitrogen atmosphere. The TGA plots of neat PLA and various nanocomposite samples are shown in
Figure 4 and the characteristic data calculated from various TGA thermograms are summarized in
Table 2. With the addition of IFR and IFR/OMMT to the PLA, the initial degradation temperature
gradually decreased from PLA to PLA/IFR and then to PLA/IFR/OMMT nanocomposites due to the
presence of IFR and IFR/OMMT, which accelerate the polymer degradation to fast char formation
that acts as thermal insulation at high temperatures to protect the underlying polymer from further
degradation and improve the char residue. However, the combination of IFR with OMMT further
increased the char residue because of the high phosphorous content. In this thermal degradation,
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first MP started to decompose and release melamine pyrophosphate and polyphosphates, which further
condensed the polymer chains to form char [30]. In addition, the OMMT-1-containing nanocomposites,
PLA-4 and PLA-5, improved the char residue, compared with that containing OMMT-2, PLA-7
and PLA-8, because aromatic phosphonium compounds are more resistant to thermal degradation
than aliphatic phosphonium compounds. Overall, it was observed that in both the nitrogen and air
atmospheres, the thermal degradation phenomenon were similar (Figure 4A,C). However, compared
with those of the N, atmosphere, the air atmosphere improved the early polymer degradation and
largely increased the char residue from PLA to IFR/OMMT-1 containing PLA nanocomposites.
The relevant values are included in Table 2. Because of the catalytic activity of the MMT during
thermal degradation in the presence of oxygen, the surfactant triphenyl phosphonium oxidizes
to form a stable triphenyl phosphine and phosphite oxide, which may create a protective barrier
on the surface of the polymer to delay the polymer degradation, even at high temperatures [31].
Also, it clearly indicates that PLA-5 produced a high char residue of about 18.5% at 800 °C. Owing
to possible synergistic effects, it has strong thermal oxidative behavior even at high temperatures.
Figure 4B,D shows the TGA derivative plots of nanocomposites and the addition of IFR, pristine MMT,
and OMMTs to the PLA. The degradation behavior obviously changed from high peak intensity to
low peak intensity. With increasing loading of IFR/OMMT to the PLA, the Tmax and amax values
were slightly decreased. The decreasing value of amax with decreasing peak intensity indicates that
the presence of IFR/OMMT promoted the PLA degradation at lower temperatures to form thermally
insulating char faster, which can prevent further polymer degradation. Therefore, the peak intensity
of PLA-5 was lower than that of PLA-8. Also, PLA-8 contained a broad degradation peak, clearly
visible in Figure 4B,D, indicating higher degradation. Moreover, the residual char yields at 800 °C for
PLA-5 and PLA-8 were much higher than the PLA-0, as shown in Table 2. All these results suggest that
rearrangement reactions occur in between the MMT surface modified by surfactants and IFR, or some
decomposed components of PLA, to improve the char residue and char strength, which provide
thermal insulation and postpone the material degradation until higher temperatures.
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Figure 4. TGA and derivative plots of PLA /Clay nanocomposites with different surface-modified clays
and compositions. (A,B) under nitrogen atmosphere and (C,D) under air atmosphere.
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Table 2. Characteristic thermal stability date for PLA and various nanocomposites calculated from

TGA thermograms.
N, Atmosphere O, Atmosphere
Samples Tyeg Tmax  Char at 800 Cmax Tyeg TMax Char at 800 Cmax
°O (°O °C (%) (%/°C) °O °O °C (%) (%/°C)

PLA-0 301.7 380.5 0.5 3.0 304.7 378.7 1.7 2.6
PLA-1 195.7 401.2 43 1.6 192.3 395.7 45 1.8
PLA-2 190.7 395.0 5.8 1.8 196.5 398.9 24 1.9
PLA-4 1924 392.7 8.6 1.2 1944 389.9 11.2 1.8
PLA-5 191.5 387.5 9.9 1.0 193.5 381.5 18.2 1.0
PLA-7 194.7 383.6 7.1 1.8 191.3 378.5 2.6 2.1
PLA-8 193.5 371.4 10.4 1.0,0.0 190.8 379.8 6.0 1.0,0.8

PLA-0, neat PLA; PLA-1, PLA/IFR blend; PLA-2, PLA/IFR/MMT composite; PLA-4, PLA/IFR/OMMT-1
(3 wt.%) nanocomposite; PLA-5, PLA/IFR/OMMT-1 (5 wt.%) nanocomposite; PLA-7, PLA /IFR/OMMT-2 (3 wt.%)
nanocomposite; PLA-8, PLA/IFR/OMMT-2 (5 wt.%) nanocomposite.

3.3. Volatile Gaseous Products of PLA Nanocomposites Analyzed by TG-FTIR

In this work, TG-FTIR was employed to investigate the effect of two OMMTs combined with IFR
on the evolution of volatile gaseous components from PLA and PLA /IFR/OMMT nanocomposites
during thermal degradation. The FT-IR spectra of the point of maximum weight loss are presented in
Figure 5. The spectra indicate that the typical degradation process of pure PLA is almost the same
as the PLA nanocomposites, except for small changes in the peak intensities of CO, CO,, and other
peaks. However, during thermal degradation, some gaseous compounds were identified based on
their characteristic absorption bands. The main components were CO; (2360 cm™ 1), CO (2136 cm™1),
water (3400-3800 cm 1), NH; (3338, 1628, 968, and 931 cm 1), aromatic compounds (3042, 1618,
1508, and 698 cm 1), and phosphorous compounds (1282, 1086, and 872 cm~1) [32,33]. Additionally,
to understand the changes in the evolved volume of gaseous products during heating of the PLA and
PLA nanocomposites, specific components were selected and analyzed.

Absorbance

1000 2000 3000 4000
Wavenumber (cm -1 )

Figure 5. FT-IR spectra of pyrolysis products of PLA and PLA/clay nanocomposites with different
surface-modified clay contents at maximum decomposition stage.

The Grams-Schmidt curves are reported in Figure 6A, showing the absorbance of the pyrolysis
products with temperature. The absorption intensity of the pyrolysis products decreased from PLA to
PLA nanocomposites due to the presence of OMMT improving the char strength and barrier properties.
The absorbance vs temperature plots for released CO, CO,, and carbonyl compounds individually
are shown in Figure 6B-D. For all the PLA /IFR/OMMT nanocomposites, the absorbance intensity
of the released pyrolysis components was less than that of the unmodified PLA. In the presence
of IFR/OMMT, acceleration of the polymer degradation to the formation of a strong char structure
occurs, which can prevent further polymer degradation and evolution of combustible components.
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The maximum inhibition in pyrolytic volatile components, such as hydrocarbons, carbonyl compounds,
and pyrolytic gases, reduces the heat release rate (HRR), total HRR (THRR), and toxic smoke. Because
the volatile hydrocarbons are easily condensed and aggregate as smoke particles, a more dense smoke
forms [34]. The addition of modified IFR/OMMT to the PLA subsequently decreased the volume of
the released combustible gases and the weight loss, which agrees with the thermal analysis presented
in the previous section. It was also observed that the presence of OMMT forms char, which can inhibit
the evolution of combustible gases and toxicants. Therefore, the absorption intensities of the gaseous
products from PLA-5 and PLA-8 are much less than that of PLA-0, PLA-1, and PLA-2. Moreover,
evolution of gases is strongly inhibited in the OMMT-1-containing nanocomposite (PLA-5), because the
presence of aromatic phosphonium compounds allows the formation of a strong graphitic crosslinked
char structure at high temperatures.

0 5 10 15 20 25 30 35 4 10 20 30 40
Time (min) Time (min)

(©) ——PLAO

10 20 30 40
Time (min)

Figure 6. Absorbance of pyrolysis products at complete decomposition stage for PLA and PLA-clay
nanocomposites. (A) Gram-Schmidt curves, (B) carbonyl compounds, (C) CO,, and (D) CO.

3.4. Cone Calorimetry Analysis

The FR properties of PLA nanocomposites with two different surface-modified MMTs combined
with IFR were studied by using cone colorimetry. The obtained results are shown in Figure 7, and the
detailed data are summarized in Table 3. The data indicate that PLA-0 burns vigorously after ignition.
The pHRR (peak heat release rate) and THRR (total heat release rate) values are 253.7 kW-m~2 and
37.2 MJ-m 2, respectively. After addition of IFR to the PLA, the values of TTI decreased due to
pyrophosphate produced from MP during degradation, which behaves as an efficient catalyst for PLA
degradation, causing it to burn quickly under heat flux. However, for the combination of modified
MMT and MP-PER to the PLA, the values of TTI (time-to-ignition) further decreased because the MMT
also acts as a catalyst in the polymer degradation. Subsequently, the polymer burns in early stage to
forms char. The flammability properties mainly depend on the char strength [35,36].
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Figure 7. Cone colorimetry test plots of PLA/clay nanocomposites. (A) HRR, (B) THRR, (C) TSR,
and (D) MLR plots.
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Table 3. Cone colorimetry data of neat PLA and various nanocomposites.

Samples pHRR TTI tPHRR THR FGI FPI TSR TSP Residue
(kW-m~2) (s) (s) (MJ-m~2) (kW/(m?-s) (m2.s/kW)  (m2/m?) (m?) (wt.%)
PLA-0 253.7 92.7 142.2 37.2 1.8 0.4 295.9 37.3 1.3
PLA-1 216.7 88.6 126.9 31.9 1.7 0.4 204.9 31.9 11.2
PLA-2 205.5 72.5 139.1 31.1 1.5 0.4 118.2 31.2 16.2
PLA-3 161.2 75.9 121.9 28.1 1.3 0.5 24.1 27.0 11.2
PLA-4 154.2 76.7 118.2 26.9 1.3 0.5 21.1 26.5 16.8
PLA-5 120.6 73.2 109.5 25.6 1.1 0.6 09.4 214 229
PLA-6 181.7 77.0 115.6 26.5 1.6 0.4 125.6 29.8 09.8
PLA-7 164.1 70.9 84.1 259 1.9 0.4 98.3 25.1 13.8
PLA-8 163.4 69.9 89.4 24.0 1.8 0.4 102.4 27.5 15.3

PHRR, peak heat release rate; TTI, time-to-ignition; HRR, heat release rate; THR, total heat release; TSR, total smoke
release; MLR, mass loss rate. (FGI = pHRR/tPHRR and FPI = TTI/pHRR).

The surface-modified MMT contains phosphonium derivatives which migrate to the polymer
surface while burning and form phosphate ester crosslinked compounds with degraded PLA
components. The presence of phosphorous improves the char strength and residues. Therefore,
the pHRR and THR values of PLA-5 and PLA-8 are significantly lower than PLA-0. Moreover,
the OMMT-1-containing PLA nanocomposites exhibited lower pHRR and THR values compared with
those of OMMT-2 containing PLA nanocomposites. From Table 3, PLA-5 exhibits the lowest pHRR
and THR values of 120.6 kW-m~2 and 25.6 M]-m 2, respectively, due to highly dense char formation.

The fire growth index (FGI) and fire propagation index (FPI) are two important factors during
the analysis of fire hazards [37]. The calculated FPI values are included in Table 3, which balance the
fire risk between ignition and fire growth. The value of FPI for PLA-0 was, 0.4 m?-s/kW, representing
the highest fire risk. The FPI for PLA-5 was 0.6 m?2-s/kW, hence the fire risk was lower than PLA-0.
Similarly, the FGI value indicates the flame spread rate, which decreased from 1.8 kW/ (m?-s) for
PLA-0 to 1.1 kW/(m?-s) for PLA-5. However, for PLA-7 and PLA-8, the FGI values slightly increased
to 1.9 kW/(m?-s) and 1.8 kW/(m?-s), respectively. These FGI values increased because of the presence
of unstable char formed during combustion. To completely reduce the fire hazard, the smoke release
must also be reduced. Figure 7C shows the total smoke release (TSR) curves of PLA /IFR/OMMT
nanocomposites. It shows that the smoke released from the OMMT containing PLA nanocomposites
was strongly inhibited compared with that from unmodified PLA. As shown in Table 3, the TSR
and TSP values increased from the OMMT-1-containing nanocomposites to OMMT-2-containing
nanocomposites. The likely reason is that cracks in char structure caused incomplete combustion of
materials. With incomplete combustion, volatile compounds emerge and condense to form smoke,
resulting in increased smoke production. It can be concluded that introduction of OMMT-1 to
the PLA improves the char strength and compactness during polymer burning compared with
that of OMMT-2, and aromatic phosphonium derivatives on the surface-modified MMT strongly
influence the fire performance of polymers due to the formation of highly crosslinked char. Also,
it can be seen from Table 3 that, after the cone calorimetry test, there is no char residue left for
PLA-0 (more can be found in Section 3.6). However, in the nanocomposites, the amount of char
residues significantly increased to 1.3%, 11.2%, 22.9%, and 15.3% for PLA-0, PLA-1, PLA-5 and PLA-S,
respectively. Plots are shown in Figure 7D, which agree with the TGA results. This indicates that with
OMMTs containing PLA composites, the presence of phosphorous causes the char to become stronger
and highly compact, protecting the substrate from further degradation and improving the char residue.
Moreover, the presence of aromatic surface-modified MMT containing PLA nanocomposites showed
high intumescent char and more compactness because of the formation of a graphitic crosslinked char
structure, subsequently showing strong FR activity.

3.5. Analysis of Crosslinked Behavior of PLA Nanocomposites

Figure 8 shows plots of the storage modulus (G') of the PLA nanocomposites as a function of time.
To understand the structural alterations with time during degradation, a constant melt temperature
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190 °C was used. The time-evolution of the moduli at a 1 rad/s frequency and 190 °C was studied. Itis
well established that the elastic modulus is more sensitive to change in molecular architecture [38].
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Figure 8. Time-dependence storage modulus (G’) neat PLA and various sweep test plots of FR
PLA/clay nanocomposite samples measured at 190 °C.

During thermal degradation, the IFR tend to undergo cross-linking with PLA, which is clearly
supported by the slight upturn in the PLA-1 curtain intervals in the viscoelastic behavior, as shown in
Figure 8. The PLA and IFR may have undergone a post-condensation reaction during the constant
shear rate and temperature. Further, Filippone et al. [39] reported that the oxidation of polyethylene
terephthalate during time evolution exhibit both chain scission and cross-linking. Further, cross
linking reactions dominate the early stage of the tests, resulting in a change of molecular structure
due to the increase in the degree of cross-linking. Thus, samples exhibit a rapid growth in viscoelastic
behavior. This increase in viscoelastic behavior influences the modulus of the polymer, resulting
in an improvement of G'. For shorter times (t < 500 s), cross-linking is dominated by the chain
scissoring reaction. However, the growth rate near gel formation (t ~1000 s) increases rapidly, indicating
the cross-linking reaction. For nanocomposites of PLA containing IFR and OMMT (OMMT-1 and
OMMT-2), only PLA-5 exhibited a crosslinking pattern, whereas the other samples showed a decrease
in modulus with time, indicating absence of cross-linking of PLA. In the presence of strong interactions
between the OMMT-1 and MP, more crosslinking occurs, which causes the viscoelastic parameters
to continuously increase with time. Another reason may be possible synergistic effects between the
OMMT-1 (right amount in the case of PLA-5) and MP, resulting in such unique behavior. Therefore,
PLA-5 exhibited superior IFR activity than the other nanocomposites, with the formation of highly
compact crosslinked char residue.

3.6. Char Residue Analysis of PLA Nanocomposites

The char morphologies of PLA and two different OMMTs containing PLA nanocomposites are
shown in Figure 9. All these residual char images revealed that the flame was extinguished by the
formation of intumescent char, and all the associated aspects are summarized in Table 3. PLA-0
completely burns and there is no char residue remaining, as shown in Figure 9A,D. However, the
addition of OMMT to the PLA greatly improved the flammability with increasing intumescent char
residues, as shown in Figure 9B,CE,F. The char residues obtained from PLA-5 were highly intumescent
compact char because less non-combustible gas escaped, resulting in greater height and strength of the
char, as shown in Figure 9B,E. As we explained using SAXS and TEM analyses, in PLA-5, a greater
degree of delamination of silicate layers occurs during the melt-blending process. We also believe that
at this specific composition, there may be strong interactions between the OMMT-1 and MP. Hence,
while burning with the clay, the high phosphorous containing compounds migrate to the polymer
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surface and enrich the char residue and char strength. Forming a continuous, highly compact char
layer on the substrate results in the excellent FR activity of the PLA-5 nanocomposite system. Another
explanation is a possible synergetic effect at this specific composition, because such an improvement
in char residue was not observed in the other compositions, PLA-3 and PLA-4. Porous or loose char
residues were obtained from PLA-8, as shown in Figure 9C,F, and it is clearly visible that there was less
expansion and a lower height of the char. Voids and cracks in the char layer were observed, and the char
was not strong enough to inhibit the evolution of volatile components. Therefore OMMT-1-containing
PLA composites exhibited better FR activity than OMMT-2-containing PLA composites.

Figure 9. Digital photographs of burning char residues after cone calorimetry test PLA-0 (A,D), PLA-5
(B,E), and PLA-8 (C,F). 1st row for top view and 2nd row for side view.

The SEM images of the residual char of PLA-0, PLA-5, and PLA-8 are shown in Figure 10.
Figure 10A clearly shows that pieces of char layers are present. During combustion, a broken
char layer and inferior char quality cannot form an effective intumescent char layer to prevent the
underlying material from further degradation. Hence, serious melt drippings form and there is no
char residue in the case of PLA-0. During combustion, the first stage of MP decomposition releases
non-combustible components like NH3 and water along phosphoric acid, which can further dehydrate
the polymer chains to form char as we observed in the case of nanocomposite samples. In the OMMT-1,
phosphonium derivatives are formed from the surfactant during combustion at high temperatures,
creating the possibility for the formation of aryl phosphine, phosphite oxides, and graphitic crosslinked
char, resulting in highly compact and strong char, which inhibits the volatile components and toxic
gases. The char morphology of PLA-5 is shown in Figure 10B, and it clearly exhibits a highly compact
and strong char layer with bubbles, due to the release of pyrolytic components and ammonia gases
accumulating inside. These chars can prevent further degradation and melt drippings. Therefore,
PLA-5 displayed high FR activity with decreased HRR, THRR, and TSR. The residual char morphology
of PLA-8 is shown in Figure 10C. It clearly shows thin char with some cracks and holes. The presence
of aliphatic phosphorous compounds and it cannot form the graphitic strong char, hence prevent the
formation of graphitic char and the char is unstable. Because of these cracks and holes in the char,
volatiles easily escaped. Overall, this indicates that the presence of aromatic phosphorous derivatives
contributes to the FR activity, forming a highly compact and graphitic char layer at high temperatures.

Based on the above analyses from TGA, SAXS, rheology, and SEM images of obtained
residual chars after cone calorimetric test, it can be found that there is a strong synergetic effect
between OMMT-1 and MP. During combustion along with MMT platelets, MP also migrates to the
polymer surface, resulting in high crosslinking which can improve the viscoelastic properties of the
nanocomposite. Therefore, in the case of PLA-5, a strong synergistic effect is responsible for superior
FR activity which is schematically presented in Figure 11.
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Figure 11. Schematic model to explain synergetic charring formation. Drawings are not to scale.

4. Conclusions

A series of FR PLA composites were developed by a melt-extrusion process from an IFR
(MP/PER), pristine MMT, and various surface-modified MMTs in the PLA matrix for comparative
analysis. The introduction of surface-modified MMTs along with IFR led to remarkable improvements
in the charring of PLA nanocomposites, as revealed by TGA and Cone Calorimetry analyses.
OMMT-1-containing PLA nanocomposites exhibited a clay composite structure with a lower percentage
of intercalation and higher percentage of delaminated nanocomposites. OMMT-2-containing PLA
nanocomposites showed an intercalated nanocomposite structure at all weight percentages. At 5%
OMMT-1, the nanocomposite exhibited high FR activity, with low pHRR, THR, TSP, and TSR, because
at this specific composition, there might be a possible synergistic effect between MP and OMMT-1.
Strong intumescent FR activity with highly compact crosslinked char formation was observed.
From absorption curves, it was found that all the modified MMTs containing PLA nanocomposites
strongly inhibited toxicant evolution compared with that from pristine clay composites and IFR
composites. OMMT-1 strongly inhibited the evolution of all the pyrolytic components. In the presence
of phosphorous, the formed char was stronger, strongly inhibited combustible and toxic gas evolution,
and exhibited strong FR activity. In summary, it was found that the presence of surface-modified
MMTs with aromatic compounds exhibited strong FR activity due to highly cross-linked char structure
formation. However, further study is needed to understand the synergistic effect between MP and
OMMT-1 in the case of the PLA-5 sample.
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