Synthesis of new triarylpyrazole derivatives possessing

terminal sulfonamide moiety and their inhibitory effects on

PGE_{2} and nitric oxide productions in LPS-induced RAW

264.7 macrophages

Mohammed S. Abdel-Maksoud ${ }^{1}$, Mohammed I. El-Gamal ${ }^{2,3,4}$, Mahmoud M. Gamal El-Din ${ }^{1}$, Yunji Choi ${ }^{5}$, Jungseung Choi ${ }^{5}$, Ji-Sun Shin ${ }^{6,7}$, Shin-Young Kang ${ }^{6,7}$, Kyung Ho Yoo ${ }^{8}$, Kyung-Tae Lee ${ }^{6,7}$, Daejin Baek ${ }^{5 *}$, and Chang-Hyun Oh ${ }^{9,10^{*}}$
${ }^{1}$ Medicinal \& Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), Dokki, Giza, 12622, Egypt• E-mail: ph ss@hotmail.com
${ }^{2}$ Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates E-mail: drmelgamal2002@gmail.com
${ }^{3}$ Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates.
${ }^{4}$ Department of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt.
${ }^{5}$ Department of Chemistry, Hanseo University, Seosan, Republic of Korea.E-mail: djbaek@hanseo.ac.kr
${ }^{6}$ Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
${ }^{7}$ Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
${ }^{8}$ Chemical Kinomics Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea.
${ }^{9}$ Center for Biomaterials, Korea Institute of Science and Technology (KIST), Cheongryang, Seoul 130-650, Republic of Korea.
${ }^{10}$ Department of Biomolecular Science, University of Science and Technology (UST), Daejeon, Yuseong-gu, 34113, Republic of Korea
* Correspondence: Dr. Chang-Hyun Oh, Center for Biomaterials, Korea Institute of Science and Technology, PO Box 131, Cheongryang, Seoul 130-650, Republic of Korea.
E-mail: choh@kist.re.kr
Dr. Daejin Baek, Department of Chemistry, Hanseo University, Seosan 356-706, Republic of Korea.
E-mail: djbaek@hanseo.ac.kr Fax: +82-41-660-1119.
Received: date; Accepted: date; Published: date

Table of contents

Title page	1 s
Table of contents	2 s
Experimental	$3 \mathrm{~s}-5 \mathrm{~s}$
Representative NMR charts	$6 \mathrm{~s}-68 \mathrm{~s}$

Experimental

Synthesis of methyl benzoate

A solution of 3-methoxybenzoic ($304 \mathrm{mg}, 2.0 \mathrm{mmol}$) in methanol (5 ml) were heated under reflux until the acid was completely dissolved in methanol then few drops of concentrated sulphuric acid was added to the mixture and refluxed for 8 hr . The resulting mixture was cooled to room temperature, diluted with water and a saturated solution of sodium bicarbonate was added to the mixture to neutralize the benzoic acid, extracted with ethyl acetate, dried and evaporated to get the required ester ($300 \mathrm{mg}, 90.3 \%$) as yellow liquid; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.15(\mathrm{dd}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.49(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.37(\mathrm{t}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}$, Ar-H), 3.85 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$ ester), $3.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.8$, $132.8,130.1,129.5,128.2(\mathrm{Ar}-\mathrm{C}), 55.2\left(\mathrm{OCH}_{3}\right), 51.8\left(\mathrm{OCH}_{3}\right.$ ester $)$.

Synthesis of 2-(2-bromopyridin-4-yl)-1-(3-methoxyphenyl)ethan-1-one

To a solution of methyl benzoate ($775 \mathrm{mg}, 5.0 \mathrm{mmol}$) and 2-bromo-4-picoline $(0.5 \mathrm{~mL}, 5.6$ mmol) in anhydrous THF (5 mL) in a cooled bath at $-25^{\circ} \mathrm{C}$, LiHMDS ($3.7 \mathrm{~mL}, 1.0 \mathrm{M}$ solution in THF, 19.9 mmol) was slowly added to maintain the temperature at $-25^{\circ} \mathrm{C}$. The resulting mixture was stirred overnight at room temperature. The mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. Ethyl acetate was added and the organic layer was separated. The aqueous layer was extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$). The combined organic layer extracts were washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic solvent was evaporated under reduced pressure and the residue was purified by flash column chromatography (silica gel, hexane ethyl acetate $12: 1 \mathrm{v} / \mathrm{v}$ then switching to hexane-ethyl acetate $10: 1 \mathrm{v} / \mathrm{v}$) to yield 2-(2-Bromopyridin-4-yl)-1-(3-methoxyphenyl) ethan-1-one (17) (1.0 g, 69.9 \%) as light yellow solid; m.p.85-88 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$

NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.29(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.52(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, 7.56-7.48 (m, 1H, Ar-H), $7.40(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.15(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.25\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.0(\mathrm{C}=\mathrm{O}), 150.0,146.5,137.3,129.9$, 129.2, 124.2, 121.0, 120.2, $112.8(\mathrm{Ar}-\mathrm{C}), 55.5\left(\mathrm{OCH}_{3}\right), 44.0\left(\mathrm{CH}_{2}\right) . \mathrm{LC}-\mathrm{MS}(\mathrm{m} / \mathrm{z})$ calculated for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{BrNO}_{2}: 306.16$ found $307.20(\mathrm{M}+1)^{+}$.

Synthesis of 2-bromo-4-(3-(3-methoxyphenyl)-1-phenyl-1H-pyrazol-4-yl)pyridine

A solution of (1.16 g, 3.8 mmol) of 2-(2-bromopyridin-4-yl)-1-(3-methoxyphenyl)ethan-1-one in DMF-DMA ($5.14 \mathrm{~mL}, 38.2 \mathrm{mmol}$) was refluxed for 18 h . The solution was cooled down and concentrated under reduced pressure. The residue was dissolved in 5 mL of anhydrous ethanol. Phenyl hydrazine ($0.394 \mathrm{~mL}, 4 \mathrm{mmol}$) was added to the ethanolic solution and the mixture was stirred overnight at room temperature. Water (5 mL) was added to the reaction mixture and the organics were extracted with ethyl acetate ($3 \times 15 \mathrm{~mL}$). The combined organic layer extracts were washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the organic solvent, the residue was purified by column chromatography (silica gel, hexane-ethyl acetate $100: 1 \mathrm{v} / \mathrm{v}$) to yield the title compound 2-bromo-4-(3-(3-methoxyphenyl)-1-phenyl-1 H -pyrazol-4yl)pyridine ($729 \mathrm{mg}, 48 \%$) yellow solid ; $\mathrm{mp} 96-98^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{Cm}^{-1}\right): 3078,2964,1593$, 1262; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.16(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.98(\mathrm{~s}, 1 \mathrm{H}$, ar-H$), 7.38-$ $7.37(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.31-7.23(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.00(\mathrm{dd}, J=5.2, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.94-6.91$ $(\mathrm{m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.77-6.75(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.68-6.66(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 3.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.9,150.0,143.6,142.6,140.7,139.3,130.3,128.9,127.9,125.7$, 125.1, 122.5, 120.9, 118.3, 115.5, 115.2 (Ar-C), $55.3\left(\mathrm{OCH}_{3}\right) ; \mathrm{LC}-\mathrm{MS}(\mathrm{m} / \mathrm{z})$ calculated for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{BrN}_{3} \mathrm{O}(\mathrm{m} / \mathrm{z}): 406.05$ found: $407.0(\mathrm{M}+1)^{+}$.

Synthesis of N^{1}-(4-(3-(3-Methoxyphenyl)-1-phenyl-1H-pyrazol-4-yl)pyridin-2-yl)ethane1,2diamine and N^{1}-(4-(3-(3-Methoxyphenyl)-1-phenyl-1H-pyrazol-4-yl)pyridin-2-yl)propane-1,3diamine

A mixture of 2-bromo-4-(3-(3-methoxyphenyl)-1-phenyl-1H-pyrazol-4-yl)pyridine (17.09 g, $42.2 \mathrm{mmol})$ and Copper Iodide $(0.95 \mathrm{~g}, 5 \mathrm{mmol})$ in 50 ml of ethylene diamine or $1,3-$ diaminopropane was heated at 100 degree for 24 h . The reaction mixture was treated with water $(150 \mathrm{~mL})$ and ethyl acetate $(150 \mathrm{ml})$. The organic layer was collected and washed with additional water (100 mL) then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to get the required product as grayish white solid, which was dried and used in the next step without further purification.

${ }^{96} \cdot \mathrm{~b}$ —

7teo ${ }^{\circ}$
c8E6 ${ }^{\circ} \mathrm{Z}$

$$
656^{\circ} \tau
$$

