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Abstract: A previously undescribed naphthalenone derivative, sohiracillinone (1), and a novel
4,5-seco-lanostane triterpenoid, 11β-ethoxydaedaleanic acid A (2) were isolated with two new
lanostane triterpenoids, ceanphytamic acids A (3) and B (4), from the EtOH extract of Poria cocos along
with 17 known compounds 5–21. The absolute configuration of sohiracillinone (1) was unambiguously
identified by NMR and electronic circular dichroism (ECD) data. The structures of other new
compounds were elucidated on the basis of NMR and mass spectroscopy (MS), and the cytotoxic
activities of all the isolated components were evaluated.

Keywords: Poria cocos; lanostane triterpenoids; naphthalenone derivative; cancer cell line;
cytotoxic activity

1. Introduction

Poria cocos, also named Fuling in Chinese, is the dried sclerotium of P. cocos (Schw.) Wolf,
belonging to the Polyporaceae and grown in China, Japan, Korea, and North America. A well-known
traditional Eastern Asian medicine, P. cocos extracts exert beneficial health effects and fight against
illnesses [1]. P. cocos has important diuretic [2], antibacterial, antitumor, mitogenic, complement
activating, and immune stimulating activities [3–6]. However, in the Chinese Pharmacopoeia (2015
edition), information related to the required quality standard of P. cocos was insufficient, and there has
been little research done on P. cocos.

In order to determine the quality standard of P. cocos as well as appropriate index standards,
we have studied the chemical composition of P. cocos. An increasing number of chemical investigations
on P. cocos has occurred during the past decades, mainly focused on the isolation of triterpeniods and
polysaccharides. Additionally, the lanostane triterpenes from Poria cocos (Schw.) have been reported to
cause cytotoxicity towards several cancer cell lines [7–9]. Accordingly, we also expect to find some lead
compounds which display cytotoxicity against some cancer cell lines. However, the basic skeletons
of these compounds have rarely been determined and there are usually many isomers of them in P.
cocos. In addition, the purification of lanostane triterpenes is very difficult, which makes research on
their antitumor activity difficult. In a previous paper, we reported the chemical constituents of a water
decoction of P. cocos [10]. This inspired us to conduct an additional investigation on this fungus.

Due to the low content of lanostane triterpenes, in this paper, 100 kg dried sclerotia of P. cocos
were extracted with 3 × 1000 L of 95% ethanol, and the chemical constituents and pharmacological
characteristics of P. cocos were investigated. We obtained 21 compounds, including four new
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compounds: sohiracillinone (1), 11β-ethoxydaedaleanic acid A (2), ceanphytamic acid A (3) and
ceanphytamic acid B (4) (Figure 1). The compounds’ cytotoxic activity was evaluated on 11 human
cancer cell lines. Compound 1 showed strong cytotoxicity against the cervical cancer cell line with an
IC50 of 12.93 ± 2.38 µM, and others showed cytotoxicity against a variety of human cancer cell lines to
different degrees.
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[21], dehydrosulphurenic acid (19) [22], eburicoic acid (20) [15], and tumulosic acid (21) [23]. The 
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2. Results and Discussion

The EtOH extract of sclerotia of P. cocos was partitioned with petroleum ether (PE), CH2Cl2,
and 1-butanol (n-BuOH). The CH2Cl2 layer was chromatographed repeatedly to afford four new
compounds (1–4 (Figure 1), along with 17 known compounds: harzianone (5) [11], sorbicillin
(6) [12], 2′,3′-dihydrosorbicillin (7) [12], sohirnone A (8) [13], pachymic acid (9) [14], dehypachymic
acid (10) [14], trametenolic acid (11) [15], deyhdrotrametenolic acid (12) [15], polyporenic acid
C (13) [16], 3β-p-hydroxybenzoyldehydrotumulosic acid (14) [17], daedaleanic acid A (15) [18],
3β,15α-dihydroxylanosta-7,9(11),24-triene-21-oic acid (16) [19], poricoic acid A (17) [20], poricoic
acid G (18) [21], dehydrosulphurenic acid (19) [22], eburicoic acid (20) [15], and tumulosic acid (21) [23].
The structures of the new compounds were established by analysis of spectroscopic data and the
known ones were identified by comparison of their NMR data with those reported in the literature.

Compound 1 was obtained as a yellow oil. Its high resolution electrospray ionization mass
spectrum (HRESIMS) exhibited a molecular ion peak at m/z 288.1364, corresponding to the molecular
formula of C17H20O4 (calcd. 288.1362), and requiring eight degrees of unsaturation. The 13C-NMR
data showed 17 carbon signals. Analyses of the 1H-NMR, 13C-NMR (Table 1), and the HSQC spectra
of 1 revealed the presence of two methyl signals in a single peak (δH 2.06, δC 11.7; δH 2.13, δC 7.5),
one methyl signal in a double peak (δH 1.57, J = 6.5 Hz, δC 7.5), one carbonyl group (δC 201.6), one
acetyl group (δH 2.24, δC 29.5, 207.6), and one 1,2-disubstituted double bond (δH 5.37, J = 15.0, 6.2,
0.9 Hz, δC 131.6; δH 5.52, δC 127.4) with a set of aromatic carbon signals for quaternary bonds (δC

161.6; δC 159.3; δC 136.7; δC 114.0; δC 111.5; δC 109.1). Additionally, the data showed a methylene
group (δH 2.53, J = 17.8 Hz, δH 2.77, J = 17.8, 5.3 Hz, δC 39.6) and two methyne groups (δH 3.22, δC

38.6; δH 4.03, δC 55.6). These spectroscopic features together with the formula indicated that 1 was a
naphthalenone derivative. The difference between 1 and naphthalenone was the substituent groups
on the aromatic ring and cyclohexanone. The 1H–1H COSY spectrum (Figure 2) showed the following
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two fragments: –CH2(C-2)–CH(C-3)–CH(C-4)– and –CH(C-9)=CH(C-10)–CH3(C-11). In addition,
in the HMBC spectrum (Figure 2), the hydrogen signal of olefin H-9 (δH 5.37)/H-10 (δH 5.52) was
correlated with C-3 (δC 38.6), suggesting that a propenyl moiety was located at C-3. The correlations
of H-13 (δH 2.24) with C-4 (δC 55.6) and H-4 (δH 4.03) with C-12 (δC 207.6) showed that an acetyl
group was located at C-4. The correlations of the hydroxy group (δH 13.29, s, 1H) with C-7 (δC 109.1)
and C-8 (δC 161.6), C-8a (δC 111.5) showed it was located at C-8; the correlations of H-15 (δH 2.13)
with C-6 (δC 159.3), C-7 (δC 109.1), and C-8 (δC 161.6) and the correlations of H-14 (δH 2.06) with C-4a
(δC 136.7), C-5 (δC 114.0), and C-6 (δC 159.3) showed that two methyl groups were situated at C-5
and C-7 on the aromatic ring. The NOESY analysis (Figure 2) showed correlations between H-3 (δH

3.22) and H-13 (δH 2.24), H-4 (δH 4.03) and H-9 (δH 5.37) which indicated the H-3 might be α-oriented
and H-4 was β-oriented. According to the established relative configuration, the pair of enantiomers
of 1 are (3S,4S)-1a and (3R,4R)-1b, respectively. In order to establish the absolute configuration of
1, the electronic circular dichroism (ECD) spectrum (Figure 3) was determined, which exhibited a
negative Cotton effect at 294 nm (n → π* transition). The calculated data indicated the 3S and 4S
absolute configurations. Using the NMR and the CD data, the structure of 1 was determined to be
(3S,4S)-4-acetyl-6,8-dihydroxy-5,7-dimethyl-3-((E)-prop-1-en-1-yl)-3,4-dihydronaphthalen-1(2H)-one,
and it was named sohiracillinone.

Table 1. 1H- and 13C-NMR Data for 1 in CDCl3.

Position δC
a δH

b (J in Hz)

1 201.6, C -

2 39.6, CH2
2.53, br. d (17.8)

2.77, dd (17.8, 5.3)
3 38.6, CH 3.22, s
4 55.6, CH 4.03, br. s
4a 136.7, C -
5 114.0, C -
6 159.3, C -
7 109.1, C -
8 161.6, C -
8a 111.5, C -
9 131.6, CH 5.37, ddd (15.0, 6.2, 0.9)
10 127.4, CH 5.52, m
11 18.1, CH2 1.57, d (6.2)
12 207.6, C -
13 29.5, CH3 2.24, s
14 11.7, CH3 2.06, s
15 7.5, CH3 2.13, s

8-OH - 13.29, s
a Recorded at 125 MHz; b Recorded at 400 MHz.
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Compound 2 was obtained as a white amorphous powder. Based on the HRESIMS, the molecular
formula of 2 was determined to be C33H50O5, giving a quasi-molecular ion peak at m/z 525.3557 [M −
H]− (calcd. 525.3580). The 1H-NMR data (Table 2) showed signals for three methyls at δH 0.91 (3H, s,
H3-18), δH 2.26 (3H, s, H3-19), δH 1.18 (3H, s, H3-30), and two mutually-coupled aromatic protons at
δH 7.03 (1H, d, J = 6.2 Hz, H-6), δH 6.77 (1H, d, J = 6.2 Hz, H-7). Additionally, two pairs of equivalent
secondary methyl signals were identified at δH 1.08 (3H, s, H3-28), δH 1.10 (3H, s, H3-29) and δH 1.05
(6H, overlap (ov.), H3-26 and H3-27). The 32 carbon signals observed in the 13C-NMR spectrum were
sorted into eight methyls, indicating the presence of two isopropyl groups, eight methyl groups, seven
methylene groups, and six methine groups, suggesting that 2 is a lanostane triterpene that is similar to
daedaleanic acid A [17]. The difference between the planar structure of 2 and daedaleanic acid A is
the presence of an ethoxy group at C-11. In the HMBC spectrum, H-1′ (δH 3.56, 1H, m; δH 3.38, 1H,
m) was correlated with C-11 (δC 73.3) and CH3-2′ (δC 15.9), suggesting that the oxethyl group was
located at C-11. The relative configuration of 2 was established by the NOESY experiment. Significant
NOE correlations between H3-18 (δH 0.91, 3H, s) and H-16 (δH 4.33, 1H, t) and H-20 (δH 2.57, 1H, m),
and between H3-30 (δH 1.18, 3H, s) and H-17 (δH 2.30, 1H, m) and H-11 (δH 4.47, 1H, d) indicated that
OH-16 and H-17 have α-orientations. From the analysis of all of these data and from a biosynthetic
point of view, the structure of 2 was assigned as shown in Figure 4 and named 11β-ethoxydaedaleanic
acid A.
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Compound 3 was obtained as a white amorphous powder. The HRESIMS showed a m/z at 530.3616
calcd. for C32H49O6, 530.3607 [M − H]− indicated a molecular formula of C32H50O6. Its 1H-NMR
(Table 2) spectrum showed the signals of eight methyl signals at δH 0.79 (3H, s, H3-18), δH 1.02 (3H,
s, H3-19), δH 1.24 (3H, s, H3-26), δH 1.24 (3H, s, H3-27), δH 0.89 (3H, s, H3-28), δH 0.91 (3H, s, H3-29),
δH 1.13 (3H, s, H3-30) and δH 2.03 (3H, s, H3-2′) and two oxygen-bearing methynes at δH 4.45 (1H,
t, H-3) and δH 4.05 (1H, t, H-16). Its 13C-NMR (Table 2) and HSQC spectra proved the existence of
eight methyl groups, as well as an acetyl carbon at δ 172.9 (C, C-1′) and a pair of tetrasubstituted
olefinic carbonds at δ 135.6 (C, C-8) and δ 136.0 (C, C-9) and three oxygenated carbons at δ 82.5 (CH,
C-3), δ 77.9 (CH, C-16), δ 71.1 (C, C-25). In addition, the 13C NMR and HSQC spectra also exhibited
two olefinic signals at δC 126.4 (δH 5.62, 1H, ov., C-23) and δC 140.2 (δH 5.62, 1H, ov., C-24). There
were 1H–1H COSY (Figure 5) correlations between H-2 (δH 1.66) and H-3 (δH 4.45), between H-5 (δH

1.16) and H-6 (δH 1.66), between H-15 (δH 2.18), H-16 (δH 4.05), H-17 (δH 2.06), H-20 (δH 2.32), H-22
(δH 2.50), and H-23 (δH 5.62). Therefore, it can be concluded that 3 was a lanost-8-ene triterpenoid.
On the basis of the HMBC (Figure 5), correlations from H3-26 (δH 1.24) to CH3-27 (δC 29.8), H3-27
(δH 1.24) to CH3-26 (δC 29.8), H3-27 (δH 1.24) to C-25 (δC 71.1), and H3-26 (δH 1.24) to C-24 (δC 140.2)
indicated the presence of a hydroxy group at C-25. The correlation from H-3 (δH 4.45) to C-1′ (δC 172.9)
showed that the acetyl group was located at C-3. The NOE correlations between H-16 (δH 4.05) and
H-20 (δH 2.32), and between H3-30 (δH 1.13) and H-17 (δH 2.06) indicated α-orientations for OH-16 and
H-17. The correlation between H3-18 (δH 0.79) and H3-19 (δH 1.02), H-16 (δH 4.05) and H-20 (δH 2.32)
showed that CH3-18, CH3-19 and H-20 have β-orientations. Thus, the structure of 3 was determined
to be 3β-acetoxy-16α,25-dihydroxylanost-8,23-dien-21-oic acid, and it was named ceanphytamic acid
A (Figure 5).
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Compound 4 was obtained as a white amorphous powder. The HRESIMS showed a m/z at
546.3913 calcd. for C33H54O6, 546.3920 [M + H]+. 1H–1H COSY (Figure 6) correlations were shown
between H-2 (δH 1.72) and H-3 (δH 4.59), between H-5 (δH 1.04) and H-6 (δH 1.61), and between H-15
(δH 2.34), H-16 (δH 4.47), H-17 (δH 2.30), H-20 (δH 2.86), H-22 (δH 1.24), H-23 (δH 2.33), and H-24 (δH

1.41). The 1H-NMR showed nine methyl groups at H3-18 (δH 1.05, 3H, s), H3-19 (δH 0.89, 3H, s), H3-26
(δH 1.01, 3H, s), H3-27 (δH 1.00, 3H, s), H3-28 (δH 0.84, 3H, s), H3-29 (δH 0.86, 3H, s), H3-30 (δH 1.40, 3H,
s), H3-2′ (δH 2.02, 3H, s), and H3-OMe (δH 3.08, 3H, s). The 13C-NMR (Table 2) and HSQC spectrum
proved the existence of nine methyl groups, as well as an acetyl carbon at C-1′ (δC 170.8) and three
oxygenated carbons at C-3 (δC 80.7), C-16 (δC 76.6), and C-25 (δC 74.4). The signals observed in the
1H NMR and 13C NMR spectra (Table 2) closely resembled those of 3 except for the partial signals of
the C-17 side-chain and the presence of an additional methyl group 3, indicating that 4 also had the
same lanostane skeleton as 3. On the basis of the HMBC (Figure 6) correlations between H3-26 (δH

1.01) and CH3-27 (δC 25.0), H3-27 (δH 1.00) and CH3-26 (δC 25.0), H3-26 (δH 1.01) and C-25 (δC 74.4),
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and H3-OMe (δH 3.08) and CH3-25 (δC 74.4), the presence of a methoxy group at C-25 was indicated.
The NOE correlations between H3-30 (δH 1.40) and H-17 (δH 2.30) indicated α-orientations for H-17.
The correlations between H3-18 (δH 1.05) and H3-19 (δH 0.89), and between H-16 (δH 4.47) and H-20
(δH 2.86) indicated β-orientations for CH3-18, CH3-19 and H-20. Therefore, the structure of 4 (Figure 6)
was determined to be 3β-acetoxy-16α-hydroxylanost-25-methoxyl-8-en-21-oic acid, and it was named
ceanphytamic acid B.

Table 2. 1H- and 13C-NMR data for compounds 2–4.

No.
Compound 2 * Compound 3 ** Compound 4 ***

δC
a δH

b (J in Hz) δC
a δH

b (J in Hz) δC
a δH

b (J in Hz)

1 24.5, CH2
2.85, ov.
2.72, ov. 36.4, CH2

1.78, ov.
1.27, ov. 35.3, CH2

1.53, ov.
1.09, ov.

2 40.6, CH2
2.83, ov.
2.68, ov. 25.1, CH2 1.66, ov. 24.4, CH2

1.72, m
1.62, m

3 214.9, C - 82.5, CH 4.45, t (9.2, 7.0) 80.7, CH 4.59, dd (7.6, 2.8)
4 41.1, CH 2.56, m 38.9, C - 37.9, C -
5 134.4, C - 52.0, CH 1.16, ov. 50.7, CH 1.04, ov.

6 130.4, CH 7.03, d (6.2) 19.2, CH2
1.65, ov.
1.76, ov. 18.3, CH2

1.61, m
1.39, ov.

7 122.8, CH 6.77, d (6.2) 27.6, CH2 2.08, ov. 26.6, CH2
1.97, ov.
2.00, ov.

8 144.9, C - 135.6, C - 134.9, C -
9 133.7, C - 136.0, C - 134.4, C -

10 140.9, C - 38.2, C - 37.0, C -

11 73.3, CH 4.47, d (4.2) 21.2, CH2
2.07, ov.
2.99, ov. 20.8, CH2

1.82, ov.
2.01, ov.

12 33.9, CH2 2.28, ov. 30.1, CH2
1.59, m
1.82, m 29.7, CH2

2.15, m
1.82, ov.

13 44.2, C - 47.0, C - 46.1, C -
14 49.8, C - 49.4, C - 48.6, C -

15 44.1, CH2 1.81, d (10.6) 43.6, CH2
2.18, m
1.26, m 43.4, CH2

2.34, m
1.65, m

16 77.6, CH 4.33, t (5.9) 77.9, CH 4.05, t (7.8, 6.6) 76.6, CH 4.47, m
17 56.7, CH 2.30, m 57.3, CH 2.06, m 57.2, CH 2.30, m
18 19.5, CH3 0.91, s 17.8, CH3 0.79, s 17.7, CH3 1.05, s
19 19.8, CH3 2.26, s 19.6, CH3 1.02, s 19.1, CH3 0.89, s
20 46.4, CH 2.57, m 51.6, CH 2.32, m 48.7, CH 2.86, m
21 - c, C - - c, C - 179.1, C -

22 30.6, CH2
1.99, m
1.18, m 36.4, CH2

2.50, d (12.7)
2.26, m 31.3, CH2

1.24, t (4.8)
1.18, ov.

23 32.4, CH2 2.03, m 126.4, CH 5.62, ov. 33.3, CH2
2.33, m
2.24, m

24 155.1, C - 140.2, CH 5.62, ov. 30.3, CH2
1.41, m
1.47, m

25 33.3, CH 2.08, m 71.1, C - 74.4, C -
26 22.1, CH3 1.05, s 29.8, CH3 1.24, s 25.0, CH3 1.01, s
27 21.9, CH3 1.05, s 29.8, CH3 1.24, s 25.0, CH3 1.00, s
28 18.4, CH3 1.08, s 28.5, CH3 0.89, s 27.9, CH3 0.84, s
29 18.6, CH3 1.10, s 16.9, CH3 0.91, s 16.7, CH3 0.86, s
30 30.5, CH3 1.18, s 25.7, CH3 1.13, s 25.3, CH3 1.40, s
31 107.3, CH2 4.77, d (18.4) - - - -

1′ 63.0 3.56, m
3.38, m 172.9, C - 170.8, C -

2′ 15.9 1.08, s 21.1, CH3 2.03, s 21.1, CH3 2.02, s
O-Me - - - - 49.0, CH3 3.08, s

a Recorded at 125 MHz; b recorded at 400 MHz; c unable to be measured; * dissolution by CDCl3; ** dissolution by
CD3OD; *** dissolution by C5D5N-d5.
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All of the isolated compounds were evaluated for cytotoxicity against eleven human cancer cell
lines: A549 (adenocarcinomic human alveolar basal epithelial cells, ATCC: CCL-185), Calu-1 (human
lung cancer cells, ATCC: HTB-54), HeLa (human cervical cancer cells, ATCC: CCL-2), MDA-MB-231
(human breast invasive ductal carcinoma cells, ATCC: HTB-26), SW579 (human thyroid squamous cell
carcinoma cells, ATCC: HTB-107), SK-OV-3 (human ovarian cancer cells, ATCC: HTB-77), T84 (human
lung cancer cells, ATCC: CCL-248), Hep G2 (human liver cancer cells, ATCC: HB-8065), Hep 3B2.1-7
(human liver cancer cells, ATCC: HB-8064), KATO III (human gastric carcinoma cells, ATCC: HTB-103),
MCF-7 (human breast adenocarcinoma cell, ATCC: HTB-22) by the CCK-8 method. None of compounds
exhibited cytotoxicity against T84 cells, Hep G2 cells, Hep 3B2.1-7 cells, KATO III cells, or MCF-7 cells.
Compound 1 showed stronger cytotoxicity against HeLa cells than the other tested compounds, and
2–4 showed different degree cytotoxicity against A549, SK-OV-3 and SW579 cells (Table 3). Compounds
5–6, 9–10 and 12–14 showed selective inactive cytotoxicity against these cancer cell lines. However, the
cytotoxic activities were far less potent compared to those of the positive controls.

Table 3. Cytotoxic activity of 1–4 against human cancer cell lines (IC50 [µM] a) b.

Comp.
Cell Lines (IC50) µM

A549 HeLa MDA-MB-231 SK-OV-3 SW579

1 45.18 ± 5.11 12.93 ± 2.38 81.68 ± 3.99 >100 >100
2 61.05 ± 2.51 >100 >100 81.13 ± 10.76 >100
3 >100 54.41 ± 7.01 >100 72.38 ± 8.77 69.52 ± 8.19
4 >100 >100 >100 70.01 ± 2.29 81.62 ± 6.26

a All data were represented the mean ± SD of triplicate experiments. b 5FU (fluorouracil), DXR (doxorubicin),
CDDP (cisplatin), and PTX (paclitaxel) were used as the positive controls.

3. Experimental Section

3.1. General Information

Optical rotations were obtained with an Autopol VI polarimeter (No. 90079, Rudolph Research
Analytical, Hackettstown, NewJersey, USA). IR spectra were recorded with a Perkin Elmer FT-IR
spectrometer (Beijing Purkinje General Istrument Co., Ltd., Beijing, People’s Republic of China).
One-dimensional and two-dimensional NMR spectra were run on a AVANCE-III instrument
(Bruker, Bremen, Germany) operating at 600/400 MHz for 1H, 125/100 MHz for 13C, respectively,
with tetramethylsilane as an internal standard. HRESIMS spectra were obtained on a UPLC Premier
QTOF spectrometer (Waters, Milford, Massachusetts, USA). Reversed phase medium pressure liquid
chromatography (RP-MPLC) was performed on a GRACE system (Grace, Columbia, MD, USA).
Preparative HPLC was performed on an 1260 series instrument (Agilent, Santa Clara, CA, USA)
equipped with a Capcellpak C18 column (250 × 20 mm, 5 µm, flow rate: 16 mL/min, Shiseido,
Tokyo, Japan). Column chromatography were performed with silica gel (200–300 mesh, Qingdao
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Haiyang Chemical Co., Ltd., Qingdao, China), Sephadex LH-20 (GE Healthcare Bio-Sciences AB,
Stockholm, Sweden), and YMC gel ODS-AQ (50 µm, YMC Co., Ltd., Kyoto, Japan). Thin-layer
chromatography (TLC) and preparative TLC were carried out on HSGF254 plates (Yantai Jiangyou
Silica Gel Development Co., Ltd., Yantai, China).

3.2. Plant Material

The sclerotia of Poria cocos was purchased from Shanghai Kang Qiao Herbal Pieces Co., Ltd.
(Shanghai, China), and identified by Professor Hong Xu from Shanghai University of Traditional
Chinese Medicine. A voucher specimen (150910) was deposited at Shanghai R&D Center for
standardization of Chinese Medicines, Shanghai, China.

3.3. Extraction and Isolation

Dried sclerotia of P. cocos (100 kg) was extracted three times, each time with 95% EtOH (1000 L)
to give a crude extract (2300 g), which was suspended in water and successively partitioned with
petroleum ether (PE), CH2Cl2 and n-BuOH. The CH2Cl2 extracts (804 g) were loaded into silica gel
column chromatography (200–300 mesh) and eluted with a stepwise gradient of PE-EtOAc (100:1
to 1:1) and EtOAc-MeOH (20:1 to 1:1) to obtain 13 fractions (Fr. A-Fr. M) on the basis of their
TLC characteristics.

Fraction B (18.4 g) was repeatedly chromatographed on silica gel (PE/EtOAc = 50:1 to 1:1) and
Sephadex LH-20 (MeOH) columns to obtain six fractions (Fr. B-1 to Fr. B-6). Fr. B-2 (1.7 g) was subjected
to an ODS preparative MPLC column eluted with MeOH-H2O (3:7 to 8:2, v/v), followed by Sephadex
LH-20 (MeOH) and preparative HPLC (86% CH3CN in H2O, 16 mL/min) to give harzianone (5, 2.1
mg). Fr. B-3 (2.2 g) was chromatographed by preparative HPLC (82% CH3CN in H2O, 16 mL/min) to
yield sorbicillin (6, 4.5 mg), 2′,3′-dihydrosorbicillin (7, 3.7 mg), sohirnone A (8, 6.2 mg). Fr. B-5 (4.0 g)
was eluted repeatedly with MeOH-H2O (1:7 to 9:1, v/v) and preparative HPLC to yield sohiracillinone
(1, 1.9 mg), 11β-ethoxydaedaleanic acid A (2, 1.6 mg), and daedaleanic acid A (15, 2.0 mg), respectively.

Fr. C (21.0 g) was repeatedly chromatographed on silica gel (PE/EtOAc = 50:1 to 1:1) to obtain
seven fractions (Fr. C-1 to Fr. C-7). Fr. C-1 (11.5 g) was subjected to an ODS preparative MPLC column
eluted with MeOH-H2O (4:5 to 9:1, v/v), and followed by preparative HPLC to yield pachymic acid (9,
0.6 g), dehypachymic acid (10, 0.5 g), and polyporenic acid C (13, 0.3 g), respectively. Fr. C-2 was also
isolated by the same method as Fr.C-1 to yield deyhdrotrametenolic acid (12, 4.5 mg), trametenolic
acid (11, 3.2 mg), eburicoic acid (20, 3.7 mg), and 3β-p-hydroxybenzoyl-dehydrotumulosic acid (14,
2.8 mg), respectively.

Fr. D (9.5 g) was repeatedly chromatographed on silica gel (PE/EtOAc = 50:1 to 1:1) to obtain
five fractions (Fr. D-1 to Fr. D-5). Fr. D-2 (1.5 g) was subjected to an ODS preparative MPLC column
eluted with MeOH-H2O (1:5 to 9:1, v/v), and followed by preparative HPLC (84% CH3CN in H2O, 16
mL/min) to yield ceanphytamic acid A (3, 2.1 mg). Fr. D-4 (2.2 g) was subjected to an ODS preparative
MPLC column eluted with MeOH-H2O (1:8 to 9:1, v/v), and followed by preparative HPLC (82%
CH3CN in H2O, 16 mL/min) to yield poricoic acid A (17, 3.1 mg), and poricoic acid G (18, 3.7 mg).

Fr. F (12.7 g) was repeatedly chromatographed on silica gel (PE/EtOAc = 50:1 to 1:1) to obtain
seven fractions (Fr. F-1 to Fr. F-7). Fr. F-3 (0.3 g) was eluted by HPLC (84% CH3CN in H2O, 16 mL/min)
to yield ceanphytamic acid B (4, 2.0 mg). Fr. F-5 (0.8 g) was eluted by HPLC (84% CH3CN in H2O,
16 mL/min) to yield 3β,15α-dihtdroxylanosta-7,9(11),24-trien-21-oic acid (16, 3.1 mg).

Fr. G (7.1 g) was repeatedly chromatographed on silica gel (PE/EtOAc = 50:1 to 1:1) to obtain
three fractions (Fr. G-1 to Fr. G-3). Fr. G-1 was eluted by HPLC (78% CH3CN in H2O, 16 mL/min) to
yield dehydrosulphurenic acid (19, 3.8 mg).

Fr. H (5.1 g) was repeatedly chromatographed on silica gel (PE/EtOAc = 100:1 to 1:1) to obtain
three fractions (Fr. H-1 to Fr. H-3). Fr. H-2 was subjected to an ODS preparative MPLC column eluted
with MeOH-H2O (1:9 to 9:1, v/v) to yield tumulosic acid (21, 3.9 mg).
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3.4. Spectroscopic Data

Sohiracillinones (1): Yellow oil; [α]20
D = −19.2 (c = 0.033, CHCl3). IR: 2920, 2852, 1740, 1596, 1413, 1366,

1099, 779, 720, 616 cm−1. 1H and 13C NMR are shown in Table 1. Negative HRESIMS: 288.1364 ([M
− H]−, C17H19O4; calcd. 288.1362). More Spectroscropic data can be found in the Supplementary
Materials (Figures S1–S35).

11β-Ethoxydaedaleanic acid A (2): White amorphous powder; [α]20
D = +6.7 (c = 0.1, C5H5N). IR: 3395,

2919, 2849, 1645, 1438, 1069, 804, 760, 703 cm−1. 1H and 13C NMR are shown in Table 2. Negative
HRESIMS: 525.3557 ([M − H]−, C33H49O5; calcd. 525.3580). More Spectroscropic data can be found in
the Supplementary Materials (Figures S1–S35).

Ceanphytamic acid A (3): White amorphous powder; [α]20
D = +16.7 (c = 0.03, C5H5N). IR: 3676, 2988,

2902, 1702, 1635, 1394, 1075, 1066, 1056, 892 cm−1. 1H and 13C NMR are shown in Table 2. Negative
HRESIMS: 530.3616 ([M − H]−, C32H49O6; calcd. 530.3607). More Spectroscropic data can be found in
the Supplementary Materials (Figures S1–S35).

Ceanphytamic acid B (4): White amorphous powder; [α]20
D = +19.4 (c = 0.03, C5H5N). IR: 3676, 2988, 2902,

1707, 1620, 1407, 1394, 1251, 1066, 1057, 891 cm−1. 1H and 13C NMR are shown in Table 2. Positive
HRESIMS: 546.3913 ([M + H]+, C33H53O6; calcd. 546.3920). More Spectroscropic data can be found in
the Supplementary Materials (Figures S1–S35).

3.5. Cell Culture

Nine human cancer cell lines, A549, Calu-1, HeLa, SK-OV-3, T84, Hep G2, Hep 3B2.1-7, KATO
III, and MCF-7, were kindly provided by Stem Cell Bank, Chinese Academy of Sciences. Two human
cancer cell lines, MDA-MB-231 and SW579, were kindly provided by Professor Hong Xu from Shanghai
University of Traditional Chinese Medicine. A Cell Counting Kit-8 was purchased from Shanghai
DOJINDO Co., Ltd. (Shanghai, China). Hep G2, Hep 3B2.1-7, HeLa, and MCF-7 were maintained
in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% (v/v) heat-inactivated
fetal bovine serum (FBS) and 0.1% (v/v) penicillin-streptomycin in a humidified incubator with 5%
CO2 at 37 ◦C. Calu-1 and SK-OV-3 were maintained in McCoy’s 5A supplemented with 10% (v/v)
heat-inactivated FBS and 0.1% (v/v) penicillin-streptomycin in a humidified incubator with 5% CO2 at
37 ◦C. A549 was maintained in F12K supplemented with 10% (v/v) heat-inactivated FBS and 0.1% (v/v)
penicillin-streptomycin in a humidified incubator with 5% CO2 at 37 ◦C. KATO III, MDA-MB-231, and
SW579 were maintained in RPMI 1640 supplemented with 10% (v/v) heat-inactivated FBS and 0.1%
(v/v) penicillin-streptomycin in a humidified incubator with 5% CO2 at 37 ◦C. T84 was maintained in
D-MEM/F-12 supplemented with 20% (v/v) heat-inactivated FBS and 0.1% (v/v) penicillin-streptomycin
in a humidified incubator with 5% CO2 at 37 ◦C. All cell culture media and reagents were purchased
from Thermo Scientific Hyclone (Logan, UT, USA).

3.6. Cell Assay

The compounds’ cytotoxicity was measured by the CCK-8 method. Compounds were dissolved
with dimethylsulfoxide (DMSO). The cells were seeded onto 96-well microplates at a density of 1 × 104

cells per well in 100 µL of medium each. After incubation at 37 ◦C in a humidified incubator for 24 h,
the cells were treated with various concentrations of each compound. After incubation, 10% CCK-8
(10 µL in 90 µL FBS) was added to each well of the plate. After removal from the medium, the cells
were incubated at 37 ◦C for 1 h. Cell viability was calculated as a percentage of viable cells in the
compound-treated group vs. the control group by the following equation: Cell viability (%) = [1 − OD
(Compound)/OD (Blank)] × 100%.
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4. Conclusions

In sum, one new naphthone derivative, sohiracillinone (1), and three new triterpenoids,
11β-ethoxydaedaleanic acid A (2), ceanphytamic acid A (3), and ceanphytamic acid B (4), were
characterized from the EtOH extract of the sclerotia of Poria cocos. The skeleton of 1 was unique and the
absolute configurations was determined by ECD. Moreover, a rare 4,5-seco-lanostane triterpenoid 2 and
two unreported side-chain of lanostane triterpenoids 3 and 4 were also isolated. This adds new facets
to the structural diversity of the P. cocos family. Our findings showed that 1 has stronger cytotoxicity
against HeLa cells than the other tested compounds, and the other compounds showed selective
inactive cytotoxicity against the testing cancer cell lines. Even though the level of cytotoxic activity
was not significant, but these findings also suggest that P. cocos may have the potential to be a useful
therapeutic natural source for cancer prevention. Besides, following the study of the compounds’
chemistry, we propose that lanostane triterpenoids is a reasonable index standard for P. cocos.

Supplementary Materials: The following are available online: Figures S1–S35.
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