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Abstract: A highly efficient acylative cross-coupling of trialkylboranes with activated amides has
been effected at room temperature to give the corresponding alkyl ketones in good to excellent
yields by using 1,3-bis(2,6-diisopropyl)phenylimidazolylidene and 3-chloropyridine co-supported
palladium chloride, the PEPPSI catalyst, in the presence of K2CO3 in methyl tert-butyl ether. The scope
and limitations of the protocol were investigated, showing good tolerance of acyl, cyano, and ester
functional groups in the amide counterpart while halo group competed via the classical Suzuki
coupling. The trialkylboranes generated in situ by hydroboration of olefins with BH3 or 9-BBN
performed similarly to those separately prepared, making this protocol more practical.

Keywords: acylative cross-coupling; trialkylborane; amide activation; palladium; N-heterocyclic
carbene

1. Introduction

Amides are unique and ubiquitous substructures in natural and artificial organic functional
molecules, because the strong resonance between the carbonyl and amino groups leads to a highly
inert and significantly planar linkage. However, the synthetic utility of amides as an acyl source
had remained underdeveloped until the seminal publications in 2015 independently from Garg [1],
Szostak [2], and ourselves [3], taking advantage of palladium or nickel catalysis for cleavage of
electronically or sterically activated amide C-N bond, and formation of new carbon-carbon or
carbon-oxygen bonds. In the past three years, many efforts have been made to expand the scope of
amide counterparts, developing a variety of activated amides suitable for the acylative cross-coupling,
e.g., N-acyl imides [4–6], N-Boc and N-Ts/Ms amides [7–15], N-acylsaccharins [16–20], and amides of
heteroaromatic compounds [21,22]. Comparably, the carbon-centered nucleophile counterparts are still
rather undeveloped, in particular, with respect to alkyl ones, although alkyl ketones have been widely
found in biologically important molecules and synthetic building blocks for fine chemicals. In fact,
besides the closely related esters [23–25], there are only two reports on the acylative cross-coupling
of amides with alkyl reagents effected by using nickel catalysts. Garg and co-workers reported the
first alkylation of amide derivatives by nickel-catalyzed acylative coupling with alkyl zinc reagents in
2016 [26]. Early this year, Rueping and co-workers described the other nickel-catalyzed cross-coupling
of B-alkyl-9-BBN with amides [27]. After extension of the nucleophile counterparts from arylboronic
acids to cost-effective diarylborinic acids and tetraarylboronates in palladium-catalyzed acylative
cross-coupling of amides [28,29], we are interested in the reactivity of trialkylboranes, which could be
readily prepared from alkyl Grignard reagents or olefins via hydroboration. Herein we report a highly
efficient palladium-catalyzed acylative cross-coupling of activated amides with trialkylboranes at
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room temperature by using 1,3-bis(2,6-diisopropyl)phenylimidazolylidene (IPr) and 3-chloropyridine
(3-ClPy) co-supported palladium chloride, the PEPPSI catalyst developed by Organ et al. [30].

2. Results and Discussion

Reaction of 4-methoxy-N-methyl-N-tosylbenzamide (1a) with the commercially available
triethylborane (2a) (BEt3, 1M in THF) was chosen as the model to establish an optimal catalyst
system for the acyl alkylation of activated amides (Scheme 1).

Molecules 2018, 23, x 2 of 10 

 

acylative cross-coupling of activated amides with trialkylboranes at room temperature by using 
1,3-bis(2,6-diisopropyl)phenylimidazolylidene (IPr) and 3-chloropyridine (3-ClPy) co-supported 
palladium chloride, the PEPPSI catalyst developed by Organ et al. [30]. 

2. Results and Discussion 

Reaction of 4-methoxy-N-methyl-N-tosylbenzamide (1a) with the commercially available 
triethylborane (2a) (BEt3, 1M in THF) was chosen as the model to establish an optimal catalyst 
system for the acyl alkylation of activated amides (Scheme 1). 

 
Scheme 1. Screening of palladium catalyst for acyl alkylation of amides with alkylboranes. 

The catalyst system Pd(PCy3)2Cl2/PCy3, which we previously established for acylative 
cross-coupling of amides with aryl boron compounds, was investigated, at first, in the presence of 
K2CO3 as base in THF. Unfortunately, palladium black developed immediately upon heating and no 
reaction was detected after 6h at 60 °C, indicating the incompatibility of the Pd(PCy3)2Cl2/PCy3 
system with the high reducing ability of trialkylboranes. We then turned to the sterically demanding 
N-heterocyclic carbene (NHC) supported palladium catalysts pioneered by Nolan group [31], for 
example, 1,3-bis(2,6-diisopropylphenyl)imidazolium chloride (IPr-HCl)/palladium chloride 
(IPr-HCl/PdCl2) [32], IPr supported 2-((dimethylamino)methyl)phenyl palladium chloride 
(Palladacycle(IPr)) [33], and IPr and 3-chloropyridine co-supported PEPPSI catalyst 
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Scheme 1. Screening of palladium catalyst for acyl alkylation of amides with alkylboranes.

The catalyst system Pd(PCy3)2Cl2/PCy3, which we previously established for acylative
cross-coupling of amides with aryl boron compounds, was investigated, at first, in the
presence of K2CO3 as base in THF. Unfortunately, palladium black developed immediately
upon heating and no reaction was detected after 6h at 60 ◦C, indicating the incompatibility
of the Pd(PCy3)2Cl2/PCy3 system with the high reducing ability of trialkylboranes. We then
turned to the sterically demanding N-heterocyclic carbene (NHC) supported palladium catalysts
pioneered by Nolan group [31], for example, 1,3-bis(2,6-diisopropylphenyl)imidazolium chloride
(IPr-HCl)/palladium chloride (IPr-HCl/PdCl2) [32], IPr supported 2-((dimethylamino)methyl)phenyl
palladium chloride (Palladacycle(IPr)) [33], and IPr and 3-chloropyridine co-supported PEPPSI catalyst
(IPr)PdCl2(3-ClPy) [30]. Although the IPr-HCl/PdCl2 system also rapidly decomposed to palladium
black and lost activity, the palladacycle/IPr and PEPPSI catalysts provided the desired cross-coupling
product 3a in 27% and 61% yields, respectively, from 1a with 1.0 equiv 2a in the presence of 2 equiv
K2CO3. To test if dialkylboranes could be used in the acyl alkylation with amides, we also carried
out the model reaction by using diethylborinate (Et2B(OMe), 1M in THF) under otherwise identical
conditions (Scheme 2). Surprisingly, the C-O cross-coupling product, methyl 4-methoxybenzoate,
was obtained in 74% yield, while the C-C coupling product 3a was isolated in low (~5%) yield, implying
a much slower transmetalation of alkyl group from boron to palladium than that of alkoxyl group
in dialkylborinates.
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Scheme 2. Unexpected acyl C-O cross-coupling of methyl diethylborinate.

To increase the yield of the desired C-C coupling product in the PEPPSI-catalyzed acyl alkylation
of amides, the reaction conditions were optimized with respect to substrate ratio, solvent, base,
and reaction temperature, etc. Bases proved to be crucial since no reaction took place in the absence
of bases or in the presence of organic base, e.g., NEt3 and pyridine (Table 1, entries 2, 8 and 9).
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The stronger inorganic bases, Cs2CO3 (25%) and K3PO4 (33%), gave the lower yields of 3a than that
of K2CO3, albeit the reaction proceeded faster while the weaker ones, e.g., Na2CO3, NaOAc, and
NaHCO3, resulted in recovering most of amide substrate 1a (Table 1, entries 3–7). The yield of 3a could
be increased to 80% with 1.5 equiv BEt3 (Table 1, entry 10). Methyl tert-butyl ether (MTBE) appeared
to be the choice of solvent, giving 3a in 90% yield (Table 1, entry 12). The reaction occurred even at
room temperature and an excellent yield (98%) for 3a was obtained in 24 h (Table 1, entry 14). Given
the advantages of room temperature organic synthesis [34], we reinvestigated the model reaction in
THF or MTBE with K2CO3 or K3PO4 as the base (Table 1, entries 15–17). The results confirmed the
best performance of the combination of MTBE with K2CO3.

Table 1. PEPPSI-catalyzed acyl alkylation reaction of amide 1a with triethylborane. a
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1 1.1 THF K2CO3 60 5 61
2 1.1 THF / 60 5 NR d

3 1.1 THF Cs2CO3 60 5 25
4 1.1 THF K3PO4 60 5 33
5 1.1 THF Na2CO3 60 8 15
6 1.1 THF NaHCO3 60 8 Trace d

7 1.1 THF NaOAc 60 8 Trace d

8 1.1 THF Et3N 60 8 NR d
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10 1.5 THF K2CO3 60 5 80
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Scope and limitations of the PEPPSI-catalyzed room temperature acylative cross-coupling of
activated amides with trialkylboranes were briefly explored (Table 2). Influence of the amide structure
was investigated at first under the optimized reaction conditions. Similar to tosyl-activated amide 1a,
mesyl (Ms, 1b) analog also reacted efficiently to give 3a in 98% yield, while tert-butyloxycarbonyl (Boc)
activated amide (1c) showed comparably lower reactivity (75%) (Table 2, entries 1 and 2). Reaction
of benzamides bearing an electron-withdrawing group, acyl (1e), cyano (1f), or ester (1g), at the
para-position of the benzene ring gave the corresponding ketones (3b, 3c, or 3d) in 92%, 70%, or
91% yields, respectively, indicating good functional group compatibility of the PEPPSI-catalyzed
acyl alkylation (Table 2, entries 4–6). When 4-chloro-N-methyl-N-tosylbenzamide (1h) was used as
the substrate, the desired acylative cross-coupling product 1-(4-chlorophenyl)propanone was not
obtained. Instead, double alkylation product 1-(4-ethylphenyl)propanone (3e) was isolated in 47%
yield, which could be increased to 88% yield with 2.5 equiv BEt3 (Table 2, entry 7), similar to our
previous investigation on the palladium-catalyzed acylative Suzuki coupling of arylboronic acids [3].
A small ortho-substituent at the benzene ring appeared to slightly hamper the coupling. In fact,
1-(o-tolyl)propan-1-one (3f) was isolated in 72% yield from N-methyl-N-tosyl-2-methylbenzamide (1i)
(Table 2, entry 8). Alkyl amides (1j and 1k) reacted similarly to give dialkyl ketones 3g and 3h in 95%
and 98% yields, respectively (Table 2, entries 9 and 10).
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Table 2. Scope and limitations of the PEPPSI-catalyzed acyl alkylation reaction of amides with
trialkylboranes a.

Molecules 2018, 23, x 4 of 10 

 

the benzene ring appeared to slightly hamper the coupling. In fact, 1-(o-tolyl)propan-1-one (3f) was 
isolated in 72% yield from N-methyl-N-tosyl-2-methylbenzamide (1i) (Table 2, entry 8). Alkyl 
amides (1j and 1k) reacted similarly to give dialkyl ketones 3g and 3h in 95% and 98% yields, 
respectively (Table 2, entries 9 and 10). 

Table 2. Scope and limitations of the PEPPSI-catalyzed acyl alkylation reaction of amides with 
trialkylboranes a. 

Entry Amide Borane Product

1

MeO

O

N

Me

Ts

Ph

B
5

1a

B

B(n-C8H17)3

MeO

O

B(n-Bu)3

MeO

O

7

MeO

O

Ph

MeO

O

N

Me

Ms

1b

Entry Amide Borane Productb

MeO

O

N

Me

Boc

1c

BEt3

O

N

Me

Ts

Me

Ac

O

N

Me

Ts

1e

NC

O

N

Me

Ts

1f
O

N

Me

Ts

1i

1g

O

N

Me

Ts

1m
S

MeO

O

N
Ts

Me

MeO

O

N

Ph

Ts

1d

1k2a

O

N

Me

Ts

1n

2b

2c

1l

2d

2e

2e

2d

O

O

2a

O

7

O

Ph

S

MeO

O

3h (98%)MeO

O

3a (98%)

Ac

O

3b (92%)

NC

O

3c (70%)

3d (91%)

O

OMe

O

O

3f (72%)

Me

3i (97%)

3j (99%, 91%d)

3j (93%)

3k (98%)

3m (97%)

3n (98%)

2

3

4

5

6

7

8

10

11

12

13

14

15

16

17

1a

1a

1a

2a

2a

2a

2a

2a

3a (75%)

3a (99%)

+ isomer

+ isomer

O

N
Ts

Me1j

2a

3g (95%)

O

9

N

O

Ts

Me
2e

O

Ph

3l (90%)

9-BBN

Ph

9-BBN

Cl

O

N

Me

Ts

1h

O

3e (47%, 88%c)
2a

2a

 
a Reaction was run at 0.5 mol scale with respect to amides with 1.5 equiv trialkylboranes; b Isolated 
yield; c With 2.5 equiv BEt3; d B(n-C8H17)3 and branched isomers in situ generated from hydroboration 
of octene with 1.0 equiv BH3 in THF at room temperature was used. 
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a Reaction was run at 0.5 mol scale with respect to amides with 1.5 equiv trialkylboranes; b Isolated yield; c With
2.5 equiv BEt3; d B(n-C8H17)3 and branched isomers in situ generated from hydroboration of octene with 1.0 equiv
BH3 in THF at room temperature was used.

Tri(n-butyl)borane (2b) reacted with 1a similarly to triethylborane (2a) while no reaction of
tricyclohexylborane was observed, implying the failure of transmetalation of secondary-alkyl group
from boron to palladium. Hydroboration of alkenes represents an alternative route to primary alkyl
boranes. However, the long-chain primary alkyl boranes prepared by hydroboration of alkenes are
generally contaminated by the presence of branched-isomers due to the non-regiospecific addition
of B-H to C-C double bonds [35]. Due to the inertness of the secondary-alkyl group in alkylboranes,
reaction of 1a with tri(octyl)boranes prepared by hydroboration of 1-octene proceeded comparably to
that of tri(n-octyl)borane (2c) from Grignard reagent [36], giving 3j in 91% and 99% yields, respectively
(Table 2, entry 12). Given the fact that only one primary alkyl group of trialkylboranes is useful in
the palladium-catalyzed acylative cross-coupling, it is more practical to use long-chain alkyl boranes
prepared by hydroboration of corresponding olefins by dialkylborane, a more stable B-H source,
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e.g., 9-borabicyclo[3.3.1]nonane (9-BBN). Therefore, we further investigated use of B-octyl-9-BBN
formed in situ from octene as the trialkylborane counterpart and obtained 3j in 93% yield (Table 2,
entry 13). β-Phenyl propiophenones, which show intrinsic deactivation of the lowest and thermally
populated n, π*-triplet excited states in aryl alkyl ketones [37], could be readily obtained in 98%
yield (3k) by the acyl alkylation of amide 1a with B-(2-phenylpropyl)-9-BBN generated in situ from
9-BBN and α-methylstyrene. Alkyl and heterocyclic analogs, e.g., 1-cyclohexyl-3-phenylbutanone (31,
90%) and 3-phenyl-1-(thiophen-2-yl)butanone (3m, 97%) could also be prepared efficiently (Table 2,
entries 14–16).

However, when amide 1a was subjected to the hydroboration solution of n-butyl vinyl ether
with 9-BBN the C-O coupling product (vide supra) butyl 4-methoxybenzoate, instead of the desired
β-butoxy-4-methoxypropiophenone, was obtained in 83% yield, probably due to the facile β-alkoxy
elimination of labile B-(2-butoxyethyl)-9-BBN via intramolecular O-B coordination to B-butoxy-9-BBN
for the subsequent C-O cross-coupling (Scheme 3).
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3. Materials and Methods

3.1. General

Chemicals obtained commercially were used as received. Nuclear magnetic resonance (NMR)
spectra were recorded on a Bruker DPX-400 spectrometer (Bruker Co., Billerica, MA, USA) using
residue of the deuterated solvent or tetramethylsilane (TMS) as the internal standard (Cambridge
Isotope Lab. Inc., Tewksbury, MA, USA). For copies of 1H and 13C-NMR spectra of the products, please
see Supplementary Materials. All products were isolated by flash chromatography using petroleum
ether (Sinopharm Chemical Reagent Co. Ltd., Shanghai, China) (60–90 ◦C)/ethyl acetate (Sinopharm
Chemical Reagent Co. Ltd., Shanghai, China) as eluents. Triethylborane (1 M in THF), tributylborane,
9-BBN (1 M in THF) and BH3 (1 M in THF) were purchased from J&K chemicals (Beijing, China).
Amides [3], PEPPSI catalyst [30], 1,3-bis(2,6-diisopropylphenyl)imidazolium chloride (IPr-HCl) [32],
palladacycle (IPr) [33], and tri(n-octyl)borane [36] were prepared according to the procedures reported
previously. Solvents, methyl tert-butyl ether (MTBE), tetrahydrofuran (THF), and dioxane were dried
over sodium while acetonitrile was distilled over CaH2 prior to use.

3.2. General Procedure for the PEPPSI-Catalyzed Cross-Coupling of N-Methyl-N-Tosylamides
with Trialkylboranes

A Schlenk tube (20 mL) charged with amide (0.5 mmol), PEPPSI (0.025 mmol, 5 mol%), and K2CO3

(2 equiv) was degassed and then refilled with nitrogen, three times. Then, solvent MTBE (6.0 mL)
was added via syringe followed by 0.75 mL (1.5 equiv) borane solution (1 M in THF), which was
commercially available or was in situ prepared by hydroboration of olefin. The resulted mixture was
stirred for 24 h at room temperature under N2 atmosphere. The reaction was quenched with iced water
(5 mL) and extracted with MTBE (2 × 5 mL). The combined MTBE extracts were dried over anhydrous
Na2SO4. After filtration, solvents were removed by rotavapor to afford the crude product, which was
purified by flash column chromatography on silica gel using petroleum ether/EtOAc as the eluents.

1-(4-Methoxyphenyl)propanone (3a) [38]: Colorless oil (80.3 mg, 98%). 1H-NMR (400 MHz, CDCl3)
δ(ppm): 7.91 (d, J = 8.8 Hz, 2H, Ar), 6.89 (d, J = 8.8 Hz, 2H, Ar), 3.82 (s, 3H, OMe), 2.91 (q, J = 7.2 Hz,
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2H, CH2), 1.18 (t, J = 7.2 Hz, 3H, CH3). 13C-NMR (100 MHz, CDCl3) δ(ppm): 199.34 (C=O), 163.16
(C4

Ar), 130.06 (C2,6
Ar), 129.85 (C1

Ar), 113.52 (C3,5
Ar), 55.29 (OMe), 31.26 (CH2), 8.29 (CH3).

1-(4-Acetylphenyl)propanone (3b) [39]: White powder (80.9 mg, 92%), mp 69–71 ◦C. 1H-NMR (400 MHz,
CDCl3) δ(ppm): 8.00 (s, 4H, Ar), 3.01 (q, J = 7.2 Hz, 2H, CH2), 2.62 (s, 3H, Ac), 1.21 (t, J = 7.2 Hz,
3H, CH3). 13C-NMR (100 MHz, CDCl3) δ(ppm): 200.13 (C=O), 197.46 (C=O), 139.96 (C1/4

Ar), 139.90
(C1/4

Ar), 128.41 (CAr), 128.07 (CAr), 32.15 (CH2), 26.81 (MeCO), 7.97 (CH3).

4-Propionylbenzonitrile (3c) [40]: White powder (55.8 mg, 70%), mp 53–55 ◦C. 1H-NMR (400 MHz,
CDCl3) δ(ppm): 7.97 (d, J = 8.4 Hz, 2H, Ar), 7.69 (d, J = 8.4 Hz, 2H, Ar), 2.95 (q, J = 7.2 Hz, 2H, CH2),
1.15 (t, J = 7.2 Hz, 3H, CH3). 13C-NMR (100 MHz, CDCl3) δ(ppm): 199.16 (C=O), 139.64 (C4

Ar), 132.33
(CAr), 128.23 (CAr), 117.84 (CN/C1

Ar), 115.95 (CN/C1
Ar), 32.01 (CH2), 7.75 (CH3).

Methyl 4-propionylbenzoate (3d) [41]: White crystalline powder, (87.1 mg, 91%), mp 81–83 ◦C. 1H-NMR
(400 MHz, CDCl3) δ(ppm): 8.08 (d, J = 8.4 Hz, 2H, Ar), 7.97 (d, J = 8.4 Hz, 2H, Ar), 3.92 (s, 3H, OMe),
3.05 (q, J = 7.2 Hz, 2H, CH2), 1.21 (t, J = 7.2 Hz, 3H, CH3). 13C-NMR (100 MHz, CDCl3) δ(ppm): 200.15
(C=O), 166.17 (OC=O), 140.01 (C1/4

Ar), 133.59 (C1/4
Ar), 129.72 (CAr), 127.78 (CAr), 52.35 (OMe), 32.10

(CH2), 7.96 (CH3).

1-(4-Ethylphenyl)propanone (3e) [42]: Colorless oil (71.1 mg, 88%, with 2.5 equiv BEt3). 1H-NMR (400
MHz, CDCl3) δ(ppm): 7.81 (d, J = 8.4 Hz, 2H, Ar), 7.19 (d, J = 8.4 Hz, 2H, Ar), 2.90 (q, J = 7.2 Hz, 2H,
COCH2), 2.61 (q, J = 7.6 Hz, 2H, ArCH2), 1.17 (t, J = 7.6 Hz, 3H, COCH2CH3), 1.13 (t, J = 7.2 Hz, 3H,
Ar CH2CH3). 13C-NMR (100 MHz, CDCl3) δ(ppm): 200.51 (C=O), 149.71 (C4

Ar), 134.59 (C1
Ar), 128.14

(CAr), 127.97 (CAr), 31.60 (COCH2), 28.85 (ArCH2), 15.16 (ArCH2CH3), 8.27 (COCH2CH3).

1-(o-Tolyl)propanone (3f) [43]: Colorless oil (53.4 mg, 72%). 1H-NMR (400 MHz, CDCl3) δ(ppm): 7.53
(d, J = 7.6 Hz, 1H), 7.29–7.25 (m, 1H, Ar), 7.16–7.14 (m, 2H, Ar), 2.82 (q, J = 7.2 Hz, 2H, CH2), 2.41
(s, 3H, ArCH3), 1.11 (t, J = 7.2 Hz, 3H, CH3). 13C-NMR (100 MHz, CDCl3) δ(ppm): 205.04 (C=O),
138.01 (C1/2

Ar), 137.76 (C1/2
Ar), 131.81 (CAr), 130.97 (CAr), 128.19 (CAr), 125.56 (CAr), 34.64 (CH2), 21.19

(ArCH3), 8.31 (CH3).

1-Phenylpentan-3-one (3g) [44]: Colorless oil (77.1 mg, 95%). 1H-NMR (400 MHz, CDCl3) δ(ppm):
7.33–7.29 (m, 2H, Ph), 7.23–7.20 (m, 3H, Ph), 2.93 (t, J = 7.6 Hz, 2H, PhCH2CH2CO), 2.76 (t, J = 7.6 Hz, 2H,
PhCH2), 2.43 (q, J = 7.2 Hz, 2H,CO CH2CH3), 1.07 (t, J = 7.2 Hz, 3H, CH3). 13C-NMR (100 MHz, CDCl3)
δ(ppm): 210.61 (C=O), 141.10 (C1

Ph), 128.41 (Ph), 128.24 (Ph), 126.00 (C4
Ph), 43.81(PhCH2CH2CO),

36.05 (COCH2CH3), 29.77 (PhCH2), 7.69 (CH3).

1-(4-Methoxyphenyl)pentan-3-one (3h) [45]: Colorless oil (94.3 mg, 98%). 1H-NMR (400 MHz, CDCl3)
δ(ppm): 7.09 (d, J = 8.8 Hz, 2H, Ar), 6.81 (d, J = 8.8 Hz, 2H, Ar), 3.77 (s, 3H, OMe), 2.84 (t, J = 7.6 Hz, 2H,
PhCH2CH2CO), 2.64 (t, J = 7.6 Hz, 2H, PhCH2), 2.39 (q, J = 7.6 Hz, 2H, COCH2CH3), 1.03 (t, J = 7.6 Hz,
3H, CH3). 13C-NMR (100 MHz, CDCl3) δ(ppm): 210.80 (C=O), 157.85 (C4

Ar), 133.12 (C1
Ar), 129.16

(CAr), 113.79 (CAr), 55.17 (OMe), 44.09 (PhCH2CH2CO), 36.08 (COCH2CH3), 28.93 (PhCH2), 7.68 (CH3).

1-(4-Methoxyphenyl)pentanone (3i) [46]: Colorless oil (93.5 mg, 97%). 1H-NMR (400 MHz, CDCl3)
δ(ppm): 7.93 (d, J = 8.8 Hz, 2H, Ar), 6.91 (d, J = 9.2 Hz, 2H, Ar), 3.85 (s, 3H, OMe), 2.90 (t, J = 7.6 Hz,
2H, COCH2), 1.73–1.66 (m, 2H, COCH2CH2), 1.44–1.34 (m, 2H, COCH2CH2CH2), 0.94 (t, J = 7.6 Hz,
3H). 13C-NMR (100 MHz, CDCl3) δ(ppm): 199.20 (C=O), 163.23 (C4

Ar), 130.25 (C2,6
Ar), 130.11(C1

Ar),
113.59 (C3,5

Ar), 55.37 (OMe), 37.95 (COCH2), 26.68 (CH2), 22.48 (CH2), 13.90 (CH3).

1-(4-Methoxyphenyl)nonanone (3j) [47]: Colorless oil (123.0 mg, 99%, with tri(n-octyl)borane; 115 mg,
93% with hydroboration of octene with 9-BBN; 113 mg, 91% with hydroboration of octene with BH3.
1H-NMR (400 MHz, CDCl3) δ(ppm): 7.86 (d, J = 9.2 Hz, 2H, Ar), 6.84 (d, J = 9.2 Hz, 2H, Ar), 3.78 (s, 3H,
OMe), 2.82 (t, J = 7.6 Hz, 2H, COCH2), 1.63 (t, J = 7.6 Hz, 2H, COCH2CH2), 1.29–1.19 (m, 10H, (CH2)5),
0.80 (t, J = 7.2Hz, 3H, CH3). 13C-NMR (100 MHz, CDCl3) δ(ppm): 199.20 (C=O), 163.23 (C4

Ar), 130.25
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(C2,6
Ar), 130.13 (C1

Ar), 113.60 (C3,5
Ar), 55.37 (OMe), 38.26 (COCH2), 31.79 (CH2), 29.41 (CH2), 29.39

(CH2), 29.14 (CH2), 24.59 (CH2), 22.61 (CH2), 14.05 (CH3).

1-(4-Methoxyphenyl)-3-phenylbutanone (3k) [46]: White powder (125.0 mg, 98%), mp 84–86 ◦C. 1H-NMR
(400 MHz, CDCl3) δ(ppm): 7.93 (d, J = 8.8 Hz, 2H, Ar), 7.34–7.30 (m, 4H, Ph), 7.23–7.19 (m, 1H, Ph),
6.92 (d, J = 8.8 Hz, 2H, Ar), 3.86 (s, 3H, OMe), 3.55–3.47 (m, 1H, CH), 3.26 (dd, J1 = 16.4 Hz, J2 = 5.6 Hz,
1H, CH2), 3.14 (dd, J1 = 16.0 Hz, J2 = 8.4 Hz, 1H, CH2), 1.34 (d, J = 7.8, 3H, CH3). 13C-NMR (100 MHz,
CDCl3) δ(ppm): 197.59 (C=O), 163.31 (C4

Ar), 146.65 (C1
Ph), 130.28 (CAr/CPh), 130.21 (C1

Ar), 128.43
(CPh), 126.79 (CPh), 126.15 (C4

Ph), 113.61 (C3,5
Ar), 55.37 (OMe), 46.59 (COCH2), 35.67 (CH), 21.79 (CH3).

1-Cyclohexyl-3-phenylbutanone (3l): Colorless oil (103.7 mg, 90%). 1H-NMR (400 MHz, CDCl3) δ(ppm):
7.33–7.29 (m, 2H, Ph), 7.25–7.19 (m, 3H, Ph), 3.41–3.32 (m, 1H, PhCH), 2.77 (dd, J1 = 16.8 Hz, J2 = 6.4 Hz,
1H,CO CH), 2.69 (dd, J1 = 16.4 Hz, J2 = 8.0 Hz, 1H, COCH2), 2.29–2.22 (m, 1H, COCH), 1.83–1.65 (m,
5H, Cy), 1.35–1.17 (m, 8H, Cy overlapped with CH3). 13C-NMR (100 MHz, CDCl3) δ(ppm): 212.83
(C=O), 146.54 (C1

Ph), 128.39 (CPh), 126.75 (CPh), 126.11 (C4
Ph), 51.19 (COCH), 49.10 (COCH2), 35.02

(CH), 28.22 (Cy), 28.05 (Cy), 25.78 (Cy), 25.61(Cy), 25.53 (Cy), 21.79 (CH3). HRMS (ESI) m/z calcd for
C16H22ONa [M + Na]+ 253.1568, found 253.1569.

3-Phenyl-1-(thiophen-2-yl)butanone (3m) [48]: Colorless oil (111.5 mg, 97%). 1H-NMR (400 MHz, CDCl3)
δ(ppm): 7.70–7.69 (m, 1H, thiophenyl), 7.64–7.63 (m, 1H, thiophenyl), 7.36–7.28 (m, 4H, Ph), 7.25–7.23
(m, 1H, Ph), 7.14–7.12 (m, 1H, thiophenyl), 3.56–3.51 (m, 1H, PhCH), 3.24 (dd, J1 = 16.0 Hz, J2 = 6.0 Hz,
1H, CH2CO), 3.14 (dd, J1 = 15.6 Hz, J2 = 8.4 Hz, 1H, CH2CO), 1.38 (d, J = 6.8 Hz, 3H, CH3). 13C-NMR
(100 MHz, CDCl3) δ(ppm): 191.94 (C=O), 146.18 (C1

Ph), 144.60 (C2 thiophenyl), 133.56 (thiophenyl),
131.81 (thiophenyl), 128.49(CPh), 128.01(thiophenyl), 126.78 (CPh), 126.30 (C4

Ph), 47.78 (COCH2), 35.93
(CH), 21.64 (CH3).

1-Phenylnonanone (3n) [47]: Colorless oil (106.8 mg, 98%). 1H-NMR (400 MHz, CDCl3) δ(ppm): 7.97–7.95
(m, 2H, Ph), 7.57–7.53 (m, 1H, Ph), 7.47–7.44 (m, 2H, Ph), 2.96 (t, J = 7.6 Hz, 2H, COCH2), 1.77–1.69
(m, 2H, COCH2CH2), 1.39–1.25 (m, 10H, (CH2)5), 0.88 (t, J = 6.8 Hz, 3H, CH3). 13C-NMR (100 MHz,
CDCl3) δ(ppm): 200.62 (C=O), 137.05 C1

Ph), 132.83 (C4
Ph), 128.51 (CPh), 128.02 (CPh), 38.61 (COCH2),

31.81 (CH2), 29.42 (CH2), 29.36 (CH2), 29.15 (CH2), 24.36 (CH2), 22.63 (CH2), 14.08 (CH3).

4. Conclusions

In summary, we have developed a highly efficient acylative cross-coupling of trialkylboranes
with activated amides by using 1,3-bis(2,6-diisopropyl)phenylimidazolylidene and 3-chloropyridine
co-supported palladium chloride, the PEPPSI catalyst, under mild conditions. Bases appeared to
play a key role in the reaction, among which K2CO3 performed best in MTBE at room temperature.
The reaction proceeded to give alkyl ketones in good to excellent yields, tolerating a variety of
functional groups in the amide counterpart. Unlike the high-order arylboron compounds, in which all
the aryl groups react effectively, only one of the three primary alkyl groups in trialkylboranes could be
used as alkyl source for the acyl alkylation. The trialkylboranes generated in situ by hydroboration
of olefins with BH3 or 9-BBN performed comparably to those separately prepared. This protocol
complements ketone synthesis via palladium-catalyzed acylative cross-coupling of amides, providing
a feasible access to both monoalkyl and dialkyl ketones.

Supplementary Materials: The following are available online, Figures S1–S28: 1H and 13C-NMR of products
3a–3n, Figure S29 HRMS of 3l.
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