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Abstract: A series of novel oleanolic acid 3-O-β-D-glucuronopyranoside derivatives have been
designed and synthesized. Biological evaluation has indicated that some of the synthesized
compounds exhibit moderate to good activity against H2O2-induced injury in rat myocardial cells
(H9c2). Particularly, derivative 28-N-isobutyl ursolic amide 3-O-β-D-galactopyranoside (8a) exhibited
a greater protective effect than the positive control oleanolic acid 3-O-β-D-glucuronopyranoside,
indicating that it possesses a great potential for further development as a cardiovascular disease
modulator by structural modification.
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1. Introduction

Cardiovascular disease is among the leading causes of death worldwide. According to the World
Health Organization, mortality from cardiovascular disease is expected to reach about 25 million by
2030 [1–3]. Despite the emergence of more and more listed drugs, the treatment of cardiovascular
disease is still not optimistic [4–7]. Therefore, it is clinically necessary to research and develop more
effective and safe agents for preventing and managing cardiovascular disease.

Aralia elata (Miq) Seem (AS), a kind of herbal medicine, has been used as a tonic, antiarrhythmic,
anti-arthritic, antihypertensive, and anti-diabetic agent in traditional Chinese medicine [8,9]. The total
saponins extracted from AS, which are found to be the main pharmacological active ingredients
of AS, have been proven to exhibit anti-myocardial ischemic and anti-hypoxic activities, as well
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as anti-oxidative, anti-inflammatory, and anti-apoptotic capacity [10–12]. Moreover, as the main
components of A. elata Xinmaitong capsules (Clinical Trial Approval Number 2003L01111 by
China Food and Drug Administration), AS was developed for the treatment of coronary heart
disease and has successfully completed phase III clinical trials in China [13]. Oleanolic acid
3-O-β-D-glucuronopyranoside (1, Figure 1) is one of the major natural pentacyclic triterpenoid
saponins isolated from AS [14,15]. We previously demonstrated that the triterpenoid saponins
araloside C (2, Figure 1) and elatoside C (3, Figure 1) from AS can protect myocardial cells
from ischemia/reperfusion (IR) injury and reduce I/R-induced oxidative stress and apoptosis
in cardiomyoblasts [16–18]. We also reported that the proteomic profiling of oleanolic acid
3-O-β-D-glucuronopyranoside targets is associated with anti-apoptotic effects in endothelial cells
by using biotinconjugated calenduloside E analogue (BCEA, 4, Figure 1) [19]. However, there are no
reports about the protective effects of oleanolic acid 3-O-β-D-glucuronopyranoside synthetic derivatives
on cardiomyoblast damage.

Molecules 2018, 23, 44  2 of 10 

 

anti-oxidative, anti-inflammatory, and anti-apoptotic capacity [10–12]. Moreover, as the main 
components of A. elata Xinmaitong capsules (Clinical Trial Approval Number 2003L01111 by China 
Food and Drug Administration), AS was developed for the treatment of coronary heart disease and 
has successfully completed phase III clinical trials in China [13]. Oleanolic acid 3-O-β-D-
glucuronopyranoside (1, Figure 1) is one of the major natural pentacyclic triterpenoid saponins 
isolated from AS [14,15]. We previously demonstrated that the triterpenoid saponins araloside C (2, 
Figure 1) and elatoside C (3, Figure 1) from AS can protect myocardial cells from ischemia/reperfusion 
(IR) injury and reduce I/R-induced oxidative stress and apoptosis in cardiomyoblasts [16–18]. We 
also reported that the proteomic profiling of oleanolic acid 3-O-β-D-glucuronopyranoside targets is 
associated with anti-apoptotic effects in endothelial cells by using biotinconjugated calenduloside E 
analogue (BCEA, 4, Figure 1) [19]. However, there are no reports about the protective effects of 
oleanolic acid 3-O-β-D-glucuronopyranoside synthetic derivatives on cardiomyoblast damage. 

 
Figure 1. The structures of triterpenoid saponins from Aralia elata (Miq) Seem and the probe of 
oleanolic acid 3-O-β-D-glucuronopyranoside BCEA. 

In this current study, we describe the preparation of a series of novel oleanolic acid 3-O-β-D-
glucuronopyranoside derivatives with several amine moieties (isobutylamine, propynylamine, and 
3,4-dimethoxybenzylamine) that are appended to the C-28 carboxyl group of the parental compound. 
Meanwhile, in order to extend the activity scaffold of oleanolic acid 3-O-β-D-glucuronopyranoside 
and improve its cardiovascular protective effects, we planned to change the aglycone moiety from 
oleanane to ursane, which is another natural pentacyclic triterpenoid that possesses biological activity. 
To further optimize the potency of oleanolic acid 3-O-β-D-glucuronopyranoside derivatives and to 
gain further insight into their structure–activity relationship, we also designed the analogues that 
derive from glycosylation at the C-3 position with D-glucose and D-galactose. For this purpose, herein 
we synthesized a series of novel oleanolic acid 3-O-β-D-glucuronopyranoside amide derivatives (5a–c, 
6a–c, 7a–c, 8a–c, Figure 2) and evaluated their protective activities as cardiovascular disease agents. 

Figure 1. The structures of triterpenoid saponins from Aralia elata (Miq) Seem and the probe of oleanolic
acid 3-O-β-D-glucuronopyranoside BCEA.

In this current study, we describe the preparation of a series of novel oleanolic acid 3-O-β-D-
glucuronopyranoside derivatives with several amine moieties (isobutylamine, propynylamine, and
3,4-dimethoxybenzylamine) that are appended to the C-28 carboxyl group of the parental compound.
Meanwhile, in order to extend the activity scaffold of oleanolic acid 3-O-β-D-glucuronopyranoside
and improve its cardiovascular protective effects, we planned to change the aglycone moiety from
oleanane to ursane, which is another natural pentacyclic triterpenoid that possesses biological activity.
To further optimize the potency of oleanolic acid 3-O-β-D-glucuronopyranoside derivatives and to
gain further insight into their structure–activity relationship, we also designed the analogues that
derive from glycosylation at the C-3 position with D-glucose and D-galactose. For this purpose, herein
we synthesized a series of novel oleanolic acid 3-O-β-D-glucuronopyranoside amide derivatives (5a–c,
6a–c, 7a–c, 8a–c, Figure 2) and evaluated their protective activities as cardiovascular disease agents.
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Figure 2. The structures of oleanolic acid 3-O-β-D-glucuronopyranoside derivatives.

2. Results and Discussion

2.1. Chemistry

The synthesis of derivatives 5a–c, 6a–c, 7a–c and 8a–c is outlined in Scheme 1. The naturally
abundant oleanolic acid (9a) and ursolic acid (9b) were treated with benzyl bromide (BnBr), potassium
carbonate solution (K2CO3), and tetrabutylammonium bromide (TBAB) in dry dichloromethane
(DCM) to obtain 10a and 10b, respectively. Compounds 10a and 10b reacted with glucosyl donors
and galactosyl donors in Lewis acid trimethylsilyl trifluoromethanesulfonate (TMSOTf) conditions
to provide compounds 11a–d, which were subjected to several hydrogenations to obtain compounds
12a–d in the presence of catalytic amounts of 10% Pd–C at atmospheric pressure. Compounds 13a–c,
14a–c, 15a–c and 16a–c were attained via amidation with various amines of the C-28 carboxyl group
of the saponin scaffold, and then followed by deprotection of the glycosyl groups in the presence of
NaOMe/MeOH solution to gain compounds 5a–c, 6a–c, 7a–c and 8a–c. The above reaction conditions
have also been described in our previous paper [19].
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Scheme 1. The synthesis of target compounds. Reagents and conditions: (a) BnBr, K2CO3, TBAB,
DCM-H2O, r.t., 18 h; (b) glycosyl donors, TMSOTf, 4 Å MS, DCM, r.t., 2–4 h; (c) H2, Pd–C (10%), EtOAc,
reflux, 4–6 h; (d) HOBt, EDCI, R5NH2, r.t., 4–16 h; (e) NaOMe, MeOH, r.t., 2–3 h.
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2.2. Biological Results and Discussion

The protective effect of oleanolic acid 3-O-β-D-glucuronopyranoside and its derivatives against
H2O2-induced cell injury was detected using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) assay. MTT results show that some compounds exhibited moderate to good protective
effects against H2O2-induced injury in H9c2 cells. As shown in Figure 3, the preliminary test of
compounds 5a–c, 6a–c, 7a–c and 8a–c at 0.1 µg/mL revealed that 5a–b, 6a–b, 7a–b and 8a–b better
increased the viability of H9c2 cells. Pretreatment of H9c2 cells with compounds 6–8a and 8b exhibited
a better protective effect than oleanolic acid 3-O-β-D-glucuronopyranoside (OAGP). The survival
rate increased from 49.69% (with H2O2 treatment alone) to 58.69%, 61.21%, 66.86% and 61.19% after
pretreatment with 0.1 µg/mL compounds 6–8a and 8b, respectively. Among them, analogue 8a
exhibited a more potent cytoprotective effect than the others after pretreatment for 12 h, which
suggests that 8a deserves further evaluation as a potential therapeutic agent for protection against
H2O2-induced injury in H9c2 cells.

The preliminary structure activity relationships (SARs) suggest that amide derivatives of oleanolic
acid 3-O-β-D-glucuronopyranoside containing ursane scaffolds were more potent than those containing
oleanane scaffolds (e.g., compounds 7–8a vs. 5–6a). Beyond that, the compounds 5a–b, 6a–b, 7a–b and
8a–b with isobutylamine and propynylamine groups could increase cell viability after H2O2 treatment,
compared to the control, indicating that the introduction of these aliphatic substituent groups could
increase cell viability. However, compounds 5a–c, including the 3,4-dimethoxybenzylamine group,
were inert, suggesting that the unsaturated aryl groups were the adverse substituent group in the
derivatives. In addition, these above amide analogs possessed protective potency, indicating that the
C-28 carboxyl group was not an essential group for protective activity, and the substituents on the
amide nitrogen affected the cell viability obviously.

1 
 

 

Figure 3. Effects of oleanolic acid 3-O-β-D-glucuronopyranoside derivatives on H2O2-induced cell
damage in H9c2 cells. H9c2 cardiomyoblasts were pre-incubated with a 0.1 µg/mL concentration
of derivatives (5a–c, 6a–c, 7a–c and 8a–c) for 12 h and then exposed to H2O2 (450 µmol/L) for 1 h.
The data are expressed as the mean ± S.D. from three independent experiments. ### p < 0.001 versus
control group; * p < 0.05 versus H2O2-treated cells; ** p < 0.01 versus H2O2-treated cells; *** p < 0.001
versus H2O2-treated cells.
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3. Experimental Section

3.1. General Information

All the reagents were used without further purification unless otherwise specified. Solvents were
dried and redistilled in the usual manner prior to use. Analytical TLC was performed using silica
gel HF254. Preparative column chromatography was performed with silica gel H. 1H- and 13C-NMR
spectra were recorded on a Bruker Advance III 600 MHz spectrometer. HRMS were obtained on a
Thermo Fisher LTQ-Obitrap XL. Oleanolic acid 3-O-β-D-glucuronopyranoside was provided by the
Institute of Medicinal Plant Development (Beijing, China) [20]. Cell culture products were purchased
from Gibco BRL (Grand Island, NY, USA).

3.2. Chemistry

The synthesis of the glucosyl donor and galactosyl donor was described [20].

3.2.1. General Procedure for the Synthesis of Compounds 10a–10b

To a solution of oleanolic acid (9a) or ursolic acid (9b) (10.0 g, 21.8 mmol) in dry DCM (300 mL),
TBAB (0.8 g, 2.5 mmol) and K2CO3 (7.4 g, 53.6 mmol) in water (50 mL) were added, and benzyl
bromide (3.2 mL, 26.8 mmol) was dropped at 0 ◦C. Then, the reaction mixture was stirred at room
temperature for 18 h. The reaction was monitored by TLC. The crude mixture was separated and the
water layer was extracted with DCM (3 × 100 mL). The combined organic layer was washed with
0.1 mol/L HCl aqueous solution, NaHCO3 saturated aqueous solution, and NaCl saturated aqueous
solution in sequence, and then dried over Na2SO4 and purified through column chromatography
(eluent: PE-EtOAc, 8:1) to offer pure white solids 10a (10.8 g, 91% yield) and 10b (11.1 mg, 93% yield).

3.2.2. General Procedure for the Synthesis of Compounds 11a–11d

To a solution of compound 10a or 10b (3.3 g, 6.0 mmol) in dry DCM (50 mL), glucosyl donor
or galactosyl donor (5.8 g, 7.9 mmol) and 4 Å molecular sieve 0.5 g were added and stirred at
room temperature for 1 h under N2 air. Then, Lewis acid TMSOTf (60 µg, 0.3 mmol) was dropped
and reacted for 2–4 h. When complete, 1.0 mL triethylamine was added to quench the reaction.
Then, the suspension was filtered and the filtrate was evaporated and the crude product was subjected
to column chromatography (eluent: PE-EtOAc, 10:1) to gain the pure compounds 11a (5.3 g, 79% yield),
11b (5.1 g, 75% yield), 11c (4.7 g, 69% yield), and 11d (4.7 g, 70% yield) as white solids.

3.2.3. General Procedure for the Synthesis of Compounds 12a–12d

A mixture of 11a–11d (3.0 g, 2.6 mmol) and 10% Pd/C (1.5 mg) was hydrogenated at 1 atm for
4–6 h in refluxing EtOAc (30 mL). The mixture was filtered and concentrated and the residue was
purified by silica gel column chromatography (eluent: PE-EtOAc, 3:1) to get the pure compounds
12a (2.5 g, 92% yield), 12b (2.5 g, 93% yield), 12c (2.4 g, 90% yield), and 12d (2.4 g, 91% yield) as
white solids.

3.2.4. General Procedure for the Synthesis of Compounds 13a–c, 14a–c, 15a–c, 16a–c and compounds
5a–c, 6a–c, 7a–c, 8a–c

To a solution of compounds 12a–12d (1.0 g, 0.98 mmol) in dry DCM (15 mL), HOBt (0.2 g,
1.46 mmol) and EDCI (0.28 g, 1.46 mmol) were added and stirred at room temperature for 1 h. To this
mixture, various amines (3.92 mmol) were added respectively at 0 ◦C and the reaction mixture was
stirred 4–16 h until its completion. The solvent was washed with 0.1 mol/L HCl aqueous solution,
NaHCO3 saturated aqueous solution, and NaCl saturated aqueous solution in sequence, and then dried
over Na2SO4. The suspension was filtered and the filtrate was concentrated to give compounds 13a–c,
14a–c, 15a–c and 16a–c, which were used without further purification. To a solution of compounds
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13a–c, 14a–c, 15a–c and 16a–c in MeOH/DCM (8 mL, 3:1) was added 1 mol/L NaOMe/NaOH solvent
(1.6 mL). The reaction mixture was stirred for 2–3 h until its completion, after that Amberlite IR-120
was added to acidate pH 7. The suspension was filtered and the filtrate was evaporated and purified
through column chromatography (eluent: DCM-CH3OH, 10:1) to offer pure white solids 5a–c, 5a–c,
7a–c, and 8a–c.

28-N-Isobutyl oleanolic amide 3-O-β-D-glucopyranoside (5a): White solid, 88% yield; [α]25
D : +56.25 (c 0.13,

MeOH); 1H-NMR (600 MHz, pyridine-d5) δ: 7.25 (t, J = 5.8 Hz, 1H, N-H), 5.47 (t, J = 3.3 Hz, 1H, H-12),
4.96 (d, J = 7.8 Hz, 1H, H-1′), 4.61 (dd, J = 11.6 Hz, 2.1 Hz, 1H, Glu-H), 4.44 (dd, J = 11.6 Hz, 5.2 Hz, 1H,
Glu-H), 4.29–4.23 (m, 2H, Glu-H), 4.08–4.03 (m, 2H, Glu-H), 3.46–3.41 (m, 2H, H-3, H-31-1), 3.12–3.07
(m, 2H, H-18, H-31-2), 1.35 (s, 3H, CH3), 1.30 (s, 3H, CH3), 1.04 (s, 3H, CH3), 0.97 (s, 6H, 2 × CH3),
0.95 (s, 3H, CH3), 0.91 (d, J = 6.9 Hz, 6H, H-33, H-34), 0.90 (s, 3H, CH3); 13C-NMR (150 MHz, pyridine-d5)
δ: 177.5, 145.1, 122.8, 107.0, 88.9, 78.8, 78.4, 75.9, 71.9, 63.1, 55.8, 48.0, 47.3, 46.8, 46.6, 42.3, 42.1, 39.8,
39.6, 38.8, 37.0, 34.5, 33.9, 33.2 (C × 2), 30.9, 28.8, 28.3, 28.0, 26.6, 26.2, 23.9, 23.8 (C × 2), 20.5 (C × 2),
18.5, 17.5, 17.1, 15.5; HRMS (ESI): Calcd for [M + Na]+ C40H67NNaO7: 696.4815, found 696.4811.

28-N-Propargyl oleanolic amide 3-O-β-D-glucopyranoside (5b): White solid, 75% yield; [α]25
D : +23.25 (c 0.13,

MeOH); 1H-NMR (600 MHz, pyridine-d5) δ: 8.03 (t, J = 5.5 Hz, 1H, N-H), 5.43 (t, J = 3.5 Hz, 1H, H-12),
4.96 (d, J = 7.7 Hz, 1H, H-1′), 4.60 (dd, J = 11.6 Hz, 2.3 Hz, 1H, Glu-H), 4.44–4.38 (m, 2H, H-31-1, Glu-H),
4.33–4.23 (m, 3H, H-31-2, Glu-H), 4.07–4.01 (m, 2H, Glu-H), 3.41 (dd, J = 11.8 Hz, 4.4 Hz, 1H, H-3),
3.14 (dd, J = 13.6 Hz, 4.4 Hz, 1H, H-18), 3.09 (t, J = 2.5 Hz, 1H, H-33), 1.34 (s, 3H, CH3), 1.29 (s, 3H,
CH3), 1.03 (s, 3H, CH3), 1.01 (s, 3H, CH3), 0.93(s, 6H, 2 × CH3), 0.88 (s, 3H, CH3); 13C-NMR (150 MHz,
pyridine-d5) δ: 177.3, 144.7, 122.9, 106.8, 88.8, 82.1, 78.7, 78.2, 75.7, 71.8, 71.7, 63.0, 55.7, 47.9, 46.7, 46.4,
42.1, 41.7, 39.8, 39.4, 38.7, 36.9, 34.3, 33.5, 33.1, 33.0, 30.8, 29.1, 28.2, 27.8, 26.5, 26.1, 23.7, 23.6 (C × 2),
18.4, 17.6, 17.0, 15.4; HRMS (ESI): Calcd for [M + H]+ C39H62NO7: 656.4526, found 656.4514.

28-N-(3′,4′-Dimethoxybenzyl) oleanolic amide 3-O-β-D-glucopyranoside (5c): White solid, 77% yield; [α]25
D :

+21.00 (c 0.13, MeOH); 1H-NMR (600 MHz, pyridine-d5) δ: 7.90 (t, J = 5.7 Hz, 1H, N-H), 7.12
(d, J = 1.8 Hz, 1H, H-2′ ′), 7.06 (dd, J = 8.1 Hz, 1.8 Hz, 1H, H-6′ ′), 6.92 (d, J = 8.2 Hz, 1H, H-5′ ′),
5.46 (t, J = 3.3 Hz, 1H, H-12), 4.97 (d, J = 7.8 Hz, 1H, H-1′), 4.79 (dd, J = 14.5 Hz, 5.9 Hz, 1H, H-31-1),
4.62–4.56 (m, 2H, H-31-2, Glu-H), 4.44 (dd, J = 11.6 Hz, 5.4 Hz, 1H, Glu-H), 4.30–4.24 (m, 2H, Glu-H),
4.08–4.02 (m, 2H, Glu-H), 3.77 (s, 3H, Ph-OMe), 3.74 (s, 3H, Ph-OMe), 3.42 (dd, J = 11.8 Hz, 4.3 Hz, 1H,
H-3), 3.18 (dd, J = 13.1 Hz, 4.0 Hz, 1H, H-18), 1.35 (s, 3H, CH3), 1.31 (s, 3H, CH3), 1.03 (s, 3H, CH3),
0.95 (s, 6H, 2 × CH3), 0.91 (s, 3H, CH3), 0.89 (s, 3H, CH3); 13C-NMR (150 MHz, pyridine-d5) δ: 177.4,
149.1, 144.9, 133.3, 122.8, 120.5, 112.7, 106.8, 88.8, 78.7, 78.2, 75.8, 71.9, 63.1, 56.0, 55.8 (C × 2), 47.9, 46.8,
46.5, 43.4, 42.2, 42.0, 39.8, 39.5, 38.7, 37.0, 34.4, 33.8, 33.1, 33.0, 30.8, 28.2, 27.9, 26.5, 26.1, 23.8 (C × 2),
23.7, 18.4, 17.4, 17.0, 15.4; HRMS (ESI): Calcd for [M + Na]+ C45H69NNaO9: 790.4870, found 790.4861.

28-N-Isobutyl oleanolic amide 3-O-β-D-galactopyranoside (6a): White solid, 87% yield; [α]25
D : +63.00 (c 0.13,

MeOH); 1H-NMR (600 MHz, pyridine-d5) δ: 7.26 (t, J = 5.8 Hz, 1H, N-H), 5.47 (t, J = 3.3 Hz, 1H, H-12),
4.88 (d, J = 7.8 Hz, 1H, H-1′), 4.61–4.60 (m, 1H, Gal-H), 4.52–4.46 (3H, m, Gal-H), 4.19 (dd, J = 3.4 Hz,
9.5 Hz, 1H, Gal-H), 4.14 (t, J = 5.9 Hz, 1H, Gal-H), 3.46–3.40 (m, 2H, H-3, H-31-1), 3.12–3.06 (m, 2H,
H-18, H-31-2), 1.34 (s, 3H, CH3), 1.31 (s, 3H, CH3), 1.01 (s, 3H, CH3), 0.97 (s, 6H, 2 × CH3), 0.95 (s, 3H,
CH3), 0.91 (s, 3H, CH3), 0.91 (d, J = 6.7 Hz, 6H, H-33, H-34); 13C-NMR (150 MHz, pyridine-d5) δ: 177.4,
145.1, 122.7, 107.4, 88.7, 76.8, 75.4, 73.2, 70.3, 62.4, 55.8, 47.9, 47.3, 46.8, 46.5, 42.2, 42.1, 39.8, 39.5, 38.8,
37.0, 34.4, 33.8, 33.1 (C × 2), 30.8, 28.7, 28.2, 27.9, 26.6, 26.1, 23.8 (C × 2), 23.7, 20.4 (C × 2), 18.5, 17.5,
16.9, 15.5; HRMS (ESI): Calcd for [M + Na]+ C40H67NNaO7: 696.4815, found 696.4811.

28-N-Propargyl oleanolic amide 3-O-β-D-galactopyranoside (6b): White solid, 75% yield; [α]25
D : +57.00

(c 0.13, MeOH); 1H-NMR (600 MHz, pyridine-d5) δ: 8.08–8.05 (m, 1H, N-H), 5.44 (t, J = 3.5 Hz,
1H, H-12), 4.88 (d, J = 7.7 Hz, 1H, H-1′), 4.61–4.60 (m, 1H, Gal-H), 4.52–4.46 (m, 3H, Gal-H),
4.43–4.39 (m, 1H, H-31-1), 4.33–4.29 (m, 1H, H-31-2), 4.19 (dd, J = 3.2 Hz, 9.3 Hz, 1H, Gal-H), 4.14
(t, J = 5.9 Hz, 1H, Gal-H), 3.41 (dd, J = 11.8 Hz, 4.4 Hz, 1H, H-3), 3.15 (dd, J = 13.6 Hz, 4.4 Hz, 1H, H-18),
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3.10 (t, J = 2.5 Hz, 1H, H-33), 1.33 (s, 3H, CH3), 1.30 (s, 3H, CH3), 1.01 (s, 3H, CH3), 1.00 (s, 3H, CH3),
0.93 (s, 6H, 2 × CH3), 0.89 (s, 3H, CH3); 13C-NMR (150 MHz, pyridine-d5) δ: 177.3, 144.7, 122.9, 107.4,
88.7, 82.1, 76.7, 75.4, 73.2, 71.7, 70.3, 62.4, 55.8, 47.9, 46.7, 46.4, 42.1, 41.7, 39.8, 39.5, 38.7, 37.0, 34.3, 33.5,
33.1, 33.0, 30.8, 29.2, 28.2, 27.8, 26.6, 26.1, 23.8, 23.7, 23.6, 18.4, 17.6, 16.9, 15.5; HRMS (ESI): Calcd for
[M + H]+ C39H62NO7: 656.4526, found 656.4516.

28-N-(3′,4′-Dimethoxybenzyl) oleanolic amide 3-O-β-D-galactopyranoside (6c): White solid, 73% yield;
[α]25

D : +20.25 (c 0.13, MeOH); 1H-NMR (600 MHz, pyridine-d5) δ: 7.88 (t, J = 5.7 Hz, 1H, N-H),
7.12 (d, J = 1.8 Hz, 1H, H-2′ ′), 7.06 (dd, J = 8.1 Hz, 1.8 Hz, 1H, H-6′ ′), 6.92 (d, J = 8.2 Hz, 1H, H-5′ ′),
5.46 (t, J = 3.3 Hz, 1H, H-12), 4.88 (d, J = 7.8 Hz, 1H, H-1′), 4.79 (dd, J = 14.5 Hz, 5.9 Hz, 1H, H-31-1),
4.61–4.56 (m, 2H, H-31-2, Gal-H), 4.52–4.46 (3H, m, Gal-H), 4.19 (dd, J = 3.5 Hz, 9.4 Hz, 1H, Gal-H),
4.14 (t, J = 6.1 Hz, 1H, Gal-H), 3.77 (s, 3H, Ph-OMe), 3.74 (s, 3H, Ph-OMe), 3.41 (dd, J = 11.7 Hz, 4.3 Hz,
1H, H-3), 3.18 (dd, J = 13.4 Hz, 4.0 Hz, 1H, H-18), 1.33 (s, 3H, CH3), 1.31 (s, 3H, CH3), 0.99 (s, 3H, CH3),
0.95 (s, 6H, 2 × CH3), 0.91 (s, 3H, CH3), 0.90 (s, 3H, CH3); 13C-NMR (150 MHz, pyridine-d5) δ: 177.4,
149.1, 144.9, 133.3, 122.8, 120.5, 112.7, 107.5, 88.7, 76.8, 75.4, 73.2, 70.3, 62.5, 56.0, 55.8 (C × 2), 48.0, 46.8,
46.5, 43.4, 42.2, 42.0, 39.8, 39.5, 38.7, 37.0, 34.4, 33.8, 33.1, 33.0, 30.8, 28.2, 27.9, 26.6, 26.1, 23.8 (C × 2),
23.7, 18.4, 17.4, 17.0, 15.5; HRMS (ESI): Calcd for [M + Na]+ C45H69NNaO9: 790.4870, found 790.4860.

28-N-Isobutyl ursolic amide 3-O-β-D-glucopyranoside (7a): White solid, 85% yield; [α]25
D : +27.00 (c 0.13,

MeOH); 1H-NMR (600 MHz, pyridine-d5) δ: 7.18 (t, J = 5.8 Hz, 1H, N-H), 5.47 (t, J = 3.4 Hz, 1H, H-12),
4.97 (d, J = 7.7 Hz, 1H, H-1′), 4.62 (dd, J = 11.7 Hz, 2.4 Hz, 1H, Glu-H), 4.43 (dd, J = 11.7 Hz, 5.5 Hz, 1H,
Glu-H), 4.29–4.22 (m, 2H, Glu-H), 4.08–4.02 (m, 2H, Glu-H), 3.44 (dd, J = 11.9 Hz, 4.5 Hz, 1H, H-3),
3.35–3.31 (m, 1H, H-31-1), 3.18–3.14 (m, 1H, H-31-2), 2.40 (d, J = 10.6 Hz, 1H, H-18), 1.35 (s, 3H, CH3),
1.24 (s, 3H, CH3), 1.04 (s, 3H, CH3), 0.99 (s, 3H, CH3), 0.97 (d, J = 6.5 Hz, 3H, CH3), 0.95 (s, 3H, CH3),
0.92–0.89 (m, 9H, 3 × CH3); 13C-NMR (150 MHz, pyridine-d5) δ: 177.3, 139.8, 125.7, 106.9, 88.9, 78.7,
78.2, 75.8, 71.9, 63.1, 55.8, 53.7, 47.9 (C × 2), 47.4, 42.6, 40.0, 39.9, 39.5, 39.3, 38.9, 38.2, 36.9, 33.4, 31.2,
28.6, 28.3 (C × 2), 26.6, 24.9, 23.7, 23.6, 21.3, 20.5 (C × 2), 18.4, 17.4 (C × 2), 17.0, 15.6; HRMS (ESI):
Calcd for [M + Na]+ C40H67NNaO7: 696.4815, found 696.4807.

28-N-Propargyl ursolic amide 3-O-β-D-glucopyranoside (7b): White solid, 72% yield; [α]25
D : +24.00 (c 0.13,

MeOH); 1H-NMR (600 MHz, pyridine-d5) δ: 7.85 (t, J = 5.3 Hz, 1H, N-H), 5.45 (t, J = 3.3 Hz, 1H, H-12),
4.97 (d, J = 7.8 Hz, 1H, H-1′), 4.62 (dd, J = 11.5 Hz, 1.9 Hz, 1H, Glu-H), 4.44–4.35 (m, 2H, H-31-1, Glu-H),
4.33–4.22 (m, 3H, H-31-2, Glu-H), 4.08–4.02 (m, 2H, Glu-H), 3.43 (dd, J = 11.9 Hz, 4.4 Hz, 1H, H-3), 3.10
(t, J = 2.3 Hz, 1H, H-33), 2.44 (d, J = 10.8 Hz, 1H, H-18), 1.35 (s, 3H, CH3), 1.23 (s, 3H, CH3), 1.03 (s, 3H,
CH3), 1.02 (s, 3H, CH3), 0.97 (d, J = 6.5 Hz, 3H, CH3), 0.94 (s, 3H, CH3), 0.89 (s, 3H, CH3); 13C-NMR
(150 MHz, pyridine-d5) δ: 177.2, 139.4, 126.0, 106.9, 88.9, 81.9, 78.7, 78.3, 75.8, 71.9 (C × 2), 63.1, 55.8,
53.3, 47.9, 47.8, 42.5, 40.0, 39.7, 39.5, 39.3, 38.9, 37.8, 36.8, 33.3, 31.1, 29.2, 28.3, 26.6, 24.8, 23.8, 23.6, 21.3,
18.4, 17.6, 17.4, 17.0, 15.6; HRMS (ESI): Calcd for [M + H]+ C39H62NO7: 656.4526, found 656.4520.

28-N-(3′,4′-Dimethoxybenzyl) ursolic amide 3-O-β-D-glucopyranoside (7c): White solid, 74% yield; [α]25
D :

+7.5 (c 0.13, MeOH); 1H-NMR (600 MHz, pyridine-d5) δ: 7.71 (t, J = 5.6 Hz, 1H, N-H), 7.11
(d, J = 1.8 Hz, 1H, H-2′ ′), 7.05 (dd, J = 8.1 Hz, 1.9 Hz, 1H, H-6′ ′), 6.94 (d, J = 8.2 Hz, 1H, H-5′ ′),
5.45 (t, J = 3.3 Hz, 1H, H-12), 4.98 (d, J = 7.7 Hz, 1H, H-1′), 4.71 (dd, J = 14.4 Hz, 5.6 Hz, 1H, H-31-1),
4.64–4.60 (m, 2H, H-31-2, Glu-H), 4.44 (dd, J = 11.8 Hz, 5.6 Hz, 1H, Glu-H), 4.29–4.23 (m, 2H, Glu-H),
4.09–4.03 (m, 2H, Glu-H), 3.78 (s, 3H, Ph-OMe), 3.75 (s, 3H, Ph-OMe), 3.44 (dd, J = 11.8 Hz, 4.4 Hz,
1H, H-3), 2.45 (d, J = 10.7 Hz, 1H, H-18), 1.35 (s, 3H, CH3), 1.25 (s, 3H, CH3), 1.03 (s, 3H, CH3), 0.97
(d, J = 6.4 Hz, 3H, CH3), 0.95 (s, 3H, CH3), 0.91 (s, 6H, 2 × CH3); 13C-NMR (150 MHz, pyridine-d5)
δ: 177.2, 149.1, 139.7, 133.1, 125.8, 120.6, 112.8, 112.6, 106.9, 88.9, 78.7, 78.3, 75.8, 71.9, 63.1, 56.0, 55.9,
55.8, 53.6, 47.9, 47.8, 43.5, 42.5, 40.0, 39.8, 39.5, 39.3, 38.9, 38.1, 36.9, 33.4, 31.2, 28.4, 28.3, 26.6, 24.9,
23.8, 23.6, 21.3, 21.2, 18.4, 17.4, 17.0, 15.6; HRMS (ESI): Calcd for [M + Na]+ C45H69NNaO9: 790.4870,
found 790.4863.
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28-N-Isobutyl ursolic amide 3-O-β-D-galactopyranoside (8a): White solid, 89% yield; [α]25
D : +41.25 (c 0.13,

MeOH); 1H-NMR (600 MHz, pyridine-d5) δ: 7.19 (t, J = 5.9 Hz, 1H, N-H), 5.47 (t, J = 3.4 Hz, 1H, H-12),
4.89 (d, J = 7.7 Hz, 1H, H-1′), 4.60–4.59 (m, 1H, Gal-H), 4.52–4.46 (3H, m, Gal-H), 4.19 (dd, J = 3.4 Hz,
9.5 Hz, 1H, Gal-H), 4.14 (t, J = 6.0 Hz, 1H, Gal-H), 3.44 (dd, J = 11.8 Hz, 4.2 Hz, 1H, H-3), 3.35–3.31
(m, 1H, H-31-1), 3.17–3.13 (m, 1H, H-31-2), 2.41 (d, J = 10.8 Hz, 1H, H-18), 1.34 (s, 3H, CH3), 1.25
(s, 3H, CH3), 1.01 (s, 3H, CH3), 0.99 (s, 3H, CH3), 0.97 (d, J = 6.6 Hz, 3H, CH3), 0.95 (s, 3H, CH3),
0.92–0.89 (m, 9H, 3 × CH3); 13C-NMR (150 MHz, pyridine-d5) δ: 177.3, 139.8, 125.7, 107.5, 88.9, 76.8,
75.4, 73.1, 70.2, 62.4, 55.8, 53.6, 47.9 (C × 2), 47.4, 42.6, 40.0, 39.9, 39.5, 39.3, 38.9, 38.2, 36.9, 33.4, 31.2,
28.6, 28.3, 28.2, 26.6, 24.9, 23.7, 23.6, 21.3, 20.5, 20.4, 18.4, 17.4 (C × 2), 16.9, 15.6; HRMS (ESI): Calcd for
[M + Na]+ C40H67NNaO7: 696.4815, found 696.4809.

28-N-Propargyl ursolic amide 3-O-β-D-galactopyranoside (8b): White solid, 74% yield; [α]25
D : +36.00 (c 0.13,

MeOH); 1H-NMR (600 MHz, pyridine-d5) δ: 7.84 (t, J = 5.4 Hz, 1H, N-H), 5.45 (t, J = 3.3 Hz, 1H, H-12),
4.89 (d, J = 7.7 Hz, 1H, H-1′), 4.60–4.59 (m, 1H, Gal-H), 4.52–4.46 (m, 3H, Gal-H), 4.40–4.28
(m, 2H, H-31), 4.19 (dd, J = 3.4 Hz, 9.4 Hz, 1H, Gal-H), 4.13 (t, J = 6.2 Hz, 1H, Gal-H),
3.43 (dd, J = 11.8 Hz, 4.5 Hz, 1H, H-3), 3.10 (t, J = 2.4 Hz, 1H, H-33), 2.44 (d, J = 10.8 Hz, 1H, H-18),
1.34 (s, 3H, CH3), 1.24 (s, 3H, CH3), 1.02 (s, 3H, CH3), 1.00 (s, 3H, CH3), 0.97 (d, J = 6.5 Hz, 3H, CH3),
0.94 (s, 3H, CH3), 0.90 (s, 3H, CH3); 13C-NMR (150 MHz, pyridine-d5) δ: 177.2, 139.4, 126.0, 107.5,
88.8, 81.9, 76.8, 75.4, 73.1, 71.9, 70.3, 62.5, 55.9, 53.3, 47.9, 47.8, 42.5, 40.0, 39.8, 39.5, 39.3, 38.9, 37.8,
36.8, 33.3, 31.1, 29.2, 28.3, 26.7, 24.8, 23.8, 23.6, 21.3, 18.4, 17.6, 17.4, 17.0, 15.6; HRMS (ESI): Calcd for
[M + H]+ C39H62NO7: 656.4526, found 656.4516.

28-N-(3′,4′-Dimethoxybenzyl) ursolic amide 3-O-β-D-galactopyranoside (8c): White solid, 69% yield; [α]25
D :

+8.25 (c 0.13, MeOH); 1H-NMR (600 MHz, pyridine-d5) δ: 7.70 (t, J = 5.8 Hz, 1H, N-H), 7.11 (d, J = 1.8 Hz,
1H, H-2′ ′), 7.05 (dd, J = 8.2 Hz, 2.0 Hz, 1H, H-6′ ′), 6.94 (d, J = 8.2 Hz, 1H, H-5′ ′), 5.45 (t, J = 3.3 Hz, 1H,
H-12), 4.89 (d, J = 7.7 Hz, 1H, H-1′), 4.71 (dd, J = 14.5 Hz, 5.9 Hz, 1H, H-31-1), 4.62–4.59 (m, 2H, H-31-2,
Gal-H), 4.53–4.46 (3H, m, Gal-H), 4.19 (dd, J = 3.3 Hz, 9.4 Hz, 1H, Gal-H), 4.14 (t, J = 5.9 Hz, 1H, Gal-H),
3.78 (s, 3H, Ph-OMe), 3.75 (s, 3H, Ph-OMe), 3.44 (dd, J = 11.9 Hz, 4.4 Hz, 1H, H-3), 2.45 (d, J = 10.7 Hz,
1H, H-18), 1.34 (s, 3H, CH3), 1.25 (s, 3H, CH3), 1.00 (s, 3H, CH3), 0.97 (d, J = 6.5 Hz, 3H, CH3), 0.95
(s, 3H, CH3), 0.93 (s, 3H, CH3), 0.91 (s, 3H, CH3); 13C-NMR (150 MHz, pyridine-d5) δ: 177.2, 149.1,
139.7, 133.1, 125.8, 120.6, 112.8, 112.6, 107.5, 88.8, 76.8, 75.4, 73.2, 70.3, 62.5, 56.0, 55.9, 53.6, 47.9, 47.8,
43.5, 42.5, 40.0, 39.8, 39.5, 39.3, 38.9, 38.1, 36.9, 33.4, 31.2, 28.4, 28.3, 26.7, 24.9, 23.8, 23.6, 21.3, 18.4, 17.5,
17.4, 17.0, 15.6; HRMS (ESI): Calcd for [M + Na]+ C45H69NNaO9: 790.4870, found 790.4860.

The spectrograms of the compounds 5a–c, 6a–c, 7a–c and 8a–c were shown in Electronic
Supplementary Material (ESM).

3.3. Evaluation of the Biological Activity

3.3.1. Cell Culture and Treatment

The H9c2 rat myocardial cell line was obtained from the Chinese Academy of Sciences Cell Bank
(Shanghai, China) and cultured as previously described [20]. Briefly, H9c2 cells were cultured in high
glucose DMEM supplemented with 10% (v/v) fetal bovine serum, 1% penicillin/streptomycin (v/v),
and 2 mM L-glutamine. The cells were maintained in a humidified incubator with 95% air and 5% CO2

at 37 ◦C.
The cells were subcultured after reaching 70~80% confluence. Three sets of experiments were

performed: (1) control cells; (2) cells treated with H2O2 (450 µM) for 1 h; (3) cells pretreated with
oleanolic acid 3-O-β-D-glucuronopyranoside derivatives (0.1 µg/mL) for 12 h, then the medium was
removed and the cells were treated with H2O2 (450 µM) for 1 h. For all of the experiments, the cells
were plated at an appropriate density according to the experimental design and were grown for 36 h
before experimentation.
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3.3.2. Determination of Cell Viability

Cell viability was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium (MTT)
assay as previously described [20]. Briefly, H9c2 cells were plated in 96-well plates at a density of
1 × 104 cells/well and incubated overnight. After the designated treatment, 20 µL of MTT (5 mg/mL)
was added to each well and cells were incubated at 37 ◦C for 4 h. Then, the culture medium with
MTT was abandoned and the colored formazan crystals were dissolved in 100 µL dimethyl sulfoxide
(DMSO). The absorption values were measured at 570 nm using a microplate reader (TECAN Infinite
M1000, Grödig, Austria). The viability of H9c2 cells in each well is presented as a percentage of
control cells.

3.3.3. Statistic Analysis

The data are expressed as mean ± SD. Comparisons were performed by Student’s t-test or
one-way ANOVA followed by Tukey’s multiple comparison test with Prism 5.00 software. Statistical
significance was set at p < 0.05. All data are the results of at least three independent experiments.

4. Conclusions

In summary, a new series of oleanolic acid 3-O-β-D-glucuronopyranoside derivatives were
designed, synthesized, and evaluated for their cardiovascular protective effect. Some of the synthesized
compounds showed potent protective activity against H2O2-induced injury in H9c2 cells. Particularly,
compound 8a exhibited a greater potential protective effect than the positive control oleanolic acid
3-O-β-D-glucuronopyranoside. Preliminary SAR analysis has shown that the isobutyl group of the
amide derivatives had a good impact on the protective effect.

Supplementary Materials: Supplementary materials are available online, Figures S1–S24: 1H-NMR and 13C-NMR
of compound 5a–c, 6a–c, 7a–c and 8a–c.
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