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Abstract: Proanthocyanidins, also known as condensed tannins or oligomeric flavonoids, are found
in many edible plants and exhibit interesting biological activities. Herein, we report a new,
simple method for the stereoselective synthesis of procyanidin B6, a (+)-catechin-(4-6)-(+)-catechin
dimer, by Lewis acid-catalyzed intramolecular condensation. The 5-O-t-butyldimethylsilyl
(TBDMS) group of 5,7,3′4′-tetra-O-TBDMS-(+)-catechin was regioselectively removed using
trifluoroacetic acid, leading to the “regio-controlled” synthesis of procyanidin B6. The 5-hydroxyl
group of the 7,3′,4′-tri-O-TBDMS-(+)-catechin nucleophile and the 3-hydroxyl group of
5,7,3′,4′-tetra-O-benzylated-(+)-catechin electrophile were connected with an azelaic acid.
The subsequent SnCl4-catalyzed intramolecular condensation proceeded smoothly to give the
4-6-condensed catechin dimer. This is the first report on the complete regioselective synthesis
of a 4-6-connected oligomer without modifying the 8-position.
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1. Introduction

Proanthocyanidins are a class of polyphenols and are generally referred to as condensed tannins or
oligomeric flavonoids. They have attracted a great deal of attention because of their strong antioxidant
activity and wide range of interesting biological functions [1,2]. However, proanthocyanidins are
often obtained as a mixture of various analogues from plants. Thus, despite their simple structure as
the derivatives of flavan-3-ols, the purification of each compound remains difficult. Flavan-3-ols
such as catechin and epicatechin are one of the most well-known groups of biologically active
polyphenols. The oligomers composed of these catechins and epicatechin are known as highly
functional polyphenols contained in familiar foods such as cacao [3,4]. There are many reports
related to other biological activities, such as antifungal [5,6], antiviral [5,7], anti-inflammatory [8],
anticancer [3,9], and treating heart diseases [10], among others. Flavan-3-ol derivatives including
proanthocyanidins are also converted to various structurally complex secondary polyphenols through
chemical reactions that occur during food processing such as drying [11], frozen storage [12], and acidic
treatment [13]. These complex and diverse forms make the isolation, structural determination,
and evaluation of the biological activities of each compound much more difficult. Therefore, securing
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sufficient amount of proanthocyanidin as a pure compound for experiment is also important for
elucidating the function of proanthocyanidin. A synthetic route to oligomeric catechin and epicatechin
derivatives has been developed by Kozikowski et al. [14–16] and subsequently by other research
groups [17–24]. Additionally, our group has developed and reported simple and stereoselective
methods to synthesize 4-8 condensed procyanidin oligomers (constituted by flavan-3-ols having two
hydroxyl groups on B and E rings) [25–38] and prodelphinidin oligomers (constituted by flavan-3-ols
having, three hydroxyl groups on B and/or E rings) [39] and then studied their biological activities.
The key step of the synthesis of proanthocyanidins is the coupling reaction between the nucleophile
and electrophile using a Lewis acid such as TiCl4, SnCl4, or trimethylsilyl triflate (TMSOTf) as an
activator. As shown in Figure 1, the two dimers of (+)-catechin, 4-6-condensed procyanidin B6 (1)
and 4-8-condensed procyanidin B3 (2), are isomers with different bonding positions. The abundance
of the 4-6-linked oligomer is comparatively low. In particular, the biological activities of various
4-6-condensed oligomers are yet to be studied in detail due to the unavailability of these compounds.
Most studies on the synthesis of proanthocyanidins focus on 4-8-linked oligomers as target compounds,
and only a few of them address the stereoselective synthesis of 4-6-linked oligomers. The cool
synthesis of the 4-6 catechin dimer, procyanidin B6 (1), has been previously achieved by combining the
8-halo-capping strategy [24].
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Due to increasing interest toward the structure-activity-relationship studies (SAR) of
proanthocyanidins, developing new and simple methods for the synthesis of various types of
proanthocyanidins has become increasingly important. Therefore, we focused on developing a very
simple approach to the selective synthesis of such compounds. Herein, we report on an easy, applicable,
and reliable method for the stereoselective synthesis of procyanidin B6 (1) via an intramolecular
condensation reaction without modifying the 8-position.

2. Results and Discussion

Previously, we developed a Lewis acid-catalyzed “intramolecular” one-to-one coupling
approach that allows for the stereoselective synthesis of 4-8-condensed (+)-catechin dimers (4, 6:
Scheme 1) [28,31]. The method includes the connection of flavan-3-ol-derived nucleophile and
electrophile via a diester linker and the subsequent condensation reaction by “intramolecular” coupling.
Furthermore, the stereochemistry of the coupling product was found to depend on the length of the
linker. Despite the fact that the 3,4-cis structure is not preferentially obtained in intermolecular
reactions, the intramolecular TMSOTf-catalyzed coupling of azelaic acid (C9 dicarboxylic acid) diester
(3) afforded 3,4-trans product 4, and the coupling of glutaryl (C3 dicarboxylic acid derivative) diester
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(5) gave 3,4-cis product 6 [28] (Scheme 1). Therefore, this intramolecular coupling method could
potentially solve the difficulties surrounding the stereoselective synthesis of proanthocyanidins such
as 3,4-cis oligomers. Additionally, it could be possible that the structure of the intramolecular coupling
product is changed depending on the position in which the diester linker is introduced. Following
these assumptions, we attempted to introduce a diester linker regioselectively to another position by
selectively deprotecting one of the four protecting groups of the phenolic hydroxyl moieties, which are
in similar environments.
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Scheme 1. Stereoselective synthesis of the basic skeleton of 3,4-trans and 3,4-cis-(+)-catechin dimers via
an intramolecular coupling.

A thorough examination of the reactive properties of the protected flavan-3-ols revealed that
the 5-O-TBDMS (TBS) group of the 5,7,3′,4′-tetra-O-TBDMS-(+)-catechin (7) could be regioselectively
removed with TFA to give 8 in 90% yield [40] (Scheme 2). The structure of the 5-OH product (8) was
confirmed by the HMBC (Heteronuclear Multiple Bond Correlation) between C5 and the hydroxyl
proton of 8 [40].
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Using the aforementioned regioselective deprotection method, the intramolecular synthesis of the
4-6-condensed procyanidin B6 (1) was achieved (Scheme 3). During this synthesis, the 5-O-TBDMS
group of an acetylation derivative of 7 (9) was removed with TFA to give 5-hydroxyl nucleophile
10 in 76% yield. The 5-hydroxyl group of 10 was then esterified with azelaic acid using the
N,N′-dicyclohexylcarbodiimide (DCC) condensation method to afford the carboxylic acid derivative 11
in 80% yield. The 3-hydroxyl group of 12 (electrophile) [26] was then connected to 11 by esterification
to obtain the diester compound 13. The subsequent SnCl4-catalyzed intramolecular condensation of 13
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at −20 ◦C proceeded smoothly to afford the 4-6 condensed catechin dimer 14 in 72% yield. When the
cyclization reaction was carried out with TMSOTf instead, another TBDMS group was also deprotected,
resulting in a complicated mixture of many byproducts. Additionally, the use of dicarboxylic acids as
linkers was unsuccessful, and the intramolecular cyclization proceeded only when azelaic acid was
employed. Using linkers of other lengths led to self-condensation products of electrophile 12, which once
again caused the formation of a complicated mixture of byproducts. Temperature optimization studies
of the cyclization reaction showed that the yield was the highest when the reaction was carried out at
−20 ◦C. A decrease in the yield was observed both at higher and lower temperatures. The subsequent
removal of the diester linker in 14 via diisobutylaluminum hydrate (DIBAL) reduction gave triol 15 in
66% yield. Due to peak broadening in the NMR spectrum of 15, the tri-acetylated compound 16 was
prepared in order to determine the dimeric structure and 3,4-trans stereochemistry of the synthesized
product (Figure 2). Compound 15 was eventually converted to 3,4-trans-(+)-catechin-(4-6)-(+)-catechin
dimer, procyanidin B6 (1), after TBDMS-group deprotection by tetrabutylammonium fluoride (TBAF)
(85% yield) and subsequent Pd(OH)2-catalyzed hydrogenolysis (65% yield). The full spectroscopic data
confirmed the structure of procyanidin B6 (1) [41].
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Scheme 3. Stereoselective synthesis of the procyanidin B6 (1). Reaction conditions: (a) TFA, CH2Cl2;
76% yield; (b) Azelaic acid, DCC, DMAP, CH2Cl2; 80% yield; (c) DCC, DMAP, CH2Cl2; 58% yield;
(d) SnCl4, CH2Cl2, −20 ◦C; 72% yield; (e) DIBALH, CH2Cl2; 66% yield; (f) (1) TBAF, AcOH, THF, r.t.;
85% yield; (2) Pd(OH)2/C, H2, THF/MeOH/H2O (20/1/1); 65% yield.
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Figure 2. Acetylation derivative 16.

In addition, the coupling reaction of nucleophile 8 and electrophile 12 led to the formation of
4-6 and 4-8-condensed compounds (Scheme 4). After the intermolecular coupling products were
acetylated, 16 and 17 were isolated and their structures were confirmed. Compound 16, which
was synthesized via intramolecular coupling, was identified with the compound resulting from the
intermolecular coupling. Thus, the intramolecularly cyclized product is a 4-6-connected dimer. Usually,
when the 5-position is protected, a 4-6-condensed compound cannot be obtained. Therefore, it is
possible that the electrophile was brought close to the 6-position through 5-TBDMS group deprotection.
However, reactivity at the 6-position was extremely low as compared to that at the 8-position, and the
ratio of the 4-6 and 4-8-condensed products was 1:9.
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3. Materials and Methods

All commercially available chemicals for the chemical syntheses were used without further
purification. All reactions were performed under argon atmosphere and monitored with thin-layer
chromatography (TLC) using 0.25 mm pre-coated silica gel plates 60F254 (Art 5715, Merck KGaA,
Darmstadt, Germany). An ATAGO (Minato, Tokyo, Japan) AP-300 spectrometer was used to measure
the optical rotation. 1H- and 13C-NMR spectra were recorded on an Agilent Inova 500 Spectrometer
(500/125 MHz) and DD2 NMR Spectrometer (400/100 MHz) (Agilent, Santa Clara, CA, USA). A JEOL
JMS-AX500 mass spectrometer was used to acquire the fast atom bombardment (FAB) mass spectra.
A microTOFfocus mass spectrometer (Bruker Daltonics, Billerica, MA, USA) was used to acquire
the electrospray ionization (ESI) mass spectra. High-performance liquid chromatography (HPLC)
purifications were carried out on an Ascentis® column (SUPELCO® analytical, Sigma Aldrich Co.,
St. Louis, MO, USA; 25 cm × 21.5 mm, 5 µm) using the solvents (A) 0.05% HCOOH in CH3CN,
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and (B) 0.05% HCOOH and 10% CH3CN in H2O. Elution was performed with a linear gradient
20–100% B in 25 min (4.0 mL/min flow rate).

3-Acetoxy-3′,4′,7-tri(t-butyldimethylsilyloxy)-(+)-catechin (10). To a solution of 9 (0.27 g, 0.34 mmol)
in CH2Cl2 (50 mL) was added TFA (0.031 mL, 0.41 mmol) slowly at 0 ◦C. After stirring for 6 h,
the reaction mixture was quenched with sat. NaHCO3 solution in water. The aqueous solution
was extracted with CHCl3, and the organic phase was washed with water and brine and then dried
(MgSO4). Filtration, concentration, and silica-gel column purification (n-hexane/EtOAc, 10:1 to 3:1)
afforded 0.18 g (0.26 mmol, 76%) of 10 as an amorphous solid. [α]24

D +61.8 (c 0.21, CHCl3); 1H-NMR
(500 MHz, CDCl3) 6.74 (1H, br), 6.71 (2H, br), 5.99 (1H, d, J = 2.0 Hz), 5.89 (1H, d, J = 2.0 Hz), 5.19 (1H,
ddd, J = 5.5, 5.5, 6.0 Hz), 4.92 (1H, d, J = 5.5 Hz), 2.73 (1H, dd, J = 5.5, 7.0 Hz), 2.59 (1H, dd, J = 6.0,
17.0 Hz), 2.35 (1H, br), 1.88 (3H, s), 0.89–0.83 (27H, m), 0.11 (9H, s), 0.09 (3H, s), 0.05 (3H, s), 0.03 (3H, s);
13C-NMR (125 MHz, CDCl3) 170.5, 155.5, 155.0, 154.6, 147.0, 146.8, 131.0, 121.1, 119.4, 119.1, 100.6,
100.3, 100.0, 77.8, 69.3, 25.9 (2), 25.7, 23.1, 21.1, −4.06, −4.11, −4.15, −4.24, −4.40, −4.43; FABMS (m/z):
676 (12), 675 (M+ + H, 12), 674 (6), 617 (13), 616 (23), 615 (45); 614 (23), 613 (14), 558 (10), 557 (20),
444 (10), 443 (29), 368 (26), 367 (81), 351 (66), 277 (28), 254 (18), 253 (86), 205 (16), 179 (100); HRFABMS:
Calcd. for C35H59O7Si3, 675.3569; Found, 675.3563.

5-Azelaic acid ester (11). To a solution of 10 (0.47 g, 0.70 mmol) and azelaic acid (0.39 g, 2.00 mmol)
was added DCC (0.17 g, 0.83 mmol) and cat. DMAP in CH2Cl2 (50 mL) at 0 ◦C. After stirring for
24 h at r.t., the reaction mixture was quenched with water. The aqueous solution was extracted
with CHCl3, and the organic phase was washed with water and brine and then dried (MgSO4).
Filtration, concentration, and silica gel column purification (CHCl3/EtOAc, 200:1 to 2:1 followed by
n-hexane/EtOAc, 10:1 to 1:1) afforded 0.47 g (1.60 mmol, 80%) of 11 as an amorphous solid. [α]24

D
+196.2 (c 0.50, CHCl3); 1H-NMR (400 MHz, CDCl3) 10.40–10.10 (1H, br), 6.80 (1H, d, J = 8.3 Hz),
6.80 (1H, 1.8 Hz), 6.77 (1H, dd, J = 1.8, 8.3 Hz), 6.36 (1H, d, J = 2.4 Hz), 6.23 (1H, d, J = 2.4 Hz),
5.23 (1H, ddd, J = 5.2, 6.3, 6.4 Hz), 2.75 (1H, dd, J = 5.2, 16.5 Hz), 2.56 (1H, dd, J = 6.4, 16.5 Hz), 2.51 (2H,
t, J = 7.7 Hz), 2.35 (2H, t, J = 7.5 Hz), 1.95 (3H, s), 1.78–1.60 (4H, m), 1.43–1.30 (6H, m), 0.97 (9H, s),
0.96 (9H, s), 0.94 (9H, s), 0.20 (6H, s), 0.185 (3H, s), 0.175 (3H, s), 0.13 (3H, s), 0.12 (3H, s); 13C-NMR
(100 MHz, CDCl3) 171.4, 171.3, 170.4, 155.3, 154.9, 149.9, 147.1, 147.0, 130.8, 121.2, 119.6, 119.3, 107.4,
105.7, 105.6, 78.2, 69.0, 34.3, 34.0, 29.02, 28.96, 28.94, 26.04, 26.03, 25.7, 24.9, 24.7, 23.9, 21.6, 18.6, 18.3,
−3.95, −3.98, −4.05, −4.10, −4.32, −4.35; ESIMS (m/z) 1153 (61), 1152 (68), 1151 (80), 1076 (43),
1075 (79), 1074 (100), 869 (18), 868 (37), 687 ([M + Na]+, 56); ESIHRMS Calcd. for C44H72O10Si3Na,
867.4331; Found, 867.4340.

Cyclization precursor 13. To a solution of 11 (0.34 g, 0.40 mmol) and 12 (0.77 g, 1.00 mmol) was added
DCC (99.0 mg, 0.48 mmol) and catalytic amount of DMAP in CH2Cl2 (20 mL) at 0 ◦C. After stirring
for 24 h at r.t., the reaction mixture was quenched with water. The aqueous solution was extracted
with CHCl3, and the organic phase was washed with water and brine and then dried (MgSO4).
Filtration, concentration, and silica gel column purification (n-hexane/EtOAc, 10:1 to 3:1) afforded
0.37 g (0.24 mmol, 58%) of 13 as an amorphous solid. [α]24

D +91.0 (c 0.61, CHCl3); 1H-NMR (400 MHz,
CDCl3) 747–7.28 (20H, m), 7.07 (1H, d, J = 1.5 Hz), 6.98 (1H, dd, J = 1.5, 8.3 Hz), 6.92 (1H, d, J = 8.3 Hz),
6.80 (1H, d, J = 1.5 Hz), 6.80 (1H, dd, J = 1.5, 8.3 Hz), 6.78 (1H, d, J = 8.3 Hz), 6.36 (1H, d, J = 2.4 Hz),
6.24 (1H, d, J = 2.0 Hz), 6.22 (1H, d, J = 2.4 Hz), 6.13 (1H, d, J = 2.0 Hz), 5.27 (2H, s), 5.26–5.21 (1H, m),
5.14 (2H, s), 5.13 (2H, s), 5.16 (1H, d, J = 11.6 Hz), 5.02 (1H, d, J = 11.6 Hz), 5.00–4.87 (3H, m), 4.85 (1H,
br s), 3.80–3.70 (2H, m), 3.49–3.37 (4H, m), 2.74 (1H, dd, J = 5.2, 16.4 Hz), 2.51 (1H, dd, J = 6.8, 16.4 Hz),
2.43 (2H, t, J = 7.6 Hz), 2.13–1.94 (2H, m), 1.92 (3H, s), 1.71–1.06 (10H, m), 0.974 (9H, s), 0.965 (9H, s),
0.94 (9H, s), 0.20 (6H, s), 0.19 (3H, s), 0.18 (3H, s), 0.14 (3H, s), 0.12 (3H, s); 13C-NMR (100 MHz,
CDCl3) 172.5, 171.4, 170.2, 161.0, 158.6, 155.9, 155.3, 155.0, 149.9, 149.4, 149.1, 147.1, 147.0, 137.33, 137.30,
136.74, 136.66, 130.8, 130.7, 128.8, 128.7, 128.6, 128.24, 128.19, 128.95, 128.92, 128.88, 127.7, 127.6, 127.3,
121.6, 121.2, 119.6, 119.3, 114.8, 114.6, 107.4, 105.7, 105.6, 103.8, 94.4, 93.9, 78.3, 74.5, 72.5, 71.42, 71.36,
71.0, 70.6, 70.2, 69.9, 68.9, 68.7, 66.5, 34.24, 34.19, 29.06, 29.04, 28.9, 26.0 (2), 25.7, 25.0, 24.7, 24.0, 21.1,
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18.6 (2), 18.3, 15.4, −3.94, −3.97, −4.04, −4.09, −4.31, −4.34; ESIMS (m/z) 1591 (29), 1590 (59), 1589 (89),
1588 ([M + Na]+, 76); 472 (30), 471 (100); ESIHRMS Calcd. for C91H116O17Si3Na, 1587.7418; Found,
1587.7413.

Cyclic compound 14. To a solution of 13 (0.17 g, 0.10 mmol) in CH2Cl2 (60 mL) at −10 ◦C was added
SnCl4 (0.48 mL, 0.12 mmol, 0.25 M solution in CH2Cl2). After stirring for 5 min, the reaction mixture
was quenched with sat. NaHCO3 in water. The aqueous solution was extracted with CHCl3, and the
organic phase was washed with water and brine and then dried (MgSO4). Filtration, concentration,
and silica-gel PTLC purification (n-hexane/EtOAc, 5:1) afforded 0.11 g (0.072 mmol, 72%) of 14 as an
amorphous solid. [α]24

D +130 (c 0.20, CHCl3); 1H-NMR (500 MHz, CDCl3) 7.50–7.28 (21H, m), 7.17 (1H,
d, J = 1.5 Hz), 6.96 (1H, dd, J = 1.5, 8.5 Hz), 6.90 (1H, d, J = 8.5 Hz), 6.83 (1H, d, J = 2.2 Hz), 6.76 (1H, dd,
J = 1.5, 8.5 Hz), 6.31 (1H, s), 6.19 (1H, d, J = 2.2 Hz), 6.09 (1H, br s), 5.95 (1H, t, J = 9.5 Hz), 5.20–4.90
(9H, m), 4.74 (1H, d, J = 9.5 Hz), 4.58 (1H, d, J = 9.5 Hz), 2.70–2.60 (1H, m), 2.51 (1H, dd, J = 8.5,
15.5 Hz), 2.42–1.27 (14H, m), 1.57 (3H, s), 1.00 (9H, s), 0.98 (9H, s), 0.83 (9H, s), 0.29 (6H, s), 0.21 (12H,
s); 13C-NMR (125 MHz, CDCl3) 171.8, 156.7, 158.5, 153.3, 152.7, 149.2, 149.1, 149.0, 146.9, 146.7, 137.3,
137.2, 137.0, 130.1–127.3 (C24), 121.0, 116.3, 114.6, 107.4, 103.9, 95.3, 94.8, 81.5, 78.0, 71.2, 71.23, 71.17,
70.1, 69.2, 37.7, 34.0, 32.0, 29.7, 26.9, 26.3, 26.2, 26.0, 25.9, 25.6, 21.0, 18.8, 18.4, 0.0, −3.4, −3.9, −4.10,
−4.14; ESIMS (m/z) 1500 (30), 1499 (45), 1498 ([M + Na]+, 41); 741 (25), 740 (55), 713 (44), 712 (100),
685 (20), 684 (49); ESIHRMS Calcd for C87H106O15Si3Na, 1497.6737; Found, 1497.6732.

[4,6]-2,3-Trans-3,4-trans-2′,3′,5,7-tetra-O-benzyl-2′′′,3′′′,7”-tri(t-butyldimethylsilyloxy)-(+)-catechin-(+)-
catechin (15). To a solution of 14 (5.0 mg, 0.0030 mmol) in CH2Cl2 (10 mL) was reduced with DIBALH
(0.030 mL, 0.030 mmol, 1.0 mol solution in n-hexane) at −78 ◦C. After stirring for 5 min, the reaction
mixture was quenched with sat. NH4Cl in water. The aqueous solution was extracted with CHCl3,
and the organic phase was washed with water and brine and then dried (MgSO4). Filtration,
concentration, and silica-gel PTLC purification (n-hexane/EtOAc, 2:1) afforded 3.0 mg (0.20 mmol,
66%) of 15 as an amorphous solid. [α]24

D +80.0 (c 0.05, CHCl3); The NMR signals were not identified
because of peak broadening. FABMS (m/z): 1282 (3.6, M+ + H), 1281 (2.8), 1263 (1.2), 933 (6.7), 932 (9.0),
931 (12), 844 (5.9), 843 (9.1), 842 (13), 723 (15), 722 (24), 650 (19), 649 (39), 393 (37), 352 (31), 351 (100);
FABHRMS: m/z (M+ + H) Calcd. for C76H93O12Si3, 1281.5975; Found, 1281.6067.

[4,6]-2,3-Trans-3,4-trans-(+)-catechin-(+)-catechin (procyanidin B6) (1). A solution of 15 (32.0 mg,
0.025 mmol) in THF (20 mL) was added dropwise to TBAF (0.87 mL; 0.87 mmol; 1 M solution in THF)
in the presence of AcOH (0.0050 mL; 0.87 mmol) at 0 ◦C. Concentration and PTLC purification
(n-hexane/EtOAc; 2:1) afforded 19.0 mg of TBS deprotected product (0.021 mmol, 85%) as an
amorphous solid. Then 15 mg of the above product was dissolved in THF/MeOH/H2O (20:1:1; 5.5 mL)
and hydrogenated over 20% Pd(OH)2/C (1 mg) for 12 h at r.t. Filtration and concentration afforded
a pale brown solid; which was purified using HPLC purification to give 6.0 mg of 1 (0.010 mmol,
65%) as a pale brown powder. 1H-NMR (400 MHz, CDCl3, 0.75: 0.25 mixture of rotational isomers)
major: 6.78 (0.75H, d, J = 2.0 Hz), 6.72 (0.75H, d, J = 8.2 Hz), 6.71 (0.75H, d, J = 8.2 Hz), 6.63 (0.75H, d,
J = 2.0 Hz), 6.51 (0.75H, dd, J = 2.0, 8.2 Hz), 6.29 (0.75H, dd, J = 2.0, 8.2 Hz), 6.11 (0.75H, s), 5.93 (0.75H,
J = 2.4 Hz), 5.83 (0.75H, d, J = 2.4 Hz), 4.58 (0.75H, d, J = 7.5 Hz), 4.45 (0.75H, d, J = 7.8 Hz), 4.39 (0.75H,
dd, J = 7.8, 9.5 Hz), 4.29 (0.75H, d, J = 9.5 Hz), 3.86–3.81 (0.75H, m), 2.80 (0.75H, dd, J = 5.7, 16.2 Hz),
2.52 (0.75H, dd, J = 8.1, 16.2 Hz); monor: 700–6.73 (1.5H, m), 5.98 (0.25H, s), 5.88 (0.25H, d, J = 2.4 Hz),
5.85 (0.25H, d, J = 2.4 Hz), 4.98–4.52 (0.25H, m), 4.18–4.08 (0.25H, m), 2.86 (0.25H, dd, J = 5.7, 16.4 Hz),
2.62 (0.25H, dd, J = 8.0, 16.4 Hz); 13C-NMR (100 MHz, CDCl3) major: 158.2, 157.9, 157.2, 156.3, 155.3,
154.9, 146.7, 146.6, 146.5, 143.9, 132.54, 132.53, 129.8, 129.1, 126.4, 120.3, 116.4, 115.6, 110.0, 101.6, 101.1,
96.6, 96.4, 95.8, 83.2, 82.9, 69.2, 69.1, 29.3, 25.1 (minor isomer was not identified).

[4,6]-2,3-Trans-3,4-trans-3,3′′′,5′′′-triacetoxy-2′,3′,5,7-tetra-O-benzyl-2′′′,3′′′,7”-tri(t-butyldimethylsilyl-oxy)
-(+)-catechin-(+)-catechin (16). To a solution of 15 (3.0 mg, 0.0030 mmol) in CH2Cl2 was acetylated
with excess Et3N (8.3 µL, 0.06 mmol) and acetic anhydride (4.2 µL, 0.045 mmol) in the presence of



Molecules 2018, 23, 205 8 of 11

catalytic amount of DMAP at 0 ◦C. After stirring for 24 h, the reaction mixture was quenched with
water. The aqueous solution was extracted with CHCl3, and the organic phase was washed with
water and brine and then dried (MgSO4). Filtration, concentration, and silica-gel PTLC purification
(n-hexane/EtOAc, 3:1) afforded 2.0 mg (0.0014 mmol, 60%) of 16 as an amorphous solid. [α]24

D +24.9
(c 0.40, CHCl3); 1H-NMR (500 MHz, CDCl3) 7.48–6.82 (23H, m), 7.99 (1H, dd, J = 2.2, 8.5 Hz), 6.91 (1H,
d, J = 8.5 Hz), 6.88 (1H, d, J = 2.2 Hz), 5.65 (1H, t, J = 9.5 Hz), 6.20 (1H, d, J = 2.5 Hz), 6.16 (1H, d,
J = 2.5 Hz), 6.03 (1H, s), 5.21–5.12 (5H, m), 5.99 (1H, d, J = 12.5 Hz), 4.95 (1H, d, J = 12.5 Hz), 4.87 (1H,
d, J = 8.0 Hz), 4.82 (1H, d, J = 9.5 Hz), 4.69 (1H, d, J = 9.5 Hz), 4.64 (2H, s), 2.87 (1H, dd, J = 6.0,
16.0 Hz), 2.49 (1H, dd, J = 8.0, 16.0 Hz), 1.83 (3H, s), 1.70 (3H, s), 1.54 (3H, s), 0.98 (18H, s), 0.91 (9H, s),
0.00 (18H, s); 13C-NMR (125 MHz, CDCl3) 169.7, 168.7, 167.4, 158.7, 158.6, 156.3, 153.5, 152.9, 149.2,
148.7, 147.9, 147.2, 146.8, 137.3, 137.2, 136.9, 136.6, 130.7, 130.1, 128.5–127.3 (C17), 121.2, 121.1, 120.2,
106.7, 103.5, 95.2, 95.0, 80.4, 79.1, 73.1, 71.5, 71.1, 70.8, 69.9, 69.2, 35.8, 29.7, 26.0, 25.9, 25.6, 22.7, 20.9,
20.5, 19.8, 18.5, 18.1, 14.2, −4.0, −4.1 (2); FABMS (m/z): 1408 (M+ + H, 25), 1308 (28), 1305 (77),
1258 (30), 1257 (43), 1256 (44), 1216 (28), 1215 (52), 1214 (78), 1156 (27), 1155 (31), 1154 (37), 977 (21),
976 (23), 975 (33), 885 (23), 884 (21), 883 (31), 793 (29), 792 (31), 791 (48), 695 (40), 693 (29), 692 (52),
691 (100), 689 (35); HRFABMS: Calcd. for C82H99O15Si3, 1407.6392; Found, 1407.6284.

[4,8]-2,3-Trans-3,4-trans-2”,3”-trans-3,5,3”-tri-O-acetyl-5,7,3′,4′-tetra-O-benzyl-7”,3′′′,4′′′-tri-O-TBDMS-(+)
-catechin-(+)-catechin (17). Acetylation product of intermolecular condensation product of 8 and 12:
Data for 17: [α]23

D +1.3 (c 0.35, CHCl3); 1H-NMR (500 MHz, CDCl3, 0.62: 0.38 mixture of rotational
isomers) major: 7.49–6.76 (15.5H, m), 6.56 (0.62H, dd, J = 2.0, 8.0 Hz), 6.29 (0.62H, s), 6.25 (0.62H, d,
J = 2.0 Hz), 6.21 (0.62H, d, J = 2.0 Hz), 5.93 (0.62H, t, J = 10.0 Hz), 5.19–4.78 (4.34H, m), 4.75 (0.62H,
d, J = 10.0 Hz), 4.67 (0.62H, d, J = 11.0 Hz), 4.55 (0.62H, d, J = 11.0 Hz), 3.41 (0.62H, d, J = 8.5 Hz),
2.97 (0.62H, dd, J = 6.5, 16.0 Hz), 2.36–2.24 (0.62H, m), 2.33 (1.86H, s), 1.80 (1.86H, s), 1.63 (1.86H. s),
1.01 (11.16H, s), 0.86 (5.58H, s), 0.279–0.038 (11.16H, m); minor: 7.49–6.76 (9.12H, m), 6.63 (0.38H, d,
J = 2.0 Hz), 6.18 (0.38H, s), 6.11 (0.38H, d, J = 2.0 Hz), 6.00 (0.38H, d, J = 2.0 Hz), 5.95 (0.38H, dd, J = 2.0,
8.0 Hz), 5.81 (0.38H, t, J = 9.5 Hz), 5.19–4.78 (3.8H, m), 4.62 (0.38H, d, J = 9.5Hz), 2.77 (0.38H, dd, J = 5.0,
13.5 Hz), 2.61 (0.38H, dd, J = 4.5, 13.5 Hz), 2.28 (1.14H, s), 1.96 (1.14H, s), 1.58 (1.14H, s), 1.03 (3.42H, s),
0.97 (3.42H, s), 0.93 (3.42H, S), 0.28–0.038 (6.84H, m); 13C-NMR (125 MHz, CDCl3, 0.62: 0.38 mixture of
rotational isomers) major: 169.8, 169.2, 168.8, 158.7, 158.3, 156.5, 154.5, 153.0, 149.34, 149.27, 147.5, 146.8,
146.3, 137.6, 137.5, 137.3, 131.2, 129.2, 128.8–127.3 (C24), 121.8, 120.8, 120.6, 119.9, 116.8, 115.0, 114.4,
107.7, 105.6, 105.1, 95.5, 94.7, 80.7, 78.0, 71.5 (C2), 70.3, 70.1, 69.8, 36.0, 27.0, 26.4, 26.24, 26.23, 21.3, 21.2,
21.0, 19.0, 18.8, 18.6, 1.0–0 (C3); minor: 170.8, 169.1, 168.6, 158.5, 157.7, 157.1, 153.4, 153.1, 149.3, 148.7,
147.7, 147.2, 146.7, 137.6, 137.4, 136.8, 130.83, 130.76, 128.8–127.3 (Cx24), 121.24, 121.18, 119.7, 119.3,
117.5, 115.2, 115.0, 107.8, 105.7, 104.4, 95.0, 94.9, 80.3, 77.8, 71.8, 71.4, 70.7, 70.1, 69.5, 36.0, 26.23, 26.21,
26.1, 24.4, 21.2, 20.9, 20.8, 18.72, 18.67, 18.5, 1.0–0 (C3); FABMS (m/z): 1408 (26), 1407 (M+ + H, 32),
1348 (43), 1347 (64), 1346 (61), 1345 (26), 1257 (66), 1256 (100), 1255 (94), 1196 (34), 1195 (38); FABHRMS:
Calcd. for C82H99O15Si3, 1407.6292; Found, 1407.6226.

4. Conclusions

In conclusion, we developed a new and simple synthetic method to obtain the 4-6-connected
(+)-catechin dimer, procyanidin B6 (1), without capping the C-8 position. By regioselectively
deprotecting the 5-position of TBDMS-protected flavan-3-ols, it was possible to connect the electrophile
to the 5-position of the nucleophile via a diester linker. When azelaic acid was used as a diester linker,
the intramolecular coupling reaction proceeded smoothly, and the desired 4-6 condensed (+)-catechin
dimer, procyanidin B6 (1), was selectively obtained. Through this synthetic method, stereoselectivity
could be obtained merely by esterification and condensation.
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Abbreviations

AcOH acetic acid
Bn benzyl
DCC N,N′-dicyclohexylcarbodiimide
DIBALH diisobutylaluminum hydrate
DMAP 4-dimethylaminopyridine
DMSO dimethyl sulfoxide
EE ethoxyethyl
ESI electrospray ionization
Et3N trimethylamine
EtOAc ethyl acetate
FAB fast atom bombardment
HPLC high-performance liquid chromatography
MeOH methanol
SAR structure-activity-relationship studies
TBAF tetrabutylammonium fluoride
TBDMS and TBS t-butyldimethylsilyl
TFA trifluoroacetic acid
THF tetrahydrofuran
TLC thin-layer chromatography
TMSOTf trimethylsilyl triflate
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