Supplementary Information

Investigation into improving the aqueous solubility of the thieno[2,3-b]pyridine anti-proliferative agents

Ayesha Zafar ${ }^{l}$, Lisa I. Pilkington ${ }^{l}$, Natalie A. Haverkate ${ }^{l}$, Michelle van Rensburg ${ }^{l}$, Euphemia
Leung 2,Sisira Kumara ${ }^{2}$, William A. Denny ${ }^{2}$, David Barker ${ }^{l}$, Ali Alsuraifi ${ }^{3}$, Clare Hoskins ${ }^{3}$ and Jóhannes Reynisson ${ }^{1 *}$
${ }^{1}$ School of Chemical Sciences, University of Auckland, New Zealand
${ }^{2}$ Auckland Cancer Society Research Centre and Department of Molecular Medicine and Pathology, University of Auckland, New Zealand
${ }^{3}$ Institute for Science and Technology in Medicine, Keele University, Guy Hilton Research Centre, Stoke-on-Trent, United Kingdom

Index

Table S1. Calculated molecular descriptors for the derivatives.
Page 2
Table S2. The results of the thymidine uptake and SRB assays.
Page 2

Table S3. Interactions and scores for PLC- $\delta 1$.
Page 2
Table S4. Interactions and scores for TDP1.
Page 3
Table S5. Interactions and scores for Atox1.
Page 3

Table S6. Interactions and scores for $\mathrm{A}_{2 \mathrm{~A}} \mathrm{AR}$.
Page 4
Table S7. Interactions and scores for Tubulin.

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{C h 5}$ polymer. Page 5

Table S8. Elemental analysis of Ch5 polymer. Page 5

Figure S2. FTIR of freeze dried Ch5 polymer.

Table S8. Peak bandwidth assignment occurring on FTIR spectrum.
Page 7
Figure S3. Compound 2 Uv/vis calibration.
Page 8
Protocol. NCI's 60-cell line panel growth inhibition assay.

Table S1. Calculated molecular descriptors for the derivatives.

Molecule	MW	$\log \mathrm{P}$	DonorHB	AccptHB	PSA	RB	\log S
$\mathbf{1}$	337.4	2.2	2	5.5	99.4	3	-3.6
$\mathbf{2}$	385.9	2.9	2	5.5	97.7	3	-4.5
$\mathbf{3}$	433.6	2.9	2	7.2	76.0	7	-2.6
$\mathbf{4}$	424.5	5.3	2	3.5	63.0	7	-5.6
$\mathbf{5}$	370.4	4.0	2	3.5	63.5	3	-4.8
$\mathbf{6}$	348.4	3.3	2	3.5	65.2	3	-4.1
$\mathbf{7}$	348.4	3.5	2	3.5	68.4	3	-4.4

Table S2. The results of the thymidine assays at $1 \mu \mathrm{M}$ concentration. The average relative growth is given in percentages (\%) as compared to untreated cells at 100% growth, i.e., the lower percentage numbers represent greater growth inhibition.

	MDA-MB-231	HCT116
$\mathbf{3}$	99.5	90.3
$\mathbf{4}$	105.4	103.6
$\mathbf{5}$	97.2	102.1
$\mathbf{6}$	106.0	104.2
$\mathbf{7}$	100.7	99.0

Table S3. Predicted interactions and scores for the thienopyridines with PLC- $\delta 1$.

Molecules	Hydrogen Bonding residues	GS	CS	ASP	PLP
$\mathbf{1}$	His356, Arg549, Glu341, Lys438	53.9	30.2	34.6	61.5
$\mathbf{2}$	His311, Arg549, Asn312. Lys438, Glu341	57.4	31.2	34.2	63.6
$\mathbf{3}$	His356, Asn312, Glu341	63.9	28.1	43.5	74.9
$\mathbf{4}$	His311, Asn312, Glu341	63.9	30.2	44.5	83.9
$\mathbf{5}$	Glu390	53.5	28.5	35.3	62.3
$\mathbf{6}$	His356, Asn312, Glu341	51.0	28.5	34.1	59.9
$\mathbf{7}$	His356, Asn312, Glu341	59.0	26.8	32.1	63.0

Table S4. Predicted interactions and scores for the thienopyridines with TDP1.

Molecules	Hydrogen Bonding residues	GS	CS	ASP	PLP
$\mathbf{1}$	Ser400, His493	52.6	29.2	30.1	48.6
$\mathbf{2}$	Asn516, His493, Asn283	49.9	28.2	32.5	47.6
$\mathbf{3}$	Tyr204, Ser518	52.8	26.6	39.4	58.7
$\mathbf{4}$	No H-bonding	52.5	28.7	39.2	61.4
$\mathbf{5}$	His493	50.6	28.9	34.4	53.1
$\mathbf{6}$	His263, His493, Asn516	51.5	29.5	33.0	53.1
$\mathbf{7}$	His263, His493	54.2	27.7	33.0	49.5

Table S5. Predicted interactions and scores for the thienopyridines with Atox1.

Molecules	Bonding residues	GS	CS	ASP	PLP
$\mathbf{1}$	Thr58, $\pi-\pi$ stacking with Lys60,Cys15	40.3	20.3	14.9	39.1
$\mathbf{2}$	Arg21, $\pi-\pi$ stacking with Lys60	44.4	20.8	15.1	39.9
$\mathbf{3}$	Lys60,Interaction with Thr58	40.0	19.6	19.6	50.7
$\mathbf{4}$	Thr58, $\pi-\pi$ stacking with Lys60,Cys15	40.6	21.1	21.8	56.5
$\mathbf{5}$	Gly31	36.7	23.2	18.8	50.8
$\mathbf{6}$	$\pi-\pi$ stacking with Lys60	41.3	19.5	15.0	43.2
$\mathbf{7}$	Thr58, Gly14, $\pi-\pi$ stacking with Lys60	40.2	19.8	14.7	42.2

Table S6. Predicted interactions and scores for the thienopyridines with $\mathrm{A}_{2 \mathrm{~A}} \mathrm{AR}$.

Molecules	Hydrogen Bonding residues	GS	CS	ASP	PLP
1	Asn253,Glu169, stacking interaction with Phe168	61.0	36.7	39.8	67.4
2	Asn253,Glu169, stacking interaction with Phe168	67.2	44.1	42.2	69.0
3	Asn253, stacking interaction with Phe 168	74.9	42.0	44.5	92.5
4	Asn253,Glu169, stacking interaction with Phe168	71.9	45.9	49.7	96.2
5	Asn253, Glu169, stacking interaction with Phe168	60.6	43.6	45.5	77.0
6	Asn253, stacking interaction with Phe168	62.5	41.5	41.6	73.1
7	Asn253, Glu169, stacking interaction with Phe168	64.8	41.2	41.9	74.1

Table S7. Predicted interactions and scores for the thienopyridines with the Tubulin-colchicine site.

Molecules	Hydrogen Bonding residues	GS	CS	ASP	PLP
$\mathbf{1}$	Buried inside pocket like colchicine	62.5	29.6	28.1	61.3
$\mathbf{2}$	Buried inside pocket like colchicine	63.9	31.4	25.4	54.9
$\mathbf{3}$	Thr179	72.7	33.9	30.6	97.1
$\mathbf{4}$	Thr179	79.1	56.7	33.7	36.3
$\mathbf{5}$	Buried inside pocket like colchicine	61.3	29.5	28.5	61.5
$\mathbf{6}$	Thr179	51.8	30.0	21.5	70.6
$\mathbf{7}$	Thr179			67.2	

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{C h} 5$ polymer in MeOD carried out using 400 MHz NMR at $25{ }^{\circ} \mathrm{C}$.

Table S8. Elemental analysis of Ch5 polymer.

Polymer	Initial monomer:hydrophobic pendant group molar feed ratio	\% Mole hydrophobic grafting per PAA monomer (n=3, \pm SD $)$	\% Yield (n=3, \pm SD)
Ch5	$1: 0.005$	$4.6(1.2)$	$79.5(10.2)$

Figure S2. FTIR of freeze dried Ch5 polymer.

Table S8. Peak bandwidth assignment occurring on FTIR spectrum of Ch5 using diamond powder tip (64 scans).

Polymer Formulation	Bandwidth (cm^{-1})	Bond type	Functional Group
PAA	$\begin{aligned} & 3361 \\ & 1595 \end{aligned}$	N-H Stretch	1° Amine
	$\begin{aligned} & 2913 \\ & 2854 \\ & 1373 \\ & 1316 \end{aligned}$	C-H Stretch	Alkyl
	1450	C-C Bend	Alkyl
	$\begin{aligned} & 925 \\ & 909 \end{aligned}$	C-N Bend	
Ch5	1450	C-C Bend	Alkyl
	$\begin{aligned} & 925 \\ & 909 \end{aligned}$	C-N Bend	
	$\begin{aligned} & 1464 \\ & 815 \end{aligned}$	$\mathrm{C}=\mathrm{C} \text { Bend }$	Aromatic
	1457	C-C Bend	Alkyl
	$\begin{aligned} & 1383 \\ & 1312 \end{aligned}$	C-H Bend	Alkyl
	$\begin{aligned} & 1141 \\ & 930 \end{aligned}$	C-O Bend	Carbonyl

Figure S3. Compound 2 UV-vis calibration in DMSO at 304 nm .

NCI's 60-cell line panel growth inhibition assay

The NCI's human 60-cell lines were grown in RPMI 1640 medium containing 5\% FBS and 2 mM L-glutamine. Cells were inoculated into 96 -well plates at plating densities 5000-40 000 cells per well, based on the doubling time of individual cell lines. Plates were then incubated at $37{ }^{\circ} \mathrm{C}, 5 \% \mathrm{CO}_{2}, 95 \%$ air and 100% relative humidity for 24 h prior to addition of tested compounds. After 24 h , two plates of each cell line were fixed in situ with trichloroacetic acid (TCA), to represent a measurement of the cell population for each cell line at the time of tested compound addition. Tested compounds were solubilized in DMSO at a concentration 400 times that of the desired final maximum test concentration and stored frozen prior to use. An aliquot of each frozen tested concentrate was thawed and diluted to twice the desired final maximum test concentration with complete medium containing $50 \mu \mathrm{~g} \mathrm{~mL}$ - gentamicin. $100 \mu \mathrm{~L}$ aliquot of the tested drug diluted solution was added to appropriate wells containing $100 \mu \mathrm{~L}$ of medium, resulting in the required final drug doses. Following tested compound addition, plates were incubated for additional 48 h . The assay was terminated by the addition of cold TCA for adherent cells. Cells were fixed in situ by addition of $50 \mu \mathrm{~L}$ of cold 50% (w/v) TCA (final concentration, $10 \% \mathrm{TCA}$) and incubated for 60 min at $4^{\circ} \mathrm{C}$. The supernatant was discarded, and plates were washed 5 times with water and air dried. Sulforhodamine B (SRB) solution $(100 \mu \mathrm{~L}), 0.4 \%(\mathrm{w} / \mathrm{v})$ in 1% acetic acid was added to each well, and plates were incubated for 10 min at rt . After staining, the unbound dye was removed by washing five times with 1% acetic acid and plates were air dried. The bound stain was subsequently solubilized with 10 mM Trizma base, and the absorbance was measured on a plate reader at 515 nm . For suspension cells, the methodology was identical except the assay termination by fixing settled cells at the bottom of each well by adding $50 \mu \mathrm{~L}$ of $80 \% \mathrm{TCA}$ (final concentration, $16 \% \mathrm{TCA}$).
Taken from: K. A. El Sayed, A. I. Foudah, A. M. S. Mayer, A. M. Crider and D. Song, Med. Chem. Comm., 2013, 4, 1231-1238.

NCI Data

Derivative 3

Derivative 4

Derivative 6

