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Abstract: The tautomerism of 1-phenyl-1,2-dihydro-3H-pyrazol-3-One was investigated. An X-ray
crystal structure analysis exhibits dimers of 1-phenyl-1H-pyrazol-3-ol units. Comparison of NMR
(nuclear magnetic resonance) spectra in liquid state (1H, 13C, 15N) with those of “fixed” derivatives, as
well as with the corresponding solid state NMR spectra reveal this compound to exist predominantly
as 1H-pyrazol-3-ol molecule pairs in nonpolar solvents like CDCl3 or C6D6, whereas in DMSO-d6 the
corresponding monomers are at hand. Moreover, the NMR data of different related 1H-pyrazol-3-ol
derivatives are presented.
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1. Introduction

Pyrazolones are interesting chemical entities not only due to their importance as building blocks for
the synthesis of various bio-active compounds [1–6], but also in respect to their capability to prototropic
tautomerism and to the—more uncommon—phenomenon of desmotropy [7]. Whereas for 1-substituted
1H-pyrazol-5-ols and their tautomers (2-substituted 2,4-dihydro-3H-pyrazol-3-ones and 2-substituted
1,2-dihydro-3H-pyrazol-3-ones), a considerably large number of experimental and theoretical studies
concerning their tautomerism has been published [8–12], there is much less known about their structural
isomers with a 1-substituted 1H-pyrazol-3-ol motif. The latter compounds are in as much of interest
as they can serve as starting materials for further functionalization [13], the construction of anellated
systems [14], as well as for the synthesis of biologically active compounds [15–17]. Hence, this study
is devoted to investigations with 1-substituted 1H-pyrazol-3-ols (tautomers to the corresponding
1,2-dihydro-3H-pyrazol-3-ones) and some derivatives carrying different substituents at pyrazole C-4.
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2. Results and Discussion

In principle, for the title compounds, two tautomeric forms are possible, namely the OH-form and
the NH-form (Figure 1). In Chemical Abstracts such compounds carrying an alkyl or a (hetero)aryl
substituent at the pyrazole nitrogen atom are always listed as 3H-pyrazol-3-ones. Hence, as many
authors prefer the latter denomination, in the course of this study we investigated which tautomer is
really relevant in a solid state and, especially, in solution.
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3H-pyrazol-3-ones). 

2.1. X-ray Analysis of 1-Phenyl-1,2-dihydro-3H-pyrazol-3-one (1-Phenyl-1H-pyrazol-3-ol) (1) 

In the solid state an unambiguous determination of structure and, thus, a safe discrimination 
between OH and NH-form is possible. In view of this fact crystals of 1-phenyl-1,2-dihydro-3H-
pyrazol-3-one (1-phenyl-1H-pyrazol-3-ol) (1)—obtained by crystallization from ethanol/water—were 
subjected to X-ray structure analysis. It turned out that this compound is present in the 1H-pyrazol-
3-ol form constituting dimeric units connected by two identical intermolecular hydrogen bonds 
(Figure 2). In principle, the formation of similar dimeric structures would be also possible by 
combination of two identical NH-isomers establishing two intermolecular hydrogen bonds between 
C=O and the NH of the second molecule. However, the electron density map clearly shows the 
position of the hydrogen atom at the oxygen and thus excludes the latter alternative (Figure 2, further 
details can be found in the Experimental Section). 

 
Figure 2. Difference electron density map of 1. Determination of the H position at O1. The distance of 
O1 to the electron density position (green shaded) in the direct donor acceptor line is 0.8927 (10) Å. 
The according distance to N2′ is 1.8339 (10) Å. For further details please follow the CCDC Code. 

  

Figure 1. Possible tautomeric forms of 1-substituted 3-hydroxy-1H-pyrazoles (1-substituted 1,2-dihydro-
3H-pyrazol-3-ones).

2.1. X-ray Analysis of 1-Phenyl-1,2-dihydro-3H-pyrazol-3-one (1-Phenyl-1H-pyrazol-3-ol) (1)

In the solid state an unambiguous determination of structure and, thus, a safe discrimination
between OH and NH-form is possible. In view of this fact crystals of 1-phenyl-1,2-dihydro-3H-
pyrazol-3-one (1-phenyl-1H-pyrazol-3-ol) (1)—obtained by crystallization from ethanol/water—were
subjected to X-ray structure analysis. It turned out that this compound is present in the 1H-pyrazol-3-ol
form constituting dimeric units connected by two identical intermolecular hydrogen bonds (Figure 2).
In principle, the formation of similar dimeric structures would be also possible by combination of two
identical NH-isomers establishing two intermolecular hydrogen bonds between C=O and the NH of
the second molecule. However, the electron density map clearly shows the position of the hydrogen
atom at the oxygen and thus excludes the latter alternative (Figure 2, further details can be found in
the Experimental Section).
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2.2. Solid State NMR (SSNMR) of 1

The same material as used for the X-ray analysis was subjected to solid state NMR (CP/MAS).
As the X-ray analysis revealed the presence of the 1H-pyrazol-3-ol form, the solid state NMR spectra
also should exclusively origin from this species. Here, due to its simplicity the 15N-NMR spectrum is
particularly valuable, showing the “pyridine-like” pyrazole N-atom (N-2) at 243.1 ppm, whereas the
“pyrrole-like” N-atom (N-1) is resonating at 192.6 ppm (referenced against external 15NH4Cl (39.3 ppm
with respect to liquid NH3) (Figure 3). The distinct chemical shift difference of N-1 compared to N-2
(∆δ = 50.5 ppm) clearly reflects the fact that the two nitrogen atoms are of different types.
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In addition, in 15N-NQS (non-quaternary suppression) experiments with different pre-scan
dephasing delays (20 µs, 100 µs, 200 µs) the intensities of both 15N-NMR resonances remained constant.
This behaviour suggests that the two nitrogen atoms are of the same type regarding their protonation
status what is only the case for the OH isomer.

2.3. NMR Spectra in Solution

Whereas in the solid state, an unambiguous determination of individual tautomeric forms
is smoothly possible by X-ray structure analysis, the situation in solution is much more complex.
Here, depending on a plethora of different influencing variables, tautomeric equilibria with the
simultaneous presence of several tautomeric forms are possible, whereas time-averaged signals are
obtained in case of fast exchange. Amongst the appropriate methods for investigating such tautomeric
equilibria in solution NMR spectroscopic methods play a prominent role [8,9,18–20]. A frequently
used concept is the comparison of the data obtained in solution with those of “fixed” derivatives
(representing the individual “frozen” tautomeric forms) or with the data of the individual tautomeric
forms obtained from solid state NMR experiments. Although this approach comes along with some
difficulties (i.e., estimating the difference between the tautomer and the model compound) in many
cases fairly good results can be obtained, particularly when one tautomeric form is strongly dominating.
However, in cases when several forms are present to a significant extent the precise determination of
the percentage composition by interpolation is difficult.

As compound 1 is present as 1H-pyrazol-3-ol in the solid state, a comparison of the crucial SSNMR
chemical shifts with those in solution should provide valuable information. As outlined in Figure 4,
the 13C and the 15N chemical shifts at the pyrazole nucleus show a high degree of accordance between
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the solid state and those in CDCl3 or in C6D6 solution which leads to the conclusion that the 3-hydroxy
form is far dominating in these solvents.
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Figure 4. Crucial chemical shifts of 1 in solid state and in different solvents. 1H-NMR chemical shifts
are represented in italics, 13C-NMR chemical shifts in plain text, 15N-NMR chemical shifts in bold.

In DMSO-d6 solution it is noticeable that the signal of pyrazole N-2 is clearly shifted downfield
compared to the recordings in CDCl3 or C6D6. A possible explanation for this phenomenon is the fact
that in the latter nonpolar solvents 1 is obviously present as a dimer of 1H-pyrazol-3-ols (like in the solid
state) and, thus, the pyrazole N-2 atom is involved in an intramolecular hydrogen bond, whereas—in
contrast—in the strong acceptor solvent DMSO-d6 these intermolecular hydrogen bonds are broken
and now monomers are dominating. It is well-known that involvement of a nitrogen’s lone-pair in
hydrogen bonds (or—to a larger extent—oxidation, alkylation, or complexation) leads to a marked
upfield shift of the corresponding 15N resonance [21–23]. In 3-methoxy-1-phenyl-1H-pyrazole (2)
(Figure 5) the above mentioned dimerization and, thus, participation of pyrazole N-2 into
intermolecular hydrogen bonding is not possible, what is reflected by a larger chemical shift of
the latter. Hence, δ(N-2) (261.7 ppm) is now comparable to the value in DMSO-d6 (262.1 ppm), whereas
δ(N-1) in compound 2 (195.6 ppm) and in 1 in different solvents (191.7–194.5 ppm) is very similar.
Hence, it can be concluded that 1 is also present as 1H-pyrazol-3-ol in DMSO-d6 solution, however, not
in the dimeric form stabilized by intermolecular hydrogen bonds.

In addition, employing the concept of the fixed derivatives we compared the 1H-, 13C- and
15N-NMR chemical shifts, as well as characteristic spin coupling constants of 1 with its O-methyl (2)
and N-methyl derivative (3), the “fixed” OH- and NH-forms, respectively.
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From the data given in Figure 5 the above conclusions are confirmed, namely that compound 1,
which in principle is capable of prototropic tautomerism, is predominantly existing as OH-isomer
in CDCl3 solution. This is supported by the fact that the 1H-, 13C-, and 15N-NMR chemical shifts
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of 1 resemble closely to those of the fixed O-methyl congener 2. Especially the 15N-chemical shifts
are valuable indicators, as the N-methyl derivative 3 exhibits two sp3-type nitrogen atoms with
similar 15N-NMR chemical shifts, whereas in 1 and 2 the large chemical shift differences between
the two nitrogen atoms in the corresponding molecule hint to different types of N-atoms (sp3 and
sp2). For comparison only, with 1-phenylpyrazolidin-3-one, which formally is the dihydro derivative
of the NH form of 1, we found 105.1 ppm for N-1 and 151.8 ppm for N-2 in DMSO-d6 solution.
Moreover, 1 and 2 show equal sizes of the vicinal 3J(H4,H5) coupling constant at the pyrazole nucleus
(2.6 Hz), whereas in 3 this coupling is considerably larger (3.6 Hz) (Figure 5). An additional difference
consists in the 13C-NMR chemical shift of Ph C-2/6 which is akin in 1 (118.6 ppm) and 2 (117.8 ppm).
In contrast, 3 shows a markedly larger chemical shift for these carbon atoms (123.0 ppm) which
can be attributed to some distorsion of phenyl and pyrazole ring obviously induced by the sterical
hindrance of the N-methyl group [24,25]. Additionally, the large differences in 13C-NMR chemical
shifts of pyrazole C-5 (1: 129.1 ppm, 2: 127.7 ppm) in comparison to that of 3 (142.3 ppm) provide an
extra confirmation.

Moreover, 1H-, 13C-, and 15N-NMR spectra of compound 1 were additionally taken from C6D6,
DMSO-d6 and CD3OD solutions. As all the significant criteria discussed above were almost similar
to those in CDCl3 solution, it is reasoned that, also in these solvents, the hydroxy form is far more
predominant. The regarding data are presented in the Experimental Section.

In the following, congeners of 1 carrying a halogen atom or an acyl moiety at pyrazole C-4 were
investigated (compounds 4–8). Again, all these species clearly exist as pyrazol-3-ols in CDCl3, as well
as in DMSO-d6 solution based on the 13C- and 15N-NMR chemical shift considerations outlined above.
Regarding the 4-bromo derivative 5 a “fixed” 3-methoxy derivative 9 has been described already by
us, whose data resemble the “free” 1H-pyrazol-3-ol 5 [26]. The same is the case for the pair 7 and 10
(Figure 6). When switching from CDCl3 to DMSO-d6 solution, the 13C chemical shift of the carbonyl
C-atom in 7 receives an upfield shift of 4.0 ppm (195.7 ppm→ 191.7 ppm) which hints to the existence
of an intramolecular hydrogen bond—but now—between carbonyl O-atom and OH proton in CDCl3
solution, which is broken in the strong acceptor solvent DMSO-d6 [27]. In principle, also 3-O-acyl
derivatives of 1 (compounds 11–13) can be regarded as fixed 3-OH derivatives, although the 3-O-acyl
rest seems to be less comparable to OH than an OCH3 group. However, despite larger differences
regarding the 13C chemical shifts of the pyrazole C-atoms between 1 and 11–13 appear, the data of the
phenyl ring closely resemble as well as the 3J(H4,H5) coupling constant at the pyrazole nucleus, which
for 11–13 is the same as in 1 (2.5–2.6 Hz).
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The triple 14–16 provides another example of comparing a free 1H-pyrazol-3-ol (14) with the
corresponding O-alkyl (15) and N-alkyl derivative (16), respectively. Again, the selected data depicted
in Figure 7 clearly hint that 14 predominantly exists as OH-isomer and not as pyrazol-3-one.
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and 16 (in CDCl3).

In addition, we investigated 1H-pyrazol-3-ols carrying a methyl (17) and a benzyl substituent (18),
respectively, at pyrazole N-1. From the relevant data of these compounds, depicted in Figure 8, the
conclusion can be drawn, that also 17 and 18 exist in the 3-hydroxy form in CDCl3, DMSO-d6, and
C6D6 solution. Again, as found with 1-phenyl-1H-pyrazol-3-ol 1 and compounds 17, 18, the markedly
larger chemical shifts of pyrazole N-2 in DMSO-d6 compared to those in CDCl3 or C6D6 hint to the
absence of dimers stabilized by intermolecular hydrogen bonds in this solvent, what is supported by a
distinctly smaller 1H-NMR chemical shift of the OH-proton in DMSO-d6 (Figure 8).
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Figure 8. Crucial 1H (in italics), 13C, and 15N (in bold) NMR chemical shifts of 1-methyl-1H-pyrazol-3-ol
(17) and 1-benzyl-1H-pyrazol-3-ol (18) in CDCl3, DMSO-d6, and C6D6 solution.

3. Experimental Section

3.1. General Information

Melting points were determined on a Büchi M-565 melting point apparatus (Büchi Labortechnik
AG, Flawil, Switzerland) and are uncorrected. IR (infrared) spectra (KBr pellets) were recorded on
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a Bruker Tensor 27 spectrometer (Bruker Optik GmbH, Ettlingen, Germany) and are reported in
wave numbers (cm−1). High-resolution ESI-TOF mass spectra were measured on a Bruker maXis
spectrometer (Bruker Daltonik GmbH, Bremen, Germany). Elemental analyses were performed at
the Microanalytical Laboratory, University of Vienna. 1H and 13C-NMR spectra were recorded on a
Bruker Avance 500 spectrometer (500.13 MHz for 1H, 125.77 MHz for 13C) (Bruker BioSpin GmbH,
Rheinstetten, Germany–valid for all mentioned Bruker NMR spectrometers), a Bruker Avance III
400 spectrometer (400.23 MHz for 1H, 100.64 MHz for 13C) or a Varian UnityPlus300 spectrometer
(299.95 MHz for 1H, 75.43 MHz for 13C) (Varian, Palo Alto, CA, USA) at 293 K. The centre of the solvent
signal was used as an internal standard which was related to TMS with δ 7.26 ppm (1H in CDCl3),
δ 2.49 ppm (1H in DMSO-d6), δ 7.16 ppm (1H in C6D6), δ 3.31 ppm (1H in CD3OD), δ (δ 77.0 ppm (13C in
CDCl3), δ 39.5 ppm (13C in DMSO-d6), δ 128.06 ppm (13C in C6D6) and δ 49.00 ppm (13C in CD3OD).
The digital resolutions were 0.20 Hz/data point in the 1H and 0.33 Hz/data point in the 13C-NMR
spectra. 15N-NMR spectra were obtained on Bruker Avance 500 (50.69 MHz) and Bruker Avance III
400 (40.56 MHz) spectrometers (both equipped with “direct” detection broadband z-gradient observe
probes) or on a Bruker Avance III 700 (70.96 MHz) equipped with a 5 mm TCI 1H-13C/15N/D z-gradient
cryoprobe, and were measured against external nitromethane (coaxial capillary) and recalculated to
liquid ammonia. Solid-state NMR spectra (CP/MAS, MAS: 10 kHz) were recorded on a Bruker Avance
III 500 instrument with a broadband MAS-probe for 3.2 mm rotors. CP contact times were 2 ms for
(1H, 13C) and 3 ms for (1H, 15N). 1H RF of 100 kHz was used for spinal64 broadband decoupling.
1H, 13C-HETCOR spectra were recorded using FSLG homonuclear decoupling during t1-evolution and
mixing times of 50 µs and 200 µs. 15N-NMR spectra were referenced to 15NH4Cl and recalculated to
the liquid ammonia scale (δ 15NH4Cl 39.3 ppm). 13C spectra were referenced to the methylene carbon
signals of adamantane and recalculated to the TMS scale (δ 13CH2 38.5 ppm). 1H chemical shifts were
referenced to the NH3

+ resonance in α-Glycine and recalculated to the TMS scale (δ 15NH3
+ 8.5 ppm).

Product yields were not optimised.

3.2. Data of Investigated Compounds

1-Phenyl-1H-pyrazol-3-ol (1). Compound 1 was prepared by oxidation of 1-phenylpyrazolidin-3-one
with FeCl3 according to Reference [28] and recrystallized from EtOH–H2O. 1H-NMR (CDCl3): δ 12.16
(br s, 1H, OH), 7.67 (d, 3J = 2.6 Hz, 1H, pyrazole H-5), 7.52 (m, 2H, Ph H-2,6), 7.45 (m, 2H, Ph H-3,5), 7.25
(m, 1H, Ph H-4), 5.92 (d, 3J = 2.6 Hz, 1H, pyrazole H-4). 13C-NMR (CDCl3): δ 164.0 (2J(C3,H4) = 2.2 Hz,
3J(C3,H5) = 10.4 Hz, pyrazole C-3), 139.4 (Ph C-1), 129.6 (Ph C-3,5), 129.1 (1J(C5,H5) = 187.0 Hz,
2J(C5,H4) = 8.4 Hz, pyrazole C-5), 125.9 (Ph C-4), 118.6 (Ph C-2,6), 94.2 (1J(C4,H4) = 180.2 Hz,
2J(C4,H5) = 7.7 Hz, pyrazole C-4). 15N-NMR (CDCl3): δ 192.1 (pyrazole N-1), 245.9 (pyrazole N-2).
1H-NMR (DMSO-d6): δ 10.28 (s, 1H, OH), 8.18 (d, 3J = 2.6 Hz, 1H, pyrazole H-5), 7.67 (m, 2H,
Ph H-2,6), 7.40 (m, 2H, Ph H-3,5), 7.15 (m, 1H, Ph H-4), 5.82 (d, 3J = 2.6 Hz, 1H, pyrazole H-4).
13C-NMR (DMSO-d6): δ 162.8 (2J(C3,H4) = 2.5 Hz, 3J(C3,H5) = 10.3 Hz, pyrazole C-3), 139.9 (Ph C-1),
129.4 (Ph C-3,5), 128.4 (1J(C5,H5) = 188.2 Hz, 2J(C5,H4) = 8.9 Hz, pyrazole C-5), 124.7 (Ph C-4), 116.8 (Ph
C-2,6), 94.4 (1J(C4,H4) = 178.0 Hz, 2J(C4,H5) = 8.0 Hz, pyrazole C-4). 15N-NMR (DMSO-d6): δ 194.4
(pyrazole N-1), 262.1 (pyrazole N-2). 1H-NMR (C6D6): δ 12.69 (br s, 1H, OH), 7.33 (m, 2H, Ph H-2,6),
7.06 (m, 2H, Ph H-3,5), 6.97 (d, 3J = 2.6 Hz, 1H, pyrazole H-5), 6.86 (m, 1H, Ph H-4), 5.76 (d, 3J = 2.6 Hz,
1H, pyrazole H-4). 13C-NMR (C6D6): δ 165.1 (2J(C3,H4) = 2.2 Hz, 3J(C3,H5) = 10.4 Hz, pyrazole C-3),
139.9 (Ph C-1), 129.7 (Ph C-3,5), 129.3 (1J(C5,H5) = 187.1 Hz, 2J(C5,H4) = 8.5 Hz, pyrazole C-5), 125.8 (Ph
C-4), 118.8 (Ph C-2,6), 94.6 (1J(C4,H4) = 179.8 Hz, 2J(C4,H5) = 7.7 Hz, pyrazole C-4). 15N-NMR (C6D6):
δ 191.7 (pyrazole N-1), 246.1 (pyrazole N-2). 1H-NMR (CD3OD): δ 7.89 (3J = 2.6 Hz, 1H, pyrazole H-5),
7.57 (m, 2H, Ph H-2,6), 7.38 (m, 2H, Ph H-3,5), 7.17 (m, 1H, Ph H-4), 5.82 (d, 3J = 2.6 Hz, 1H, pyrazole
H-4). 13C-NMR (CD3OD): δ 164.5 (2J(C3,H4) = 2.6 Hz, 3J(C3,H5) = 10.2 Hz, pyrazole C-3), 141.3 (Ph
C-1), 130.4 (Ph C-3,5), 129.7 (1J(C5,H5) = 187.6 Hz, 2J(C5,H4) = 8.6 Hz, pyrazole C-5), 126.3 (Ph C-4),
118.8 (Ph C-2,6), 94.8 (1J(C4,H4) = 178.6 Hz, 2J(C4,H5) = 7.9 Hz, pyrazole C-4). 15N-NMR (CD3OD):
δ 193.8 (pyrazole N-1), 256.3 (pyrazole N-2). 13C-SSNMR: δ 164.9 (pyrazole C-3), 140.1 (Ph C-1), 132.9,
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131.6 (pyrazole C-5), 131.0, 127.1, 118.8, 115.5, 95.9 (pyrazole C-4). 1H-SSNMR: δ 11.2 (pyrazole OH),
7.1, 6.9, 6.9, 6.7, 5.8, 5.4 (pyrazole H-5), 5.1 (pyrazole H-4). 13C/1H-HETCOR-SSNMR: δ 132.9/6.9,
131.6/5.4, 131.0/7.1, 127.1/6.7, 118.8/6.9, 115.5/5.8, 95.9/5.1 (pyrazole C-4). 15N-SSNMR: δ 243.1
(pyrazole N-2), 192.6 (pyrazole N-1).

3-Methoxy-1-phenyl-1H-pyrazole (2) [29]. 1H-NMR (CDCl3): δ 7.72 (d, 3J = 2.6 Hz, 1H, pyrazole H-5), 7.61 (m,
2H, Ph H-2,6), 7.40 (m, 2H, Ph H-3,5), 7.19 (m, 1H, Ph H-4), 5.89 (d, 3J = 2.6 Hz, 1H, pyrazole H-4), 3.98 (s,
3H, OCH3). 13C-NMR (CDCl3): δ 165.0 (2J(C3,H4) = 2.0 Hz, 3J(C3,H5) = 10.2 Hz, 3J(C3,OMe) = 4.0 Hz,
pyrazole C-3), 140.2 (Ph C-1), 129.3 (Ph C-3,5), 127.7 (1J(C5,H5) = 186.2 Hz, 2J(C5,H4) = 8.3 Hz, pyrazole
C-5), 125.2 (Ph C-4), 117.8 (Ph C-2,6), 93.4 (1J(C4,H4) = 179.2 Hz, 2J(C4,H5) = 8.1 Hz, pyrazole C-4), 56.3
(1J = 145.3 Hz, OCH3). 15N-NMR (CDCl3): δ 195.6 (pyrazole N-1), 261.7 (pyrazole N-2).

2-Methyl-1-phenyl-1,2-dihydro-3H-pyrazol-3-one (3) [30] 1H-NMR (CDCl3): δ 7.44 (m, 2H, Ph H-3,5), 7.39
(d, 3J = 3.6 Hz, 1H, pyrazole H-5), 7.33 (m, 1H, Ph H-4), 7.18 (m, 2H, Ph H-2,6), 5.59 (d, 3J = 3.6 Hz, 1H,
pyrazole H-4), 3.24 (s, 3H, NCH3). 13C-NMR (CDCl3): δ 168.2 (pyrazole C-3), 142.3 (1J(C5,H5) = 188.5 Hz,
2J(C5,H4) = 7.7 Hz, pyrazole C-5), 137.8 (Ph C-1), 129.9 (Ph C-3,5), 127.8 (Ph C-4), 123.0 (Ph C-2,6), 98.1
(1J(C4,H4) = 182.6 Hz, 2J(C4,H5) = 6.3 Hz, pyrazole C-4), 30.3 (1J = 140.7 Hz, NCH3). 15N-NMR (CDCl3):
δ 159.1 (pyrazole N-1), 162.5 (pyrazole N-2).

4-Chloro-1-phenyl-1H-pyrazol-3-ol (4) [29]. 1H-NMR (CDCl3): δ 11.30 (br s, 1H, OH), 7.72 (s, 1H, pyrazole
H-5), 7.47 (m, 4H, Ph H-2,3,5,6), 7.30 (m, 1H, Ph H-4). 13C NMR (CDCl3): δ 159.2 (3J(C3,H5) = 8.5 Hz,
pyrazole C-3), 139.0 (Ph C-1), 129.8 (Ph C-3,5), 126.8 (1J(C5,H5) = 192.3 Hz, pyrazole C-5), 126.6 (Ph
C-4), 118.7 (Ph C-2,6), 98.2 (2J(C4,H5) = 4.3 Hz, pyrazole C-4). 15N-NMR (CDCl3): δ 187.6 (pyrazole
N-1), 246.5 (pyrazole N-2). 1H-NMR (DMSO-d6): δ 11.02 (s, 1H, OH), 8.52 (s, 1H, pyrazole H-5),
7.66 (m, 2H, Ph H-2,6), 7.43 (m, 2H, Ph H-3,5), 7.20 (m, 1H, Ph H-4). 13C-NMR (DMSO-d6): δ 158.1
(3J(C3,H5) = 8.5 Hz, pyrazole C-3), 139.3 (Ph C-1), 129.4 (Ph C-3,5), 126.4 (1J(C5,H5) = 194.4 Hz, pyrazole
C-5), 125.2 (Ph C-4), 116.7 (Ph C-2,6), 97.2 (2J(C4,H5) = 4.6 Hz, pyrazole C-4). 15N-NMR (DMSO-d6): δ
190.0 (pyrazole N-1), 262.0 (pyrazole N-2).

4-Bromo-1-phenyl-1H-pyrazol-3-ol (5) [29]. 1H-NMR (CDCl3): δ 11.33 (br s, 1H, OH), 7.73 (s, 1H, pyrazole
H-5), 7.48 (m, 4H, Ph H-2,3,5,6), 7.30 (m, 1H, Ph H-4). 13C-NMR (CDCl3): δ 160.6 (pyrazole C-3,
3J(C3,H5) = 8.7 Hz), 139.1 (Ph C-1), 129.8 (Ph C-3,5), 129.1 (1J(C5,H5) = 192.5 Hz, pyrazole C-5), 126.7
(Ph C-4), 118.8 (Ph C-2,6), 82.2 (2J(C4,H5) = 4.6 Hz, pyrazole C-4). 15N-NMR (CDCl3): δ 191.7 (pyrazole
N-1), 247.9 (pyrazole N-2). 1H-NMR (DMSO-d6): δ 10.99 (s, 1H, OH), 8.51 (s, 1H, pyrazole H-5),
7.67 (m, 2H, Ph H-2,6), 7.43 (m, 2H, Ph H-3,5), 7.21 (m, 1H, Ph H-4). 13C-NMR (DMSO-d6): δ 159.4
(3J(C3,H5) = 8.9 Hz, pyrazole C-3), 139.3 (Ph C-1), 129.4 (Ph C-3,5), 128.5 (1J(C5,H5) = 194.7 Hz, pyrazole
C-5), 125.3 (Ph C-4), 116.8 (Ph C-2,6), 82.1 (2J(C4,H5) = 5.2 Hz, pyrazole C-4). 15N-NMR (DMSO-d6): δ
193.7 (pyrazole N-1), 262.5 (pyrazole N-2).

4-Iodo-1-phenyl-1H-pyrazol-3-ol (6) [29]. 1H-NMR (CDCl3): δ 11.40 (br s, 1H, OH), 7.72 (s, 1H, pyrazole
H-5), 7.48 (m, 4H, Ph H-2,3,5,6), 7.31 (m, 1H, Ph H-4). 13C-NMR (CDCl3): δ 163.6 (pyrazole C-3,
3J(C3,H5) = 9.1 Hz), 139.1 (Ph C-1), 133.3 (1J(C5,H5) = 192.3 Hz, pyrazole C-5), 129.8 (Ph C-3,5), 126.7
(Ph C-4), 118.8 (Ph C-2,6), 46.6 (2J(C4,H5) = 5.0 Hz, pyrazole C-4). 15N-NMR (CDCl3): δ 197.2 (pyrazole
N-1), 248.1 (pyrazole N-2). 1H-NMR (DMSO-d6): δ 10.89 (s, 1H, OH), 8.40 (s, 1H, pyrazole H-5),
7.67 (m, 2H, Ph H-2,6), 7.41 (m, 2H, Ph H-3,5), 7.18 (m, 1H, Ph H-4). 13C-NMR (DMSO-d6): δ 162.7
(3J(C3,H5) = 9.4 Hz, pyrazole C-3), 139.3 (Ph C-1), 132.5 (1J(C5,H5) = 193.8 Hz, pyrazole C-5), 129.4 (Ph
C-3,5), 125.2 (Ph C-4), 116.8 (Ph C-2,6), 49.0 (2J(C4,H5) = 6.3 Hz, pyrazole C-4). 15N-NMR (DMSO-d6):
δ 199.3 (pyrazole N-1), 263.0 (pyrazole N-2).

1-(3-Hydroxy-1-phenyl-1H-pyrazol-4-yl)ethan-1-one (7) [29,31]. 1H-NMR (CDCl3): δ 9.40 (s, 1H, OH),
8.13 (s, 1H, pyrazole H-5), 7.67 (m, 2H, Ph H-2,6), 7.46 (m, 2H, Ph H-3,5), 7.33 (m, 1H, Ph H-4), 2.48
(s, 3H, COCH3). 13C-NMR (CDCl3): δ 195.7 (C=O), 164.0 (3J(C3,H5) = 8.7 Hz, pyrazole C-3,), 139.0
(Ph C-1), 129.6 (Ph C-3,5), 128.1 (1J(C5,H5) = 188.0 Hz, pyrazole C-5), 127.4 (Ph C-4), 119.1 (Ph C-2,6),
108.4 (2J(C4,H5) = 7.8 Hz, 3J(C4,CH3) = 1.6 Hz, pyrazole C-4), 27.0 (1J = 127.9 Hz, CH3). 15N-NMR
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(CDCl3): δ 200.4 (pyrazole N-1), 264.2 (pyrazole N-2). 1H-NMR (DMSO-d6): δ 11.10 (s, 1H, OH), 8.84
(s, 1H, pyrazole H-5), 7.80 (m, 2H, Ph H-2,6), 7.48 (m, 2H, Ph H-3,5), 7.29 (m, 1H, Ph H-4), 2.38 (s,
3H, COCH3). 13C-NMR (DMSO-d6): δ 191.7 (C=O), 161.4 (3J(C3,H5) = 9.0 Hz, pyrazole C-3), 138.8
(Ph C-1), 131.2 (1J(C5,H5) = 191.8 Hz, pyrazole C-5), 129.4 (Ph C-3,5), 126.4 (Ph C-4), 118.0 (Ph C-2,6),
110.8 (2J(C4,H5) = 6.8 Hz, 3J(C4,CH3) = 1.4 Hz, pyrazole C-4), 28.5 (1J = 127.4 Hz, CH3). 15N-NMR
(DMSO-d6): δ 198.5 (pyrazole N-1), 263.1 (pyrazole N-2).

(3-Hydroxy-1-phenyl-1H-pyrazol-4-yl)(phenyl)methanone (8) [32]. To a stirred suspension of anhydrous
aluminum chloride (16.0 g, 0.12 mol) in 20 mL of carbon disulfide, maintained at room temperature
with a water bath, a slurry of 1-phenyl-1H-pyrazol-3-yl benzoate (12) (2.64 g, 10 mmol) in 70 mL of
carbon disulfide was added. After the addition was complete, the reaction mixture was refluxed for
8 h. After the solvent was removed under reduced pressure the residual paste was cooled in an ice
bath and a solution of 13.3 mL of 6N hydrochloric acid in 33 mL of ice water was added slowly under
stirring to decompose the aluminum chloride salts, then the mixture was allowed to stand overnight.
The solid was filtered off, washed with water, dried and recrystallized from EtOH to afford 818 mg
(31 %) of 8, m.p. 138–140 ◦C (EtOH). 1H-NMR (CDCl3): δ 9.91 (s, 1H, OH), 8.17 (s, 1H, pyrazole
H-5), 7.89 (m, 2H, CPh H-2,6), 7.69 (m, 2H, NPh H-2,6), 7.63 (m, 1H, CPh H-4), 7.54 (m, 2H, CPh
H-3,5), 7.45 (m, 2H, NPh H-3,5), 7.32 (m, 1H, NPh H-4). 13C-NMR (CDCl3): δ 191.7 (C=O), 165.6
(3J(C3,H5) = 8.8 Hz, pyrazole C-3), 139.0 (NPh C-1), 138.0 (CPh C-1), 132.8 (CPh C-4), 129.5 (NPh
C-3,5), 129.1 ((1J(C5,H5) = 189.6 Hz, pyrazole C-5), 128.9 (CPh C-3,5), 128.2 (CPh C-2,6), 127.4 (NPh
C-4), 119.2 (NPh C-2,6), 106.9 (2J(C4,H5) = 8.0 Hz, pyrazole C-4). 15N-NMR (CDCl3): δ 202.1 (pyrazole
N-1), 264.0 (pyrazole N-2). IR (KBr): 1627 (C=O) cm−1. MS m/z (%): 265 ([M + H]+, 100). Anal. Calcd.
for C16H12N2O2: C, 72.72; H, 4.58; N, 10.60. Found: C, 73.01; H, 4.65; N, 10.27.

4-Bromo-3-methoxy-1-phenyl-1H-pyrazole (9). The synthesis and the 1H and 13C-NMR spectra of 9 are
described in lit. [26]. 15N-NMR (CDCl3): δ 194.7 (pyrazole N-1), 262.6 (pyrazole N-2).

1-(3-Methoxy-1-phenyl-1H-pyrazol-4-yl)ethan-1-one (10) [29]. 1H-NMR (CDCl3): δ 8.25 (s, 1H, pyrazole
H-5), 7.63 (m, 2H, Ph H-2,6), 7.44 (m, 2H, Ph H-3,5), 7.28 (m, 1H, Ph H-4), 4.08 (s, 3H, OCH3), 2.46
(s, 3H, COCH3). 13C-NMR (CDCl3): δ 192.3 (C=O), 162.6 (3J(C3,H5) = 8.8 Hz, 3J(C3,OCH3) = 3.8 Hz,
pyrazole C-3,), 139.1 (Ph C-1), 130.4 (1J(C5,H5) = 189.4 Hz, pyrazole C-5), 129.5 (Ph C-3,5), 126.8 (Ph
C-4), 118.5 (Ph C-2,6), 111.6 (2J(C4,H5) = 6.6 Hz, 3J(C4,CH3) = 1.4 Hz, pyrazole C-4), 56.6 (1J = 146.5 Hz,
OCH3), 29.1 (1J = 127.8 Hz, CH3). 15N-NMR (CDCl3): δ 200.0 (pyrazole N-1), 262.9 (pyrazole N-2).

1-Phenyl-1H-pyrazol-3-yl acetate (11) [29]. 1H-NMR (CDCl3): δ 7.83 (d, 3J = 2.5 Hz, 1H, pyrazole H-5), 7.62
(m, 2H, Ph H-2,6), 7.42 (m, 2H, Ph H-3,5), 7.26 (m, 1H, Ph H-4), 6.36 (d, 3J = 2.5 Hz, 1H, pyrazole H-4),
2.32 (s, 3H, COCH3). 13C-NMR (CDCl3): δ 167.9 (2J(CO;CH3) = 7.0 Hz, C=O), 156.4 (2J(C3,H4) = 1.2 Hz,
3J(C3,H5) = 10.9 Hz, pyrazole C-3), 139.6 (Ph C-1), 129.4 (Ph C-3,5), 127.7 (1J(C5,H5) = 188.5 Hz,
2J(C5,H4) = 8.5 Hz, pyrazole C-5), 126.4 (Ph C-4), 118.6 (Ph C-2,6), 98.8 (1J(C4,H4) = 189.9 Hz,
2J(C4,H5) = 8.1 Hz, pyrazole C-4), 20.9 (1J = 130.3 Hz, CH3). 15N-NMR (CDCl3): δ 202.9 (pyrazole N-1),
263.8 (pyrazole N-2).

1-Phenyl-1H-pyrazol-3-yl benzoate (12). A solution of 1 (480 mg, 3 mmol), benzoyl chloride (436 mg,
3.1 mmol) and pyridine (0.1 mL) in toluene (4 mL) was heated at 100 ◦C for 30 minutes. Then the
reaction mixture was poured into water (10 mL), the precipitate was filtered off, washed with water
and recrystallized from 50% aqueous ethanol to afford 490 mg (62%) of 11 as colourless crystals, m.p.
59–60 ◦C. IR (KBr): 1745 (C=O) cm−1. 1H-NMR (CDCl3): δ 8.26 (m, 2H, CPh H-2,6), 7.90 (d, 3J = 2.6 Hz,
1H, pyrazole H-5), 7.67 (m, 2H, NPh H-2,6), 7.64 (m, 1H, CPh H-4), 7.51 (m, 2H, CPh H-3,5), 7.45 (m, 2H,
NPh H-3,5), 7.28 (m, 1H, NPh H-4), 6.52 (d, 3J = 2.6 Hz, 1H, pyrazole H-4). 13C-NMR (CDCl3): δ 163.8
(C=O), 156.7 (2J(C3,H4) = 1.6 Hz, 3J(C3,H5) = 11.1 Hz, pyrazole C-3), 139.7 (NPh C-1), 133.8 (CPh C-4),
130.4 (CPh C-2,6), 129.4 (NPh C-3,5), 128.8 (CPh C-1), 128.6 (CPh C-3,5), 127.8 (1J(C5,H5) = 188.5 Hz,
2J(C5,H4) = 8.6 Hz, pyrazole C-5), 126.5 (NPh C-4), 118.7 (NPh C-2,6), 99.1 (1J(C4,H4) = 184.1 Hz,
2J(C4,H5) = 8.0 Hz, pyrazole C-4). 15N-NMR (CDCl3): δ 203.2 (pyrazole N-1), 277.7 (pyrazole N-2).
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MS m/z (%): 265 ([M + H]+, 100). Anal. Calcd. for C16H12N2O2: C, 72.72; H, 4.58; N, 10.60. Found: C,
72.93; H, 4.45; N, 10.34.

1-Phenyl-1H-pyrazol-3-yl thiophene-2-carboxylate (13). A solution of 1 (3.20 g, 20 mmol) and 2-thiophenecarbonyl
chloride (2.93 g, 20 mmol) in dry toluene (25 mL) was refluxed for 3.5 h. The reaction mixture
was poured into water (40 mL), the phases were separated and the aqueous phase was extracted
with toluene (2 × 15 mL). The combined organic phases were dried (Na2SO4) and, after filtration,
evaporated under reduced pressure. The residue was recrystallized from EtOH-H2O to afford 3.54 g
(65%) of 13 as almost colorless crystals, m.p. 62–63 ◦C. IR (KBr): 1736 (C=O) cm−1. 1H-NMR (CDCl3):
δ 8.02 (dd, 3J(H3,H4) = 3.8 Hz, 4J(H3,H5) = 1.1 Hz, 1H, Th H-3), 7.88 (d, 3J = 2.6 Hz, 1H, pyrazole
H-5), 7.67 (dd, 3J(H5,H4) = 4.9 Hz, 4J(H5,H3) = 1.3 Hz, 1H, Th H-5), 7.65 (m, 2H, Ph H-2,6), 7.43
(m, 2H, Ph H-3,5), 7.27 (m, 1H, Ph H-4), 7.16 (dd, 3J(H4,H3) = 3.8 Hz, 3J(H4;H5) = 4.9 Hz, 1H, Th
H-4), 6.49 (d, 3J = 2.6 Hz, pyrazole H-4). 13C-NMR (CDCl3): δ 159.1 (C=O), 156.2 (2J(C3,H4) = 1.5 Hz,
3J(C3,H5) = 11.1 Hz, pyrazole C-3), 139.6 (NPh C-1), 135.1 (1J = 171.3 Hz, 2J = 5.6 Hz, 3J = 9.2 Hz, Th
C-3), 134.1 (1J = 185.7 Hz, 2J = 7.3 Hz, 3J = 11.2 Hz, Th C-5), 131.9 (2J = 5.8 Hz, 3J(C2,H4) = 9.7 Hz,
3J(C3,H5) = 5.8 Hz, Th C-2), 129.3 (Ph C-3,5), 128.0 (1J = 170.6 Hz, 2J(C4,H3) = 5.0 Hz, 2J(C4;H5) = 4.0 Hz,
Th C-4), 127.7 (1J(C5,H5) = 188.6 Hz, 2J(C5,H4) = 8.5 Hz, pyrazole C-5), 126.4 (Ph C-4), 118.6 (Ph C-2,6),
99.0 (1J(C4,H4) = 184.4 Hz, 2J(C4,H5) = 8.1 Hz, pyrazole C-4). 15N-NMR (CDCl3): δ 203.3 (pyrazole
N-1), 277.8 (pyrazole N-2). MS m/z (%): 271 ([M + H]+, 100). Anal. Calcd. for C14H10N2O2S: C, 62.21;
H, 3.73; N, 10.36. Found: C, 62.51; H, 4.01; N, 9.97.

4-Bromo-1-(4-bromophenyl)-1H-pyrazol-3-ol (14). The synthesis and spectral data of 14 are given in [33].

Preparation of compounds 15 and 16. 4-Bromo-1-(4-bromophenyl)-1H-pyrazol-3-ol 14 (1.0 g, 3.15 mmol)
was dissolved in DMF (20 mL) and potassium hydroxide (204 mg, 3.65 mmol) was added to the
solution. The mixture was stirred for 15 min, then allyl bromide (442 mg, 3.65 mmol) was added,
and stirring was continued for 30 min. The reaction mixture was poured into water (40 mL) and
extracted with ether (3 × 30 mL). The combined organic extracts were dried over anhydrous sodium
sulphate, the solvent was then evaporated under reduced pressure, and the residue subjected to column
chromatography (silica gel, eluent: hexane–ethyl acetate 3:1) to yield 824 mg (73%) of compound 15
(Rf 0.68) and 58 mg (5%) of compound 16 (Rf 0.37) as oily substances.

4-Bromo-1-(4-bromophenyl)-3-(prop-2-en-1-yloxy)-1H-pyrazole (15). 1H-NMR (CDCl3): δ 7.74 (s, 1H,
pyrazole H-5), 7.51 (m, 2H, Ph H-2,6), 7.42 (m, 2H, Ph H-3,5), 6.12 (m, 1H, CH=CH2), 5.46 (dd,
2J = 1.4 Hz, 3J = 17.2 Hz, 1H, CH=CH2(trans)), 5.31 (2J = 1.4 Hz, 3J = 10.5 Hz, 1H, CH=CH2(cis)), 4.83
(m, OCH2). 13C-NMR (CDCl3): δ 160.5 (3J(C3,H5) = 5.1 Hz, 3J(C3,OCH2) = 2.8 Hz, pyrazole C-3), 138.6
(Ph C-1), 132.6 (CH=CH2), 132.4 (Ph C-3,5), 127.5 (1J = 191.9 Hz, pyrazole C-5), 118.9 (Ph C-2,6), 118.6
(Ph C-4), 118.4 (CH=CH2), 83.1 (2J(C4,H5) = 5.1 Hz, pyrazole C-4), 70.2 (OCH2). 15N-NMR (CDCl3):
δ 192.2 (pyrazole N-1), 262.6 (pyrazole N-2). MS m/z (%): 361/359/357 ([M + H]+, 49/100/51). Anal.
Calcd. for C12H10Br2N2O: C, 40.26; H, 2.82; N, 7.82. Found: C, 40.40; H, 2.90; N 7.69.

4-Bromo-1-(4-bromophenyl)-2-(prop-2-en-1-yl)-1,2-dihydro-3H-pyrazol-3-one (16). 1H-NMR (CDCl3): δ 7.58
(m, 2H, Ph H-3,5), 7.52 (s, 1H, pyrazole H-5), 7.08 (m, 2H, Ph H-2,6), 5.63 (m, 1H, CH=CH2), 5.09
(m, 1H, CH=CH2(cis)), 4.91 (m, 1H, CH=CH2(trans)), 4.34 (m, NCH2). 13C-NMR (CDCl3): δ 164.2
(pyrazole C-3), 142.5 (1J = 193.9 Hz, pyrazole C-5), 136.7 (Ph C-1), 133.2 (Ph C-3,5), 130.9 (CH=CH2),
125.2 (Ph C-2,6), 122.2 (Ph C-4), 119.0 (CH=CH2), 90.1 (2J(C4,H5) = 3.0 Hz, pyrazole C-4), 46.3 (NCH2).
15N-NMR (CDCl3): δ 150.8 (pyrazole N-1), 170.8 (pyrazole N-2). IR (KBr): 1659 (C=O) cm−1. MS m/z
(%): 361/359/357 ([M + H]+, 49/100/51). Anal. Calcd. for C12H10Br2N2O: C, 40.26; H, 2.82; N, 7.82.
Found: C, 40.51; H, 3.15; N, 8.13.

1-Methyl-1H-pyrazol-3-ol (17) [34]. 1H-NMR (CDCl3): δ 12.00 (s, 1H, OH), 7.07 (d, 3J = 2.4 Hz, 1H,
pyrazole H-5), 5.56 (d, 3J = 2.4 Hz, 1H, pyrazole H-4), 3.69 (s, 3H, NCH3). 13C-NMR (CDCl3): δ 162.6
(pyrazole C-3), 131.8 (pyrazole C-5), 90.6 (pyrazole C-4), 38.3 (NCH3). 15N-NMR (CDCl3): δ 172.1
(pyrazole N-1), 252.0 (pyrazole N-2). 1H-NMR (DMSO-d6): δ 9.53 (s, 1H, OH), 7.30 (d, 3J = 2.2 Hz,
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1H, pyrazole H-5), 5.39 (d, 3J = 2.2 Hz, 1H, pyrazole H-4), 3.58 (s, 3H, NCH3). 13C-NMR (DMSO-d6):
δ 160.9 (pyrazole C-3), 131.3 (pyrazole C-5), 89.8 (pyrazole C-4), 38.2 (NCH3). 15N-NMR (DMSO-d6): δ
177.2 (pyrazole N-1), 271.8 (pyrazole N-2). 1H-NMR (C6D6): δ 12.56 (s, 1H, OH), 6.28 (d, 3J = 2.4 Hz,
1H, pyrazole H-5), 5.62 (d, 3J = 2.4 Hz, 1H, pyrazole H-4), 2.90 (s, 3H, NCH3). 13C-NMR (C6D6): δ 163.7
(pyrazole C-3), 131.5 (pyrazole C-5), 90.8 (pyrazole C-4), 37.4 (NCH3). 15N-NMR (C6D6): δ 171.8
(pyrazole N-1), 252.7 (pyrazole N-2).

1-Benzyl-1H-pyrazol-3-ol (18) [34]. 1H-NMR (CDCl3): δ 11.30 (s, 1H, OH), 7.33 (m, 3H, Ph H-3,4,5),
7.25 (m, 2H, Ph H-2,6), 7.11 (d, 3J = 2.5 Hz, 1H, pyrazole H-5), 5.62 (d, 3J = 2.5 Hz, 1H, pyrazole H-4),
5.07 (s, 2H, NCH2). 13C-NMR (CDCl3): δ 162.6 (2J(C3,H4) = 2.2 Hz, 3J(C3,H5) = 10.1 Hz, pyrazole
C-3), 136.0 (Ph C-1), 130.9 (1J(C5,H5) = 185.8 Hz, 2J(C5,H4) = 8.2 Hz, 3J(C5,NCH2) = 3.2 Hz, pyrazole
C-5), 128.8 (Ph C-3,5), 128.1 (Ph C-4), 127.8 (Ph C-2,6), 91.3 (1J(C4,H4) = 178.9 Hz, 2J(C4,H5) = 8.0 Hz,
pyrazole C-4), 55.4 (1J = 139.3 Hz, NCH2). 15N-NMR (CDCl3): δ 183.5 (pyrazole N-1), 251.2 (pyrazole
N-2). 1H-NMR (DMSO-d6): δ 9.63 (s, 1H, OH), 7.50 (d, 3J = 2.3 Hz, 1H, pyrazole H-5), 7.32 (m, 2H,
Ph H-3,5), 7.27 (m, 1H, Ph H-4), 7.19 (m, 2H, Ph H-2,6), 5.47 (d, 3J = 2.3 Hz, 1H, pyrazole H-4), 5.05
(s, 2H, NCH2). 13C-NMR (DMSO-d6): δ 161.3 (2J(C3,H4) = 2.5 Hz, 3J(C3,H5) = 10.1 Hz, pyrazole
C-3), 138.0 (Ph C-1), 131.2 (1J(C5,H5) = 185.8 Hz, 2J(C5,H4) = 8.5 Hz, 3J(C5,NCH2) = 3.1 Hz, pyrazole
C-5), 128.3 (Ph C-3,5), 127.4 (Ph C-2,6), 127.3 (Ph C-4), 90.3 (1J(C4,H4) = 176.2 Hz, 2J(C4,H5) = 8.6 Hz,
pyrazole C-4), 54,5 (1J = 139.2 Hz, NCH2). 15N-NMR (DMSO-d6): δ 187.9 (pyrazole N-1), 269.9
(pyrazole N-2). 1H-NMR (C6D6): δ 12.40 (s, 1H, OH), 6.93–7.05 (m, 5H, Ph H), 6.45 (d, 3J = 2.4 Hz, 1H,
pyrazole H-5), 5.63 (d, 3J = 2.4 Hz, 1H, pyrazole H-4), 4.51 (s, 2H, NCH2). 13C-NMR (C6D6): δ 164.2
(2J(C3,H4) = 2.2 Hz, 3J(C3,H5) = 10.1 Hz, pyrazole C-3), 137.0 (Ph C-1), 131.4 (1J(C5,H5) = 185.0 Hz,
2J(C5,H4) = 8.2 Hz, 3J(C5,NCH2) = 3.1 Hz, pyrazole C-5), 129.2 (Ph C-3,5), 128.4 (Ph C-4), 128.4 (Ph
C-2,6), 92.0 (1J(C4,H4) = 178.2 Hz, 2J(C4,H5) = 8.1 Hz, pyrazole C-4), 55.6 (1J = 139.2 Hz, NCH2).
15N-NMR (C6D6): δ 183.3 (pyrazole N-1), 251.9 (pyrazole N-2).

3.3. X-ray Crystal Structure Analysis

The X-ray intensity data was measured on a Bruker X8 APEXII equipped with multilayer
monochromators, with a Mo K/a INCOATEC micro focus sealed tube, and a Kryoflex II cooling
device. The structure was solved by direct methods and refined by full-matrix least-squares techniques.
Non-hydrogen atoms were refined with anisotropic displacement parameters. The hydrogen located
at O1 was refined without any restraints or constraints. All other hydrogen atoms were inserted at
calculated positions and refined with a riding model. The following software was used: Frame
integration, Bruker SAINT software package [35] using a narrow-frame algorithm, Absorption
correction, SADABS [36], structure solution, SHELXL-2013 [37], refinement, SHELXL-2013 [37],
OLEX2 [38], SHELXLE [39], molecular diagrams, OLEX2 [38]. Experimental data and CCDC-Code [40]
can be found in Table 1. Crystal data, data collection parameters, and structure refinement details
are given in Tables 2 and 3. Molecular structures in “Ortep View” are displayed in Figures 2 and 9.
Bond length details are given in Table 4.

Table 1. Experimental parameter and CCDC-Code.

Sample Machine Source Temp. Detector Distance Time/Frame #Frames Frame Width CCDC

Bruker [K] [mm] [s] [◦]
1 X8 Mo 100 35 25 3739 0.5 1586020
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Table 2. Sample and crystal data of 1.

Chemical Formula C9H8N2O Crystal System Orthorhombic

Formula weight (g/mol) 160.17 Space group Pbca
Temperature (K) 100 Z 8

Measurement method Φ andω scans Volume (Å3) 1509.4(3)
Radiation (Wavelength (Å)) MoKα (λ = 0.71073) Unit cell dimensions (Å) and (◦) 13.6517(13) 90

Crystal size (mm3) 0.22 × 0.12 × 0.04 6.3663(6) 90
Crystal habit clear colourless plate 17.3673(17) 90

Density (calculated) (g/cm3) 1.41 Absorption coefficient/(mm−1) 0.096
Abs. correction Tmin 0.703 Abs. correction Tmax 0.746
Abs. correction type multi-scan F(000) (e−) 672

Table 3. Data collection and structure refinement of 1.

Index ranges −19 ≤ h ≤ 19, −9 ≤
k ≤ 8, −24 ≤ l ≤ 24

Theta range for data
collection (◦) 4.69 to 60.5

Reflections number 62937 Data/restraints/parameters 2243/0/113

Refinement method Least squares
Final R indices

all data R1 = 0.0473, wR2 = 0.1264

Function minimized Σ w(Fo
2 − Fc

2)2 I > 2σ(I) R1 = 0.0407, wR2 = 0.1202

Goodness-of-fit on F2 1.085
Weighting scheme

w = 1/(σ2(Fo
2) + (0.0657P)2 + 0.6517P)

Largest diff. peak and
hole (e Å−3) 0.39/−0.21 where P = (Fo

2 + 2Fc
2)/3

The difference electron density map (Figure 2) gives very detailed information about the position
of the searched hydrogen atom. The electron density distance of the latter to N2′—as displayed in
Figure 2—excludes the possibility of a single bond to the nitrogen for the concerning hydrogen atom.
Additionally, its distance to O1 for the electron density proves the position of the hydrogen is located
at the oxygen. The free refinement of the hydrogen position without using any restraints or constraints
clears all doubts about the non-tautomeric geometry of the molecule in the solid state. Furthermore, at
least two very close molecules [41,42] were already measured and interpreted in the same way. In these
samples also two identical hydrogen bonds build up molecule pairs because of symmetry reasons.

Pyrazole is well known in crystallography and its different bonds are well characterized by
the Handbook of Chemistry and Physics [43]. Table 4 compares the results from compound 1 with
corresponding bonds in pyrazole. In detail the double bond N2=C7 in 1 is with 1.329 Å identical to
the unweighted mean of the table value for pyrazoles N2=C3 from the Handbook of Chemistry and
Physics. The single bond C7-O1 with 1.339 Å is also in strong correlation to expected values like in
enols, 1.333 Å, given. Double bond values like in lactams, 1.240 Å, and benzoquinones, 1.222 Å are in
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contrast to the measured 1.339 Å too small. Finally we proved the position of the searched hydrogen
at O1 and we can exclude the NH form in the solid crystalline state.

Table 4. Proof of the bond length for the position of H at O1 [43].

Bond Lengths in Crystalline Organic Compounds Compound 1

d m σ ql qu

in pyrazole: (N1–N2) 1.366 1.366 0.019 1.350 1.375 N1 N2 single bond 1.376
in pyrazole: (N2=C3) 1.329 1.331 0.014 1.315 1.339 N1 C7 double bond 1.329
in pyrazole: (N1–C5) 1.357 1.359 0.012 1.347 1.365 N1 C9 single bond 1.354

in enols: C=C–OH 1.333 1.331 0.017 1.324 1.342 C7 O1 single bond 1.339
in phenols: Caromatic-OH 1.362 1.364 0.015 1.353 1.373

in lactams: (C=O) 1.240 1.241 0.003 1.237 1.243
in benzoquinones: (C=O) 1.222 1.220 0.013 1.211 1.231

d is the unweighted mean in Å of all the values for that bond length found in the sample; m is the median in Å of all
values; σ is the standard deviation in the sample; ql is the lower quartile for the sample; qu is the upper quartile for
the sample.
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