Supplementary Data

Isaria fumosorosea KCh J2 - entomopathogenic strain as an effective biocatalyst of steroid compounds

Ewa Kozłowska,* Monika Dymarska, Edyta Kostrzewa-Susłow, and Tomasz Janeczko*

Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.

*Corresponding author: E-mail: e.a.kozlowska@gmail.com (Ewa Kozłowska); janeczko13@interia.pl (Tomasz Janeczko)

Content

- Fig.S1. ¹H NMR spectral of 7α-hydroxyandrost-4-ene-3,17-dione (7α-OH-AD) (CDCl₃, 600 MHz)
- Fig.S2. ¹³C NMR spectral of 7α-hydroxyandrost-4-ene-3,17-dione (7α-OH-AD) (CDCl₃, 151 MHz)
- Fig.S3. HSQC spectral of 7α-hydroxyandrost-4-ene-3,17-dione (**7α-OH-AD**) (CDCl₃, 151 MHz)
- Fig.S4. COSY spectral of 7α-hydroxyandrost-4-ene-3,17-dione (7α-OH-AD) (CDCl₃, 151 MHz)
- Fig.S5. ¹H NMR spectral of 6β-hydroxyandrost-4-ene-3,11,17-trione (**6β-OH-Adr**) (CDCl₃, 600 MHz)
- Fig.S6. ¹³C NMR spectral of 6β-hydroxyandrost-4-ene-3,11,17-trione (**6β-OH-Adr**) (CDCl₃, 151 MHz)
- Fig.S7. HSQC spectral of 6β-hydroxyandrost-4-ene-3,11,17-trione (6β-OH-Adr) (CDCl₃, 151 MHz)
- Fig.S8. COSY spectral of 6β-hydroxyandrost-4-ene-3,11,17-trione (6β-OH-Adr) (CDCl₃, 151 MHz)
- Fig.S9. ¹H NMR spectral of 15β-hydroxy-17 α -methyltestosterone (**15β-OH-mT**) (CDCl₃, 600 MHz)
- Fig.S10. ¹³C NMR spectral of 15β-hydroxy-17α-methyltestosterone (**15β-OH-mT**) (CDCl₃, 151 MHz)
- Fig.S11. ¹H NMR spectral of 6 β -hydroxy-17 α -methyltestosterone (**6\beta-OH-17mT**) (CDCl₃, 600 MHz)
- Fig.S12. ¹³C NMR spectral of 6β-hydroxy-17α-methyltestosterone (**6β-OH-17mT**) (CDCl₃, 151 MHz)
- Fig.S13. ¹H NMR spectral of 6β -hydroxy-17 α -methyltestosterone (6β -OH-17mT) (THF, 600 MHz)
- Fig.S14. ¹³C NMR spectral of 6β-hydroxy-17α-methyltestosterone (**6β-OH-17mT**) (THF, 151 MHz)
- Fig.S15. HSQC spectral of 6β-hydroxy-17α-methyltestosterone (6β-OH-17mT) (THF, 151 MHz)
- Fig.S16. COSY spectral of 6β-hydroxy-17α-methyltestosterone (**6β-OH-17mT**) (THF, 151 MHz)
- Fig.S17. ¹H NMR spectral of 6β,12β-dihydroxy-17α-methyltestosterone (**6β,12β-OH-17mT**) (CDCl₃, 600 MHz)
- Fig.S18. ¹H NMR spectral of 6β,12β-dihydroxy-17α-methyltestosterone (**6β,12β-OH-17mT**) (DMSO, 600 MHz)

- Fig.S19. ¹³C NMR spectral of 6β,12β-dihydroxy-17α-methyltestosterone (**6β,12β-OH-17mT**) (DMSO, 151 MHz)
- Fig.S20. HSQC spectral of 6β,12β-dihydroxy-17α-methyltestosterone (**6β,12β-OH-17mT**) (DMSO, 151 MHz)
- Fig.S21. COSY spectral of 6β,12β-dihydroxy-17α-methyltestosterone (**6β,12β-OH-17mT**) (DMSO, 151 MHz)
- Fig.S22. ¹H NMR spectral of 3β,7α-dihydroxyandrost-5-ene-17-one (**7α-OH-DHEA**) (CDCl₃, 600 MHz)
- Fig.S23. ¹³C NMR spectral of 3β,7α-dihydroxyandrost-5-ene-17-one (**7α-OH-DHEA**) (CDCl₃, 151 MHz)
- Fig.S24. HSQC spectral of 3β,7α-dihydroxyandrost-5-ene-17-one (7α-OH-DHEA) (CDCl₃, 151 MHz)
- Fig.S25. COSY spectral of 3β,7α-dihydroxyandrost-5-ene-17-one (7α-OH-DHEA) (CDCl₃, 151 MHz)
- Fig.S26. ¹H NMR spectral of 3β,7β-dihydroxyandrost-5-ene-17-one (**7β-OH-DHEA**) (CDCl₃, 600 MHz)
- Fig.S27. ¹³C NMR spectral of 3β,7β-dihydroxyandrost-5-ene-17-one (**7β-OH-DHEA**) (CDCl₃, 151 MHz)
- Fig.S28. HSQC spectral of 3β,7β-dihydroxyandrost-5-ene-17-one (7β-OH-DHEA) (CDCl₃, 151 MHz)
- Fig.S29. ¹H NMR spectral of 3β-hydroxyandrost-5-ene-7,17-dione (7-oxo-DHEA) (CDCl₃, 600 MHz)
- Fig.S30. ¹³C NMR spectral of 3β-hydroxyandrost-5-ene-7,17-dione (**7-oxo-DHEA**) (CDCl₃, 151 MHz)
- Fig.S31. HSQC spectral of 3β-hydroxyandrost-5-ene-7,17-dione (7-oxo-DHEA) (CDCl₃, 151 MHz)
- Fig.S32. COSY spectral of 3β-hydroxyandrost-5-ene-7,17-dione (7-oxo-DHEA) (CDCl₃, 151 MHz)
- Fig.S33. ¹H NMR spectral of 3β,7α-dihydroxy-17a-oxa-D-homo-androst-5-en-17-one (7α-OH-DHEA-lactone) (CDCl₃, 600 MHz)
- Fig.S34. ¹³C NMR spectral of 3β,7α-dihydroxy-17a-oxa-D-homo-androst-5-en-17-one (7α-OH-DHEA-lactone) (CDCl₃, 151 MHz)
- Fig.S35. HSQC spectral of 3β,7α-dihydroxy-17a-oxa-D-homo-androst-5-en-17-one (7α-OH-DHEAlactone) (CDCl₃, 151 MHz)
- Fig.S36. ¹H NMR spectral of 3β,7β-dihydroxy-17a-oxa-D-homo-androst-5-en-17-one (7β-OH-DHEA-lactone) (CDCl₃, 600 MHz)
- Fig.S37. ¹³C NMR spectral of 3β,7β-dihydroxy-17a-oxa-D-homo-androst-5-en-17-one (**7β-OH-DHEA-lactone**) (CDCl₃, 151 MHz)
- Fig.S38. HSQC spectral of 3β,7β-dihydroxy-17a-oxa-D-homo-androst-5-en-17-one (**7β-OH-DHEAlactone**) (CDCl₃, 151 MHz)
- Fig.S39. GC-MS spectra of 7α-hydroxyandrost-4-ene-3,17-dione (7α-OH-AD)
- Fig.S40. Enlarged GC-MS spectra of 7α-hydroxyandrost-4-ene-3,17-dione (7α-OH-AD)
- Fig.S41. GC-MS spectra of 6β-hydroxyandrost-4-ene-3,11,17-trione (6β-OH-Adr)
- Fig.S42. Enlarged GC-MS spectra of 6β-hydroxyandrost-4-ene-3,11,17-trione (6β-OH-Adr)
- Fig.S43. GC-MS spectra of 15β-hydroxy-17α-methyltestosterone (15β-OH-17mT)
- Fig.S44. GC-MS spectra of 6β-hydroxy-17α-methyltestosterone (6β-OH-17mT)

- Fig.S45. GC-MS spectra of 6β,12β-dihydroxy-17α-methyltestosterone (6β,12β-OH-17mT)
- Fig.S46. Enlarged GC-MS spectra of 6β,12β-dihydroxy-17α-methyltestosterone (6β,12β-OH-17mT)
- Fig.S47. GC-MS spectra of 3β,7α-dihydroxyandrost-5-ene-17-one (7α-OH-DHEA)
- Fig.S48. Enlarged GC-MS spectra of 3β , 7α -dihydroxyandrost-5-ene-17-one (7α -OH-DHEA)
- Fig.S49. GC-MS spectra of 3β,7β-dihydroxyandrost-5-ene-17-one (7β-OH-DHEA)
- Fig.S50. Enlarged GC-MS spectra of 3β,7β-dihydroxyandrost-5-ene-17-one (7β-OH-DHEA)
- Fig.S51. GC-MS spectra of 3β-hydroxyandrost-5-ene-7,17-dione (7-oxo-DHEA)
- Fig.S52. Enlarged GC-MS spectra of 3β-hydroxyandrost-5-ene-7,17-dione (7-oxo-DHEA)
- Fig.S53. GC-MS spectra of 3β,7α-dihydroxy-17a-oxa-D-homo-androst-5-en-17-one (7α-OH-DHEAlactone)
- Fig.S54. Enlarged GC-MS spectra of 3β , 7α -dihydroxy-17a-oxa-D-homo-androst-5-en-17-one (7α -OH-DHEA-lactone)
- Fig.S55. GC-MS spectra of 3β,7β-dihydroxy-17a-oxa-D-homo-androst-5-en-17-one (**7β-OH-DHEA**lactone)
- Fig.S56. Enlarged GC-MS spectra of 3β,7β-dihydroxy-17a-oxa-D-homo-androst-5-en-17-one (7β-OH-DHEA-lactone)

Fig.S1. ¹H NMR spectral of 7α-hydroxyandrost-4-ene-3,17-dione (**7α-OH-AD**) (CDCl₃, 600 MHz)

Fig.S2. ¹³C NMR spectral of 7α -hydroxyandrost-4-ene-3,17-dione (7α -OH-AD) (CDCl₃, 151 MHz)

3.4 3.0 f2 (ppm)

2.6

2.2

1.8

1.4

1.0

-130

Fig.S3. HSQC spectral of 7α-hydroxyandrost-4-ene-3,17-dione (**7α-OH-AD**) (CDCl₃, 151 MHz)

Fig.S4. COSY spectral of 7α-hydroxyandrost-4-ene-3,17-dione (**7α-OH-AD**) (CDCl₃, 151 MHz)

4.2

3.8

5.8

5.4

5.0

4.6

Fig.S5. ¹H NMR spectral of 6β-hydroxyandrost-4-ene-3,11,17-trione (**6β-OH-Adr**) (CDCl₃, 600 MHz)

Fig.S6. ¹³C NMR spectral of 6β-hydroxyandrost-4-ene-3,11,17-trione (**6β-OH-Adr**) (CDCl₃, 151 MHz)

Fig.S7. HSQC spectral of 6β-hydroxyandrost-4-ene-3,11,17-trione (**6β-OH-Adr**) (CDCl₃, 151 MHz)

Fig.S8. COSY spectral of 6β-hydroxyandrost-4-ene-3,11,17-trione (**6β-OH-Adr**) (CDCl₃, 151 MHz)

Fig.S9. ¹H NMR spectral of 15β-hydroxy-17α-methyltestosterone (**15β-OH-mT**) (CDCl₃, 600 MHz)

Fig.S10. ¹³C NMR spectral of 15β-hydroxy-17α-methyltestosterone (**15β-OH-mT**) (CDCl₃, 151 MHz)

Fig.S11. ¹H NMR spectral of 6β -hydroxy-17 α -methyltestosterone (**6\beta-OH-mT**) (CDCl₃, 600 MHz)

Fig.S12. ¹³C NMR spectral of 6β-hydroxy-17α-methyltestosterone (**6β-OH-mT**) (CDCl₃, 151 MHz)

Fig.S13. ¹H NMR spectral of 6β -hydroxy-17 α -methyltestosterone (**6\beta-OH-mT**) (THF, 600 MHz)

Fig.S14. ¹³C NMR spectral of 6β-hydroxy-17α-methyltestosterone (**6β-OH-mT**) (THF, 151 MHz)

Fig.S15. HSQC spectral of 6β -hydroxy-17 α -methyltestosterone (**6\beta-OH-mT**) (THF, 151 MHz)

Fig.S16. COSY spectral of 6β -hydroxy-17 α -methyltestosterone (6β -OH-mT) (THF, 151 MHz)

Fig.S17. ¹H NMR spectral of 6β ,12 β -dihydroxy-17 α -methyltestosterone (6β ,12 β -OH-mT) (CDCl₃, 600 MHz)

Fig.S18. ¹H NMR spectral of 6β ,12 β -dihydroxy-17 α -methyltestosterone (**6\beta,12\beta-OH-mT**) (DMSO, 600 MHz)

Fig.S20. HSQC spectral of 6β ,12 β -dihydroxy-17 α -methyltestosterone (6β ,12 β -OH-mT) (DMSO, 151 MHz)

Fig.S21. COSY spectral of 6β ,12 β -dihydroxy-17 α -methyltestosterone (6β ,12 β -OH-mT) (DMSO, 151 MHz)

Fig.S22. ¹H NMR spectral of 3β , 7α -dihydroxyandrost-5-ene-17-one (7α -OH-DHEA) (CDCl₃, 600 MHz)

Fig.S23. ¹³C NMR spectral of 3β , 7α -dihydroxyandrost-5-ene-17-one (7α -OH-DHEA) (CDCl₃, 151 MHz)

Fig.S24. HSQC spectral of 3β , 7α -dihydroxyandrost-5-ene-17-one (7α OH-DHEA) (CDCl₃, 151 MHz)

Fig.S25. COSY spectral of 3β , 7α -dihydroxyandrost-5-ene-17-one (7α -OH-DHEA) (CDCl₃, 151 MHz)

Fig.S26. ¹H NMR spectral of 3β,7β-dihydroxyandrost-5-ene-17-one (**7β-OH-DHEA**) (CDCl₃, 600 MHz)

Fig.S27. ¹³C NMR spectral of 3β,7β-dihydroxyandrost-5-ene-17-one (**7β-OH-DHEA**) (CDCl₃, 151 MHz)

Fig.S28. HSQC spectral of 3β,7β-dihydroxyandrost-5-ene-17-one (**7β-OH-DHEA**) (CDCl₃, 151 MHz)

Fig.S30. ¹³C NMR spectral of 3β-hydroxyandrost-5-ene-7,17-dione (**7-oxo-DHEA**) (CDCl₃, 151 MHz)

Fig.S32. COSY spectral of 3β-hydroxyandrost-5-ene-7,17-dione (**7-oxo-DHEA**) (CDCl₃, 151 MHz)

Fig.S34. ¹³C NMR spectral of 3β , 7α -dihydroxy-17a-oxa-D-homo-androst-5-en-17-one (7 α -OH-DHEA-lactone) (CDCl₃, 151 MHz)

Fig.S35. HSQC spectral of 3β , 7α -dihydroxy-17a-oxa-D-homo-androst-5-en-17-one (7 α -OH-DHEA-lactone) (CDCl₃, 151 MHz)

Fig.S36. ¹H NMR spectral of 3β,7β-dihydroxy-17a-oxa-D-homo-androst-5-en-17-one (**7βOH-DHEA-lactone**) (CDCl₃, 600 MHz)

Fig.S37. ¹³C NMR spectral of 3β,7β-dihydroxy-17a-oxa-D-homo-androst-5-en-17-one (**7βOH-DHEA-lactone**) (CDCl₃, 151 MHz)

Fig.S38. HSQC spectral of 3β,7β-dihydroxy-17a-oxa-D-homo-androst-5-en-17-one (**7βOH-DHEA-lactone**) (CDCl₃, 151 MHz)

Fig.S39. GC-MS spectra of 7α-hydroxyandrost-4-ene-3,17-dione (7α-OH-AD)

Fig.S40. Enlarged GC-MS spectra of 7α-hydroxyandrost-4-ene-3,17-dione (7α-OH-AD)

Fig.S41. GC-MS spectra of 6β-hydroxyandrost-4-ene-3,11,17-trione (**6β-OH-Adr**)

Fig.S42. Enlarged GC-MS spectra of 6β-hydroxyandrost-4-ene-3,11,17-trione (**6β-OH-Adr**)

Fig.S43. GC-MS spectra of 15β-hydroxy-17α-methyltestosterone (**15β-OH-17mT**)

Fig.S44. GC-MS spectra of 6β-hydroxy-17α-methyltestosterone (**6β-OH-17mT**)

Molecular Formula = $C_{20}H_{30}O_3$ Formula Weight = 318.45040

Fig.S45. GC-MS spectra of 6β,12β-dihydroxy-17α-methyltestosterone (**6β,12β-OH-17mT**)

Fig.S46. Enlarged GC-MS spectra of 6β,12β-dihydroxy-17α-methyltestosterone (**6β,12β-OH-17mT**)

Fig.S47. GC-MS spectra of 3β,7α-dihydroxyandrost-5-ene-17-one (7α-OH-DHEA)

Fig.S48. Enlarged GC-MS spectra of 3β,7α-dihydroxyandrost-5-ene-17-one (7α-OH-DHEA)

Fig.S49. GC-MS spectra of 3β,7β-dihydroxyandrost-5-ene-17-one (**7β-OH-DHEA**)

Fig.S50. Enlarged GC-MS spectra of 3β,7β-dihydroxyandrost-5-ene-17-one (**7β-OH-DHEA**)

Fig.S51. GC-MS spectra of 3β-hydroxyandrost-5-ene-7,17-dione (7-oxo-DHEA)

Fig.S52. Enlarged GC-MS spectra of 3β-hydroxyandrost-5-ene-7,17-dione (**7-oxo-DHEA**)

Fig.S53. GC-MS spectra of 3β , 7α -dihydroxy-17a-oxa-D-homo-androst-5-en-17-one (7α -OH-DHEA-lactone)

Fig.S54. Enlarged GC-MS spectra of 3β , 7α -dihydroxy-17a-oxa-D-homo-androst-5-en-17-one (7 α -OH-DHEA-lactone)

Fig.S55. GC-MS spectra of 3β , 7β -dihydroxy-17a-oxa-D-homo-androst-5-en-17-one (**7** β -OH-DHEA-lactone)

Fig.S56. Enlarged GC-MS spectra of 3β , 7β -dihydroxy-17a-oxa-D-homo-androst-5-en-17-one (**7** β -OH-DHEA-lactone)

