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Abstract: Previous studies have shown that compounds in the form of precipitate (CFP) from
Huang-Lian-Jie-Du-Tang (HLJDT) were stable, and the CFP content reached 2.63% of the whole
decoction and had good neuroprotective effects. However, there has been no research on their
specific source. In this study, it was found that HLJDT CFP mainly came from the reaction
of Scutellaria baicalensis and Coptis chinensis by studying the separated prescription components
(accounting for 81.33% of HLJDT CFP). Unlike previous studies on HLJDT CFP, in this research the
chemical composition of Scutellaria baicalensis–Coptis chinensis (SB–CC) CFP was identified by high
performance liquid chromatography coupled with mass spectrometry (HPLC-MSn), which further
proved that the main source of HLJDT CFP was Scutellaria baicalensis–Coptis chinensis CFP compared
with previous HLJDT CFP studies. To explain the reaction mechanism between the decoctions of
Scutellaria baicalensis and Coptis chinensis, isothermal titration calorimetry (ITC) was used to analyze
their binding heat and the thermodynamic parameters (∆H, ∆S, ∆G, n, Ka) of the reaction between
baicalin and berberine, which are the main components of Scutellaria baicalensis and Coptis chinensis,
respectively. The results showed that the reaction between decoctions of Scutellaria baicalensis and
Coptis chinensis was exothermic and the reaction between baicalin and berberine was a spontaneous
and enthalpy-driven chemical reaction, the binding ratio being 1:1. In addition, HLJDT CFP
(EC50 = 14.71 ± 0.91 µg/mL) and SB-CC CFP (EC50 = 6.11 ± 0.12 µg/mL) showed similar protective
activities on PC12 cells injured by cobalt chloride (CoCl2). This study provided a new angle to
research on the main chemical components and therapeutic values of CFP in Traditional Chinese
Medicine compounds.
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1. Introduction

The existence of compounds in the form of precipitate (CFP) is widespread in the decoctions of
Traditional Chinese Medicines, such as Huang-Lian-Jie-Du-Tang [1], Ge-Gen-Qin-Lian-Tang [2], etc.
Through the long-term clinical application, some researchers have noticed that it is not easy to avoid
the production of sediment in the decoction process [3]. CFP are always abandoned along with the
dregs of a decoction in clinical application, which may reduce the amount of active compounds in
drugs and lower their efficacy [4]. Recently, studies on the chemical compositions and pharmacological
activities of CFP have been carried out by some academics, and they have found that these precipitates
contain a lot of bioactive compounds [5,6]. Therefore, it is absolutely essential to conduct a systematic
study on CFP in terms of its sources, pharmacological activities and reaction mechanisms.

Huang-Lian-Jie-Du-Tang (HLJDT) is a Traditional Chinese Medicine prescription which is widely
used in the clinic. It is composed of Coptis chinensis, Phellodendron chinense, Scutellaria baicalensis
and Gardenia jasminoides in a proportion of 3:2:2:3. It was widely used in the past for purging heat
by removing toxins [7] and now widely used for protecting neurons, treating arthritis, tumors,
cardiovascular diseases and so on [8–12]. HLJDT produces a large amount of precipitate during
the process of decocting. However, the truth was most studies focused only on the supernatant and
the changes of its chemical components and pharmacological activities [13,14]. In previous studies,
we concentrated on the formation rate, compositions, and neuroprotective effects of HLJDT CFP,
the results of which proved that the HLJDT CFP was both stable and controllable. The formation
rate of HLJDT CFP even reached 2.63 ± 0.21% during the process of decoction [15]. Compared
with the supernatant, the CFP showed better neuroprotective effects on PC12 cells injured by CoCl2.
Based on the facts mentioned above, a further study to find out the specific sources of HLJDT CFP was
carried out.

In this study, the source of HLJDT CFP was identified according to the separated prescription
components. We first selected and mixed every two herbal medicines in a non-woven bag (pore
diameter < 30 µm) respectively, and then decocted the mixtures. Later on, the compositions of SB-CC
CFP were identified by HPLC-MSn and proved to be almost the same as that of HLJDT CFP [15], thus
confirming SB-CC CFP as the main source of HLJDT CFP.

Isothermal titration calorimetry (ITC) was used in order to explore the mechanism of formation
of the CFP [16–24]. ITC is a physical technique used to determine the thermodynamic parameters of
interactions in solution. Based on binding heat, thermodynamic parameters such as enthalpy change
(∆H), entropy change (∆S), Gibbs free energy change (∆G), the estimate of stoichiometric ratio (n)
and the binding constant (Ka) were calculated using the Nano Analyze software. Through analyzing
these parameters, the thermodynamic principles of binding could be elucidated. If ∆G is below zero,
the reaction is spontaneous and the higher the absolute value of ∆G, the easier it is for a reaction to
happen. The estimated stoichiometric ratio (n) reflects the binding ratio of two substances as a larger
Ka indicates a stronger binding force between two substances [20]. By analysing the relationship
between ∆H and T∆S, the driving form of precipitation could be identified. A negative enthalpy and
positive entropy suggest an advantageous contribution to reactions [16]. A huge energy change was
observed in the reaction process between the decoctions of Scutellaria baicalensis and Coptis chinensis
and the changes found were very large, indicating the existence of chemical reactions between the
main components of Scutellaria baicalensis and Coptis chinensis. As the HPLC-MSn result showed that
the main compositions of SB-CC CFP were baicalin and berberine, respectively, the titration between
baicalin and berberine was determined by ITC. This study probed into the reaction type of single
components from the perspective of molecular thermodynamics.

PC12 cells injured by CoCl2 is frequently used as a model for screening new agents for the
intervention on ischemic brain injury [25]. In this paper, the protective effects of CFP against
neurotoxicity were evaluated by a cholecystokinin-octopeptide (CCK-8) assay on differentiated PC12
cells [26–29].
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2. Results

2.1. The Source of HLJDT CFP

The source of HLJDT CFP was preliminarily determined by studying the separated prescription
ingredients. The results were divided into seven groups: HLJDT, Scutellaria baicalensis-Coptis chinensis
(SB-CC), Scutellaria baicalensis-Phellodendron chinense (SB-PC), Scutellaria baicalensis-Gardenia jasminoides
(SB-GJ), Gardenia jasminoides-Coptis chinensis (GJ-CC), Gardenia jasminoides-Phellodendron chinense
(GJ-PC) and Phellodendron chinense-Coptis chinensis (PC-CC). As shown in Table 1, apart from HLJDT
CFP, SB-CC and SB-PC, the other groups produced almost no precipitation. SB-CC CFP content
accounted for 81.33% in HLJDT CFP. In other words, the HLJDT CFP mainly came from the binding of
Scutellaria baicalensis and Coptis chinensis. In addition, the experimental phenomena were shown in
Figure 1. There was a lot of precipitation in the decoction of Scutellaria baicalensis and Coptis chinensis.
The other groups produced less or no precipitation.
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Figure 1. The experimental phenomena of SB-PC SB-CC, SB-GJ, GJ-PC, PC-CC, GJ-CC.

2.2. HPLC-MSn Analysis of the Constituents from HLJDT CFP and SB-CC CFP

HPLC-MSn was used to identify the main constituents of SB-CC CFP (Figure 2). As shown in
Table 2, five constituents were characterized and determined based on their retention behaviors and
MS data. The result showed that the main ingredients of SB-CC CFP were baicalin (2) and berberine
(4), which was consistent with the results of previous studies on the chemical substances of HLJDT
CFP [15], proving the interactions between Scutellaria baicalensis and Coptis chinensis to be the main
source of HLJDT CFP.
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Table 1. The formation rate of HLJDT CFP and seven separated prescriptions from different batches.

No. Batch Coptis
chinensis

Scutellaria
baicalensis

Phellodendron
chinense

Gardenia
jasminoides Total Weight Precipitate

Weight
Precipitation

Rate
Separated Precipitate

CFP among HLJDT CFP

HLJDT

1 9.01 g 6.00 g 5.98 g 9.00 g 29.99 g 0.78 g 2.60%
2 8.97 g 5.99 g 5.99 g 9.01 g 29.98 g 0.71 g 2.37%
3 8.99 g 6.01 g 5.98 g 9.02 g 30.00 g 0.75 g 2.50%

average 29.99 ± 0.01 g 0.75 ± 0.04 g 2.49 ± 0.12%

SB-CC

1 9.00 g 6.01 g 15.01 g 0.62 g 4.13%
2 8.99 g 5.99 g 14.98 g 0.58 g 3.87%
3 9.01 g 5.98 g 14.99 g 0.63 g 4.20%

average 14.99 ± 0.02 g 0.61 ± 0.03 g 4.07 ± 0.20% 81.33%

SB-PC

1 5.99 g 5.98 g 11.97 g 0.06 g 0.51%
2 6.01 g 6.00 g 12.01 g 0.05 g 0.42%
3 6.03 g 5.99 g 12.02 g 0.06 g 0.50%

average 12.00 ± 0.03 g 0.06 ± 0.01 g 0.48 ± 0.06% 8.00%

GJ-CC

1 9.02 g 9.03 g 18.05 g — a —
2 9.00 g 9.00 g 18.00 g — —
3 9.02 g 8.99 g 18.01 g — —

average 18.02 ± 0.03 g — —

GJ-PC

1 6.00 g 8.98 g 14.98 g — —
2 6.01 g 8.99 g 15.00 g — —
3 5.98 g 9.00 g 14.98 g — —

average 14.99 ± 0.01 g — —

SB-PC

1 6.03 g 8.99 g 15.02 g — —
2 5.98 g 9.01 g 14.98 g — —
3 6.01 g 9.03 g 15.04 g — —

average 15.01± 0.04 g — —

PC-CC

1 8.98 g 6.01 g 14.99 g — —
2 9.01 g 6.02 g 15.03 g — —
3 9.00 g 5.97 g 14.97 g — —

average 15.00± 0.01 g — —

—a represented precipitation weight <0.05 g or Precipitation Rate <0.33%.
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Table 2. ESI-MSn ions of the identified compounds.

Peak Tr (min) Compounds Ms (m/z) Ms2 (m/z)

1 27.401 Coptisine 319.81 [M]+ 291.87 [M − C2H4]+

2 29.001 Baicalin 446.97 [M + H]+ 270.75 [M + H − GLU]+

3 31.008 Palmatine 351.92 [M]+ 335.86 [M − CH4]+

307.85 [M − CH4 − C2H4]+

4 32.034 Berberine 335.85 [M]+ 319.81 [M − CH4]+

291.82 [M − CH4 − C2H4]+

5 34.899 Wogonoside 460.97 [M + H]+ 284.80 [M + H − Glu]+

2.3. Formation Mechanism Test Based on ITC

2.3.1. Titration of Decotions of Scutellaria baicalensis and Coptis chinensis

This part consisted of three experiments: the titrations of Coptis chinensis decoction into Scutellaria
baicalensis decoction, Coptis chinensis decoction into deionized water and Scutellaria baicalensis decoction
into deionized water. The latter two titrations were as blank controls. Their binding heats were
measured directly by ITC and the data are summarized in Figure 3. The left panel (Figure 3a) shows
the corrected heat rates of the direct titration of Scutellaria baicalensis into deionized water. The middle
panel (Figure 3b) shows the corrected heat rates of the direct titration of Coptis chinensis decoction
into deionized water. These two were a dilution process and were endothermic. The right panel
(Figure 3c) shows the titration of Coptis chinensis decoction into Scutellaria baicalensis decoction, which
was an exothermic process. From these three experiments, it could be seen that the heat quantity
in the titrations of Coptis chinensis decoction into Scutellaria baicalensis decoction was much larger
than that of Scutellaria baicalensis or Coptis chinensis decoction into deionized water, indicating of the
existence of interactions between the components of Coptis chinensis and Scutellaria baicalensis when
they were blended.

Moreover, it was highly likely to be a chemical reaction rather than a physical one. All the heat
quantities gathered in this study were summarized in Table 3.
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Figure 3. The reactive profiles of colliquefaction (a) Calorimetric titration of deionized water with
Scutellaria baicalensis decoction; (b) Calorimetric titration of deionized water with Coptis chinensis
decoction; (c) Calorimetric titration of Scutellaria baicalensis decoction with Coptis chinensis decoction.

Table 3. Binding heat of all titrations.

No.
Coptis chinensis
into Scutellaria
baicalensis (µJ)

Scutellaria
baicalensis into

Water (µJ)

Coptis
chinensis into

Water (µJ)

Berberine
into Baicalin

(µJ)

Berberine
into Water

(µJ)

Baicalin
into Water

(µJ)

1 — — — — — —
2 594.11 −228.2 −122.09 313.21 −22.00 −3.35
3 629.88 −189.2 −125.01 358.41 −23.77 −4.36
4 720.57 −161.6 −123.93 325.81 −24.89 −3.85
5 554.46 −139.1 −119.18 323.80 −24.49 −3.55
6 483.12 −119.7 −115.41 313.13 −22.15 −3.50
7 411.30 −104.6 −100.42 219.95 −19.87 −3.20
8 315.20 −94.20 −99.69 126.31 −18.40 −3.13
9 215.62 −86.06 −93.10 61.22 −14.93 −2.81
10 147.73 −74.72 −87.18 44.42 −12.87 −2.58
11 92.88 −69.86 −81.03 27.56 −9.98 −2.86
12 55.09 −64.10 −76.37 17.60 −8.68 −2.60
13 26.51 −57.33 −73.13 0.78 −7.15 −2.34
14 6.84 −51.45 −66.79 −15.98 −4.01 −2.14
15 −6.99 −45.71 −63.61 −4.83 −2.49 −2.00
16 −18.57 −41.89 −62.47 −7.92 0.06 −2.01
17 −25.25 −36.65 −59.78 5.23 −0.80 −2.07
18 −29.76 −33.33 −56.14 0.85 0.36 −1.75
19 −31.58 −30.35 −52.34 3.31 1.80 −1.16
20 −33.05 −27.86 −50.15 −10.56 2.11 −1.70

‘—’ the deviation of the first drops was large, so they were eliminated.
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2.3.2. Titration of the Solutions of Baicalin and Berberine

This part also consisted of three experiments: the titration of baicalin solution (0.04 mmol/L)
into deionized water, berberine solution (0.4 mmol/L) into deionized water and berberine solution
(0.4 mmol/L) into baicalin solution (0.04 mmol/L). The binding heats were measured directly by
ITC. The binding heat of berberine titrated into deionized water was set as the benchmark, and the
Nano Analyze software was used to fit the heating curve of the titration processes, all of which were
summarized in Figure 4. It was shown that the direct titration of baicalin solution into deionized
water was a very weak exothermic process (Figure 4a); the direct titration of berberine solution
into deionized water, just like Coptis chinensis, was also an endothermic dilution process (Figure 4b).
Figure 4c shows the titration of berberine solution into baicalin solution, which gave off a lot of heat.
The heat quantity of berberine titrating baicalin was larger than that of the titration of berberine or
baicalin into water (Table 3). The following curve shows the binding thermodynamic parameters
(∆H, ∆S, ∆G, n, Ka, Kd) of baicalin and berberine, summarized in Table 4. Ka = 1.228 × 106 1/M,
∆G = −35.573 kJ/mol, indicating the spontaneity of the reaction between baicalin and berberine.
However, as the absolute value of ∆G was not very high, this reaction was not very violent. As shown
in Table 4, the estimated stoichiometric ratio (n) was 1.002, indicating the binding ratio of baicalin
and berberine was 1:1, which conformed to the result of baicalin-berberine complex 1H-NMR and
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13C-NMR test [15]. ∆H = −371.6 kJ/mol, −T∆S = 336.027 kJ/mol, which indicated that most of the
binding energy was enthalpy, as the entropy change (∆S) of binding contributed unfavorably [16,24].
In other words, this was a chemical action, like the formation of hydrogen bonds, or dipole dipole
interactions [30], rather than a physical combination driven by hydraulic force [31]. The chemical
structures of baicalin and berberine are shown in Figure 4d,e, respectively.

Table 4. Binding thermodynamics of baicalin and berberine.

No. ∆H (kJ/mol) −T∆S (kJ/mol) ∆G (kJ/mol) n Ka (1/M) Kd (M)

Berberine to
baicalin −371.6 336.027 −35.573 1.002 1.228 × 106 8.143 × 10−7

2.4. Protective Effect of the HLJDT CFP and SB-CC CFP on PC12 Cells Injured by CoCl2

To evaluate the neuroprotective effects of the HLJDT and the SB-CC, the four samples were tested
on neuronal-like PC12 cells induced by CoCl2. The results (Table 5) showed that all of them presented
protective effects on injured PC12 cells. The results of the neuroprotective effects were ranked as
follows: SB-CC CFP > HLJDT CFP > HLJDT supernatant > SB-CC supernatant. The similar effects of
HLJDT CFP and SB-CC CFP also indicated the existence of similar actives.

Under a light microscope, the normal differentiated PC12 cells were shown to display complete
and distinct edges (Figure 5a). In contrast, the number of cells with 200 mM CoCl2 for 12 h was
reduced and dendritic networks disappeared (Figure 5b). Cells pretreated with 30 µg/mL HLJDT
supernatant and SB-CC supernatant showed weak effects compared to model cells (Figure 5c,e). Cells
pretreated with 30 µg/mL of HLJDT CFP and SB-CC CFP evidently showed improvement of the
morphological manifestations of the cells and the number of neurite-bearing cells compared to model
cells (Figure 5d,f).

Table 5. The protective effect of HLJDT CFP, HLJDT supernatant, SB-CC CFP and SB-CC supernatant
on PC12 cells injured by CoCl2 (data are expressed as means ± SD from three separate experiments).

Samples
Proliferation Rate (%)

EC50 (µg/mL)
3.75 µg/mL 7.5 µg/mL 15 µg/mL 30 µg/mL 60 µg/mL

HLJDT supernatant 2.36 ± 0.30 11.46 ± 3.67 46.67 ± 6.06 60.28 ± 3.83 45.24 ± 5.01 28.41 ± 2.61
HLJDT CFP 39.49 ± 7.06 53.28 ± 5.57 56.46 ± 5.69 83.18 ± 4.69 19.83 ± 4.20 14.71 ± 0.91

SB-CC supernatant 11.43 ± 3.26 14.79 ± 4.01 14.19 ± 0.69 24.16 ± 5.95 10.60 ± 2.93 56.47 ± 2.63
SB-CC CFP 32.58 ± 4.44 58.04 ± 5.87 66.28 ± 2.19 123.91 ± 9.41 84.64 ± 4.69 6.11 ± 0.12
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Figure 5. Morphological changes of PC12 cells under a light microscope. (a) Control group; (b) Model
group; (c) Pretreatment with 30 µg/mL of HLJDT supernatant then injured by CoCl2; (d) Pretreatment
with 30 µg/mL of HLJDT CFP then injured by CoCl2; (e) Pretreatment with 30 µg/mL of SB-CC
supernatant then injured by CoCl2 and (f) Pretreatment with 30 µg/mL of SB-CC CFP then injured by
CoCl2 (×400).
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3. Discussion

The methods of separated prescription mixing and HPLC-MSn were used to identify the
source of the CFP. Then, the reaction mechanism of the CFP was revealed by ITC. The model of
neuronal-like PC12 cells injured by CoCl2 was chosen to evaluate the neuroprotective activity of the
CFP. In order to obtain the CFP, we first selected and mixed every two herbal medicines in a non-woven
bag, respectively, and then decocted and centrifuged the decoctions after cooling to room temperature.
The approximate formation rates of the seven batches of CFP proved that HLJDT CFP (the formation
rate = 2.49 ± 0.12%) mainly came from the SB-CC CFP (the formation rate = 4.07 ± 0.20%).

HPLC-MSn was used to identify the substances in CFP. The main components of SB-CC CFP were
baicalin and berberine, which conformed to the results of previous research [15]. The results indicated
that the main chemical substances of SB-CC CFP and HLJDT CFP were similar. This validated the
viewpoint that HLJDT CFP mainly came from SB-CC CFP.

Isothermal titration calorimetry (ITC) was used to evaluate reaction mechanism between
Scutellaria baicalensis and Coptis chinensis. In a reaction, if ∆H < 0, −T∆S < 0, then the binding
energy is favored by enthalpic and entropic contributions; If ∆H < 0, −T∆S > 0, there will be two cases.
The first is |∆H| > T|∆S|, the reaction can happen spontaneously and it is favored by enthalpic
contribution. Contrarily, the second is |∆H| < T|∆S|, and the reaction will not happen; If ∆H > 0,
−T∆S > 0, the reaction will also not happen; If ∆H > 0, −T∆S < 0, and at the same time |∆H| < T|∆S|,
the reaction could happen spontaneously and this reaction is favored by entropic contribution [17,18].

The results showed that during the titration process of Scutellaria baicalensis and Coptis chinensis,
the energy level changed significantly, indicating chemical reactions between the main components
of Scutellaria baicalensis and Coptis chinensis. During the titration process of baicalin and berberine,
|∆H| > T|∆S|, ∆S < 0, indicating that the reaction was enthalpy-driven, and the entropy change (∆S)
of binding provided an unfavorable contribution. Chemical reactions happened and some internal
component(s) changed. The results confirmed that the reaction between baicalin and berberine was a
complexing reaction [15]. The results of the nerve activity tests showed that all of HLJDT CFP, HLJDT
supernatant, SB-CC CFP and SB-CC supernatant presented protective effects on differentiated PC12
cells injured by CoCl2. The CFP had better effects than supernatant, proving that CFP contained more
amount of the effective components.

4. Materials and Methods

4.1. Source of HLJDT CFP

Four different Traditional Chinese Medicines were purchased from Beijing Tong Ren Tang Group
Co. (Beijing, China), a Chinese pharmaceutical company, and the four kinds of medicinal herbs were
identified, Scutellaria baicalensis was the dried root of Scutellaria baicalensis Georgi; Coptis chinensis was
the dried rhizome of Coptis chinensis Franch; Phellodendron chinense was the dried bark of Phellodendron
chinense Schneid; Gardenia jasminoides was the dried ripe fruits of Gardenia jasminoides Ellis. We selected
and arranged each combination of two herbal medicines from the above four in non-woven bags
(pore diameter < 30 µm) respectively, and then decocted each one with eight times the amount
of water for 30 min. We thus obtained gained seven groups: HLJDT, Scutellaria baicalensis-Coptis
chinensis (SB-CC), Scutellaria baicalensis-Phellodendron chinense (SB-PC), Scutellaria baicalensis-Gardenia
jasminoides (SB-GJ), Gardenia jasminoides-Coptis chinensis (GJ-CC), Gardenia jasminoides-Phellodendron
chinense (GJ-PC) and Phellodendron chinense-Coptis chinensis (PC-CC) by centrifugation at 4000 r/min
for 15 min after cooling to room temperature. The supernatant was concentrated and the CFP were
dried at 30 ◦C. The precipitation rate (%) was calculated as follows:

Precipitation rate% = (separated precipitation CFP weight/herbal weight) × 100%. (1)
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The proportion of separated precipitation CFP among the HLJDT CFP (%) was calculated by the
following equation:

Separated precipitation CFP among HLJDT CFP % = (separated prescription
CFP weight/HLJDT CFP weight) × 100%.

(2)

4.2. HPLC-MSn Analysis of the Constituents of HLJDT CFP and Scutellaria baicalensis–Coptis chinensis CFP

The HPLC-MSn analysis was performed with an Agilent 1100 LC system equipped with an
LC/MSD Trap XCT Plus mass spectrometer (Agilent Technologies, Santa Clara, CA, USA). A TC-C18
(4.6 mm × 250 mm, 5 µm) column (Agilent) was used for analysis. The column temperature was kept
at 30 ◦C. The mobile phase consisted of acetonitrile (A) and water containing 0.2% phosphoric acid (B).
The following gradient condition was used: 0–10 min, 5–15% A; 10–30 min, 15–30% A; 30–42 min,
30–42% A; 42–45 min, 42–48% A; 45–50 min, 48–60% A; and 50–60 min, 60–90% A. The mobile phase
flow rate was 1 mL/min and the sample injection volume was 10 µL. The detected wavelength was
238 nm. Mass spectra were acquired in positive and ion modes with an ESI source in the range of
m/z 100 to 1000. The ESI-MS conditions were that the nebulizer pressure at 45 psi and nitrogen as the
drying gas at a flow rate of 10 L/min with a temperature of 350 ◦C. The capillary voltage was set at
3500 V. Data were acquired by use of the Agilent Chemstation software (Agilent Technologies).

4.3. Formation Mechanism Test Based on ITC

All ITC experiments were performed with an Auto-ITC isothermal titration calorimeter
(TA Instruments, Shanghai, China). The extraction solutions of Scutellaria baicalensis and Coptis chinensis
were respectively packaged in a non-woven bag (pore diameter < 30 µm) and decocted with eight
times the amount of water for 30 min. The extract was diluted to a suitable concentration by adding
deionized water. The baicalin was dissolved to 0.04 mmol/L with deionized water and berberine was
dissolved to 0.4 mmol/L. All ITC experiments were performed at 303.00 K. To carry out the titration,
the injector was filled with extract of Coptis chinensis test solution and the working cell with extract of
Scutellaria baicalensis test solution. In the monomer composition experiments, the injector was filled
with berberine test solution and the working cell with baicalin test solution. The ITC titrations were
carried out at the condition of 250 r/min. The titration was sustained for 20 injections with injections
of 2.5 µL, and an interval of 180 s between injections to ensure complete equilibration. A background
titration, performed with identical extract of Coptis chinensis or berberine in sampling needle but with
the sample cell filled just with the deionized water, was subtracted from the main experiment to
account for the heat of dilution.

After the titration, the Nano Analyze software was used to analyze the data. It automatically
searched and fitted the curve of titrations and calculated thermodynamic parameters after we input
sample concentrations. The thermodynamic parameters consists of ∆H, ∆S, n, Ka; the Gibbs free energy
change (∆G) were calculated using the standard thermodynamic equation: ∆G = − RTlnK = ∆H − T∆S.

At present, ITC is mainly used in molecular interaction, characterization and enzyme dynamics
studies, especially used to characterize the binding between a drug molecule and a receptor protein,
where almost all combinations are exothermic. From an energetic standpoint, the binding of molecules
or molecules to receptors would lead to a decrease in energy, which was the driving force and trend
of binding. In order to reduce the energy of the system, the binding would generally be exothermic,
otherwise it would not combine.

4.4. Protective Effect of the HLJDT CFP and Scutellaria baicalensis–Coptis chinensis CFP on Injured
PC12 Cells

PC12 cells were cultivated in Rosewell Park Memorial Institute (RPMI) 1640 medium supplemented
with 5% (v/v) fetal bovine serum, 10% (v/v) horse serum and 100 U/mL penicillin-streptomycin
(Thermo Technologies, New York, NY, USA) at 37 ◦C in a humidified atmosphere of 5% CO2.
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When the coverage area of cells >80%, the original medium was removed and cells were cultured
with the serum-free medium for 14 h. Then the cells were suspended in 1640 medium supplemented
with 10% (v/v) fetal bovine serum, and seeded into poly-L-lysine-coated 96-well culture plates at
7 × 103 cells/well, differentiate and treated with 50 n g/mL nerve growth factor (NGF) for 48 h.
After these, the differentiated PC12 cells were pretreated with various concentrations (60, 30, 15, 7.5,
3.75 µg/mL) of samples for 36 h. All measurements were performed after the cells were injured
by CoCl2 (final concentration, 200 mM) for 12 h except control differentiated cells. After adding
CCK-8 solution (10 µL, 5 mg/mL) to each well, the plate was incubated for a further 4 h at 37 ◦C in a
humidified atmosphere of 5% CO2. Then the absorbance at 490 nm was measured with a BIORAD 550
spectrophotometer (Bio-Rad, Berkeley, CA, USA). The proliferation rates of damaged PC12 cells were
calculated by the formula [OD490 (Sample) − OD490 (CoCl2)]/[OD490 (NGF) − OD490 (CoCl2)] × 100%.

5. Conclusions

In conclusion, the source of HLJDT CFP, which is the result of the reaction between Scutellaria
baicalensis and Coptis chinensis, was identified by studying the separated prescriptions and HPLC-MSn.
In order to find out formation mechanism of HLJDT CFP, ITC was used. The results indicated that
there were some reactions between the main components of Scutellaria baicalensis and Coptis chinensis.
The combination of baicalin and berberine was very powerful and the reaction between them was an
enthalpy-controlled chemical reaction. All samples showed protective effects against cobalt chloride-
injured neurotoxicity in differentiated PC12 cells. In addition, SB-CC CFP (EC50 = 6.11 ± 0.12 µg/mL)
displayed the best neuroprotective activity.
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