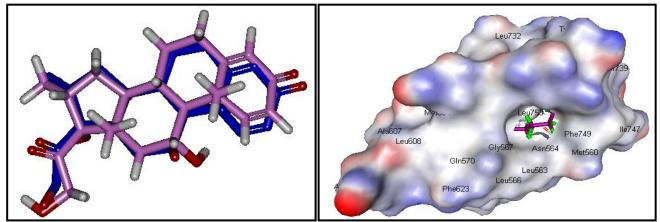
Supplementary data


Chemical Composition of *Pinus roxburghii* Bark Volatile Oil and Validation of Its Anti-Inflammatory Activity Using Molecular Modelling and Bleomycin-Induced Inflammation in *Albino* Mice

Rola M. Labib ^{1,2,*}, Fadia S. Youssef ¹, Mohamed L. Ashour ¹, Mohamed M. Abdel-Daim ³ and Samir A. Ross ^{2,4}

- ¹ Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo 11566, Egypt; fadiayoussef@pharma.asu.edu.eg (F.S.Y.); ashour@pharma.asu.edu.eg (M.L.A.)
- ² National Center for Natural Products Research, University of Mississippi, University, MS 38677, USA; sross@olemiss.edu
- ³ Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt; abdeldaim.m@vet.suez.edu.eg
- ⁴ Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
- * Correspondence: rolamilad@pharma.asu.edu.eg; Tel.: +20-1-001971922

Figure S1: (a) Alignment of the X-ray bioactive conformer with the best fitted pose of the lead compound (dexamethasone); (b) binding of palmitic acid within the active pocket of human glucocorticoid receptors (GR).

Table S1: The binding percentage of PRO on the cannabinoids and opioids receptors.

Figure S1: (a) Alignment of the X-ray bioactive conformer with the best fitted pose of the lead compound (dexamethasone); (b) binding of palmitic acid within the active pocket of human glucocorticoid receptors (GR).

Table S1: The binding percentage of PRO on the cannabinoids and opioids receptors.

Receptor	CB1	CB2	Delta	Карра	Mu
PRO	NA	2.9	6.9	10.9	22.0
		NA: no ac	tivity		