Supporting Information

Application of Ammonium Persulfate for Selective Oxidation of

Guanine for Nucleic Acid Sequencing

Yafen Wang ^{1†}, Chaoxing Liu ^{1†}, Tingting Hong¹, Fan Wu¹, Shuyi Yu¹, Zhiyong He¹, Wuxiang Mao², and Xiang Zhou^{*1}

^aCollege of Chemistry and Molecular Sciences, Institute of Advanced Studies, Wuhan University, Wuhan, Hubei, 430072, P. R.China

^bHubei Collaborative Innovation Center for Green Transformation of Bio-resources, College of Life

Sciences, Hubei University, Wuhan, Hubei 430062, P. R. China.

*To whom correspondence should be addressed:

xzhou@whu.edu.cn

List of Contents:

- 1. Table S1. The sequences of DNA and RNA used in this study.
- 2. Polyacrylamide gel electrophoresis analyzed other oligodeoxyribonucleotides.
- 3. Circular dichroism spectra of G-quadruplexes and G-triplex.
- 4. MALDI-TOF-spectrum of ODN treated with AP.
- 1. Table S1. DNA oligonucleotides used in this study.

Name	Sequences (5'-3')
Hairpin-loop	AGTCTATTGTTTAGACT-HEX
Bulge	ACGATCGTCATGTCTAGCAGCTA-HEX
Bulge-complementary	TAGCTGCTAGAATGACGATCGT
Loop and bulge	HEX-TCATCGATGCGTCATTGGTATGACGCGGTATCGATGA
Mismatch	ACGATCGTCATGTCTAGCAGCTA-HEX
Mismatch-complementary	TAGCTGCTAGAGATGACGATCGT
Terminal	HEX-CATGCGTTCCCGTG
Terminal -complementary	CACGGGAACGCATG
G-quadruplex	HEX-TTAGGGTTAGGGTTAGGG
ds	TGTGTCGCTCTTACAAGGCA-HEX
ds-complementary	TGCCTTGTAAGAGCGACACA
ZG4	TGGTGGTGGTGGTGGTGGTGGTGGTGTT-HEX
G3	HEX-TGGGTAGGGCGGG
8-oxo-G	TTTTCGATCTTACAA(8-oxo-G)CCA
Single 1	FAM-TGCGTCTGCGTC
Single 2	FAM-TCACTGTGCAGCATGTGGCAG

Single 3	HEX-CTTTGGTCCTGAAGGAGGATAGG
33mer-RNA	HEX-CUCGCAUCGAUGAAGAACGCAGCGAAAUCCCAU
22mer-RNA	HEX- CAAGCCUGUUUGACAUACAUUU
76-template-1mC	CCTCACCATCTCAACCAATATTATATTACGCGTATAA(5mC)GCGTA
	TTGGCGCTATAATATTGAGGGAGAAGTGGTGA
76-template-2mC	CCTCACCATCTCAACCAATATTATATTACGCGTATAA(5mC)G(5mC)
	GTATTGGCGCTATAATATTGAGGGAGAAGTGGTGA
76mer template-forward primer	GGGTTTTATTATTTAATTAATATTATATT
76mer template-reverse primer	HEX-TCACCACTTCTCCCTCAAT

2. Polyacrylamide gel electrophoresis analyzed other oligode oxyribonucleotides.

5'-ACGATCGTCATGTCTAGCAGCTA-HEX-3'

Figure S1. Polyacrylamide gel electrophoresis analysis of ODN-mismatch with AP for incubating with different concentration. Treat the DNA (20 pmol) with AP then treated with piperidine at 90 $^{\circ}$ C for 40 min. Lane 1-5 was 0, 0.5 mM, 2 mM, 5 mM and 10 mM respectively. Lane 6: G-ladder (DMS treated).

5'-ACGATCGTCATGTCTAGCAGCTA-HEX-3'

Figure S2. Polyacrylamide gel electrophoresis analysis of ODN-mismatch with AP for incubating with different time. Treat the DNA (20 pmol) with AP then treated with piperidine at 90 $^{\circ}$ C for 40 min. Lanes 1-6 was 0, 1 min, 5 min, 10 min, 20 min and 30 min respectively. Lane 7: G-ladder (DMS treated).

Figure S3. Polyacrylamide gel electrophoresis analysis of 21mer-ODN, which was oxidized in Tris-HCl buffer at different pH values.

Figure S4. Polyacrylamide gel electrophoresis analysis of G-quadruplex ODN-ZG4. Lane 1: DNA without treatment; Lane 2: DNA was treated with AP; Lane 3: DNA was treated with DMS.

Figure S5. Polyacrylamide gel electrophoresis analysis of G-triplex structure of ODN-G3. Lane 1: DNA without treatment; lane 2: DNA was treated with AP; lane 3: DNA was treated with DMS.

Figure S6. Polyacrylamide gel electrophores is analysis of ODN-single 1. Lane 1: DNA without treatment; lane 2: DNA was treated with AP; lane 3: DNA was treated with DMS.

Figure S7. Polyacrylamide gel electrophoresis analysis of ODN-single 2. Lane 1: DNA without treatment; lane 2: DNA was treated with AP; lane 3: DNA was treated with DMS.

Figure S8. Polyacrylamide gel electrophoresis analysis of ODN-single 3. Lane 1: DNA without treatment; lane 2: DNA was treated with AP; lane 3: DNA was treated with DMS.

3. Circular dichroism spectra of G-quadruplexes and G-triplex.

Figure S9. Spectra of 7.5 µM DNA G-quadruplex. Green line: no salt; red line: in presence of 100 mM K⁺. The hybrid-type G-quadruplex showed a positive peak at 290 nm and a characteristic shoulder peak at 270 nm.

Figure S10. Spectra of 7.5 μ M DNA G-triplex. Green line: no salt; red line: in presence of 100 mM K⁺. The G-triplex showed a positive peak at 265 nm and a negative peak at 240 nm.

Figure S11. Spectra of 7.5 μ M DNA G-quadruplex. Green line: no salt; red line: in presence of 100 mM K⁺. The ZG4-quadruplex showed a positive peak at approximately 245 nm and a negative peak at 275 nm.

4. LC-MS spectrum of ODN treated with AP.

Figure S12. The guanosine could be oxidized to the labile product.

Figure S13. HPLC-MS extracted [M+H]⁺ ion count for dGh after digestion of ODN after treatment with AP. The mass theoretical value of dGh is 274.11460, and we obtained a value of 274.11370. The sequence of the digested DNA is TAGCTGCTAGAGATGACGATCGT.