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Abstract: Herein, a promising carrier, graphene oxide (GO) decorated with ZnO nanoparticles,
denoted as GO/ZnO composite, has been designed and constructed. This carrier was characterized
by X-ray powder diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy
and thermogravimetry. Then, Candida rugosa lipase (CRL) was immobilized onto the GO-based
materials via physical adsorption. Our results indicated that the lipase loading amount on the
GO/ZnO composites was about 73.52 mg of protein per g. In the activity assay, the novel immobilized
lipase GO/ZnO@CRL, exhibited particularly excellent performance in terms of thermostability and
reusability. Within 30 min at 50 ◦C, the free lipase, GO@CRL and ZnO@CRL had respectively lost
64%, 62% and 41% of their initial activity. However, GO/ZnO@CRL still retained its activity of 63%
after 180 min at 50 ◦C. After reuse of the GO/ZnO@CRL 14 times, 90% of the initial activity can be
recovered. Meanwhile, the relative activity of GO@CRL and ZnO@CRL was 28% and 23% under
uniform conditions. Hence, GO-decorated ZnO nanoparticles may possess great potential as carriers
for immobilizing lipase in a wide range of applications.

Keywords: graphene oxide; ZnO nanoparticles; immobilized CRL; enzyme activity; reusability

1. Introduction

Biocatalysts possess excellent properties in terms of efficient catalytic activity, exclusion of
undesirable side reactions, operations under mild conditions, and different types of stereoselectivity in
some chemical reactions, such as oxidation-reduction [1], hydrolysis [2] and esterification [3]. To date
biocatalysts have been widely used in applications including the synthesis of structured lipids [4],
synthesis of pharmaceutical intermediates [5] and biofuel production [6]. Among all commercialized
enzymes, one of the most popular enzymes, lipases (triacylglycerol ester hydrolases, EC 3.1.1.3) are
widely used as adaptable biocatalysts [7–10] to catalyze a number of reactions making lipases unique
biocatalysts in the chemistry, food, agrochemical, biotechnology and pharmaceutical industries due to
their excellent regio-, chemo-, and stereoselective properties [11].

However, the practical industrial applications of water-soluble enzymes like lipases are still
limited, and some of their drawbacks are their instability, short lifetime and the need for additional
efforts to recycle the enzymes from a product mixture [12]. Therefore, to overcome the above
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disadvantages, the technique of immobilizing lipases on various carriers is considered an effective
strategy to improve the stability and facilitate separation from reaction systems [13].

Recently, numerous efforts have been focused on the preparation of lipases in immobilized forms,
which involve all sorts of new carrier materials, both inorganic and organic, to improve the catalytic
performance [14–17]. Combined with recent advances in nanotechnology, nanostructured materials
with large surface-to-volume ratio such as nanomesoporous materials and carbon nanotubes have
been demonstrated as immobilization supports to re-engineer enzyme catalysts for superior stability
and activity [18,19].

Graphene, a two-dimensional (2D) honeycomb lattice, offers remarkable chemical stability,
mechanical strength, bio-compatibility and lack of toxicity, therefore, it has a great future in many special
areas. As a precursor of graphene, graphene oxide (GO) sheets consist of both oxygenated polar domains
and aromatic nonpolar domains that endow them with the binary characteristics of a conventional
block co-polymer [20]. They also have the proper mechanical strength, good biocompatibility, high
specific surface area, scalable manufacture, controllable surface chemistry, and full of functional groups,
therefore, the features of GO makes it an ideal carrier for lipase immobilization [21].

So far, very few reports about GO-based supports for lipase immobilization have been published.
For instance, Jing and co-workers [22] synthesized a chloropropyl-functionalized graphene oxide
decorated with Fe3O4 nanoparticles for the immobilization of porcine pancreatic lipase (PPL);
Mohammadi and co-workers [23] used an isocyanide-based four-component reaction tobimmobilize
Rhizomucor miehei lipase (RML) on carboxylated multi-wall carbon nanotubes and carboxylated
graphene nanosheets; Li and co-workers [24] fabricated three dimensional (3D) magnetic graphene
oxide-chitosan (GO/CS) composites with orderly self-assembled magnetite (Fe3O4) nanoparticles
(GO/CS/Fe3O4) to was immobilize Candida rugosa lipase (CRL).

According to recent studies, we can see that covalent binding methods were first selected to
immobilize lipase. Because of its ability to rigidify the location of the immobilized enzyme, improved
selectivity and stability can be achieved via covalent bonding, however, the most critical point is that the
spatial structure of protein can be changed by covalent attachment, leading to damage to the enzyme
activity center, thereby reducing the enzyme activity [14,15,24–27]. Moreover, it is well known that
physical adsorption-immobilization via intermolecular interaction, preserves well the structures of both
the nanomaterial and the protein, and maximizes the catalytic performance of enzymes. Some enzymes
may leach from the carrier, but this drawback can be solved by optimizing the carrier structure.

Zinc oxide (ZnO) nanoparticles have been exploited in many fields such as catalysis, drug delivery
and biology, where they have unique ability to promote faster electron transfer between the active
site of enzymes and substrates, as a potential material in enzyme engineering, however, very little
information about their application in immobilization of lipase can be found [28].

Herein, we report a novel carrier for the immobilization of lipase via intermolecular interactions
such as hydrogen bond and/or complementary electrostatic attraction prepared by integrating ZnO
nanoparticles with GO. The formation of the GO/ZnO combined supporting material is illustrated
in Scheme 1 and the design concept explained as follows: (1) because of the interactions between the
layers, GO nanosheets are inclined to agglomerate, which leads to a lower surface area, yet covered
ZnO nanoparticles can effectively prevent the agglomeration of GO; (2) GO comprises hydrophilic
edges and hydrophobic nanosheets [20]. It has a lot of oxygen-containing groups including hydroxyl,
epoxy, carbonyl, and carboxyl groups, so that the functional groups and the large surface area can be
retained to interact with the lipase. These groups change the properties of graphene from hydrophobic
to strongly hydrophilic, and the existence of negatively charged carboxylate groups can promote
binding to proteins via electrostatic interactions. In addition, ZnO nanoparticles are hydrophilic,
hence, this complex possesses good dispersibility in water, which makes it suitable to immobilize
lipase easily. Furthermore, the hydrophobic parts of GO nanosheets may drive the lipase to open
the “lid”, expose the active site, and enhance the catalytic performance, they can also facilitate the
dispersion interaction driven binding of enzymes, eliminating the need for chemical modification
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of the protein prior to surface conjugation [29,30]; (3) for their unusual properties, namely, a high
isoelectric point of 9.5, which allows for the immobilization of lipase (Candida rugosa lipase: a low
isoelectric point of 4.6) through an electrostatic interaction, ZnO nanoparticles were incorporated as
a covered functional group here [31]. Moreover, an enhanced surface area can be achieved by the ZnO
nanoparticles, allowing for the strong adsorption of lipase, improved catalytic efficiency, chemical
stability, biocompatibility and high electron transfer ability [32].

On the basis of the foregoing information, we have designed a novel supporting material, which
integrates GO with ZnO nanoparticles, for better enzyme immobilization. Candida rugosa lipase (CRL)
was selected as a model enzyme in order to assess the potential applicability of GO/ZnO composites
as a new carrier. Meanwhile, for comparison purposes, we prepared another two immobilized lipases,
GO@CRL and ZnO@CRL, and together with GO/ZnO@CRL, their physical properties, relative activity,
stability and reusability were investigated.

2. Results and Discussion

2.1. Design, Synthesis and Structural Characterization of GO/ZnO Composites

The design rationale is illustrated in Scheme 1. Firstly, graphene oxide (GO) was prepared
in a classical way, Hummer’s method, in which plentiful oxygen-containing functional groups can
be observed. In addition, after Zn2+ was added, in-situ formed ZnO clustered particles decorate
and prevent the restacking of GO sheets and the ordered lamellar GO was exfoliated for a shaggier
surface [33]. When we immobilized CRL lipase on the obtained supports (GO/ZnO), CRL was randomly
distributed on the surface of GO/ZnO. According to the literature, CRL not only interacted with the
oxygen-containing functional group on GO sheets through hydrogen bond interactions [20], but also
combined with ZnO clustered particles via electrostatic interactions [34]. The two interaction forces
successfully guarantee the stability of the immobilized lipase (GO/ZnO@CRL). During the hydrolytic
process, the p-nitrophenylpalmitate (p-NPP) substrate surround GO/ZnO@CRL nanoparticles where
the hydrolysis product p-nitrophenol (p-NP) is produced and the GO/ZnO exfoliated layers provide a
high surface area for the mass transfer of p-NP product for high catalytic performance.
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2.2. Materials Characterizations

In order to clarify the microstructure of the materials, the morphological features of the involved
composites were examined via field-emission scanning electron microscopy. The agglomerated shape
of the ZnO nanoparticleswhich synthesized by the typical method was clear and it can be seen that the
composite microstructure was a blocky structure composed of nanoparticles with good uniformity
(Figure 1a). The surface of the GO has uniform and smooth layers (Figure 1b), with most of the
nanosheets stacked and entangled together. It wasas obvious that the formed GO/ZnO composites,
as shown in Figure 1c, exhibited an exfoliated layered GO sheet structure with a few in-situ formed
ZnO clustered particles decorated randomly inside or on the surface of the GO sheets, which prevent
their effective restacking. Upon immobilization of lipase on the GO materials, as observed in reported
literature [35,36], a sponge-like agglomerated structure appeared, which belong to the lipase attached
on the sheets of GO surface (Figure 1d). The accumulation of aggregated protein should contribute to
a high concentration of soluble protein during the immobilization process and may cause a mixture of
different lipases in open and closed conformation. For GO/ZnO@CRL materials, a more exfoliated
layered structure of graphene oxide sheets is observed (Figure 1e), with sponge-like CRL agglomerated
structures attached on or inside the GO sheets. Figure 1f is a zoom in picture of Figure 1e, where
CRL and ZnO nanoparticles can be clearly distinguished on the GO sheets, indicating that GO/ZnO
composite is an ideal carrier for lipase immobilization via intermolecular interactions.
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Figure 1. Scanning electron microcopy (SEM) images of (a) ZnO; (b) pristine GO; (c) GO/ZnO;
(d) GO@CRL; (e,f) GO/ZnO@CRL.

X-ray photoelectron spectroscopy (XPS) was used to investigate the surface compositions and the
valence states of these obtained materials (2). The wide scan XPS spectra of the samples (Figure 2a)
displayed sharp peaks at the binding energies of 288 eV (C 1s), 400 (N 1s), 530 (O 1s) and 1023 eV
(Zn 2p3/2) respectively, indicating the existence of C, O, N and Zn on the surface of corresponding
materials. The high-resolution XPS spectra (Figure 2b,c) of the Zn 2p scan exhibited two peaks, located
at 1023 eV (Zn 2p3/2) and 1046 eV (Zn 2p1/2). Deconvoluted peaks of GO (Figure 2d) are displayed
at four positions corresponding to C=C sp2 (284.28 eV), C–C sp3 (285.00 eV), C–O and/or C–O–C
(286.87 eV), and C=O (288.68 eV). The decorated ZnO nanoparticles on the surface of the GO sheet
shifted the C–C sp3 peak in GO/ZnO (Figure 2e) to a higher binding energy by 0.39 eV and was
accompanied by an increase of the intensity of the C=C sp2 peak in GO/ZnO compared to that in GO.
In addition, the peaks of C–O and/or C–O–C in GO/ZnO are slightly decreased compared to those
in GO. These results suggested that GO was partly reduced in the modified nanomaterials. The N 1s
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spectra of CRL and GO/ZnO@CRL are shown in Figure 2f,g. For CRL, the peaks at a binding energy
of 399.50 eV, 399.77 eV and 401.25 eV were assigned to N 1s, C–N and NH4+, respectively. The peaks of
C–N and NH4+ in GO/ZnO@CRL are obviously shifted to a higher binding energy by 0.83 and 1.35 eV,
indicating that CRL was bound by electrostatic interactions. All the results from the XPS analysis
demonstrate that the supporting materials were prepared successfully.
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spectra of (d) GO, (e) GO/ZnO and N 1s spectra of (f) CRL and (g) GO/ZnO@CRL.
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The Fourier transform infrared spectroscopy FT-IR of pristine GO, CRL, ZnO, GO/ZnO, and
GO/ZnO@CRL are shown in Figure 3a. The spectra of the pristine GO and ZnO are similar to the
former literature results [37]. In the curve of pristine GO (c), the peaks at 1735 cm−1, 1624 cm−1,
1229 cm−1 and 1062 cm−1 correspond to the C=O stretching vibrations of the carbonyl and COOH
groups located at the edges of the GO networks, C=C vibration of the skeleton, C–OH vibration and
C–O stretching vibration of an epoxide groups, respectively. After decoration with ZnO nanoparticles,
the C=O peak was not observed with the same intensity compared to the GO spectrum (c), suggesting
that the GO sheet was partly reduced, which is consistent with the XPS results. Meanwhile, the
intrinsic small peaks of pristine GO and ZnO, ranging from 1725 to 725 cm−1, were replaced by two
new broad peaks appeared at 1550 cm−1 and 1210 cm−1. The peak at 1550 cm−1 is attributed to the
skeleton vibrations of the benzene ring, caused by the reduction of GO, whereby the benzene ring
conjugation was recovered. The 1210 cm−1 peak can be ascribed to the C–O binds of hydroxyls on
the surface of GO. Furthermore, a significant decrease in the peak at 3410 cm−1 corresponding to
the –OH stretching was observed, indicating an interaction between ZnO and the surface functional
groups on GO, and suggesting that ZnO nanoparticles were grafted onto the GO sheets. Compared
to the curve of CRL, the –OH peak at 3390 cm−1 was decreased when the enzyme was adsorbed
onto GO/ZnO. These results suggest that the N–H bond of CRL interacts with the O–H bond of the
supporting material via hydrogen bonding. On the other hand, the absorption at 3410 cm−1 which is
characteristic of the stretching vibration of the primary amine (–NH2) group on the GO/ZnO@CRL
materials was broadened and enhanced compared to the curve of GO/ZnO. Signals at 2964 and
2860 cm−1 for anti-symmetric and symmetric stretching vibrations of –CH2–, which was brought by
the CRL, were observed, while, the strong broad peak at 1070 cm−1 appeared due to the influence
of the stretching vibration absorption of C–O from CRL too. The above FT-IR results indicate that
the supporting materials were prepared well, and the CRL has been immobilized on the GO/ZnO
particles succesfully by intermolecular interactions.

Figure 3b shows typical XRD patterns of the as-prepared samples. For ZnO nanoparticles, the XRD
patterns manifest predominant diffraction peaks at 2θ values 31.71◦, 34.36◦, 36.2◦, 47.44◦, 56.49◦, 62.76◦,
66.59◦, 68.18◦, 69.29◦, 72.41◦ and 76.83◦. These peaks are well matched with standard JCPDS card
No. 36-1451. The curve of GO is also shown, where a unique characteristic peak was observed at
a 2θ of 10.5◦, which was assigned to the crystal plane (001). For GO/ZnO and GO/ZnO@CRL, their
peaks were similar, and the characteristic diffraction peak of GO is not observed, which is caused
by the reduction of GO, however, the characteristic peaks of ZnO do appear, revealing that after
immobilization of the enzyme, the XRD profile is not changed, suggesting that the crystalline structure
of the support remained almost unchanged after enzyme attachment. These results further indicate
that GO/ZnO and GO/ZnO@CRL were prepared successfully.

The thermo-gravimetric (TG) analysis results of ZnO, GO/ZnO and GO/ZnO@CRL are given in
Figure 3c. As can be seen from the figure, the ZnO particles show a remarkable thermostability over
the whole weight loss of 7.88 wt %. A large mass loss (22.32%) of GO/ZnO is observed, especially
around at 470 ◦C, which could be attributed to the decomposition and vaporization of various function
groups present at different positions on GO. After immobilization of CRL, two weight loss peaks
appeared that started at 300 ◦C and 485 ◦C with the decomposition of CRL and functional groups on
GO, respectively, and an additional weight loss of about 29.02 wt % of GO/ZnO@CRL was observed
when the temperature rose to 530 ◦C. The final weight loss from 620 ◦C to 750 ◦C might be due to the
continuous decomposition of more stable carbon in GO. The TG analysis also proved the successful
preparation of the GO/ZnO@CRL.
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2.3. Relative Activity of the Immobilized CRL

Furthermore, to examine the practical applicability of the GO/ZnO materials, maintaining the
spatial structure and catalytic activity of enzyme, herein, CRL was immobilized on the GO/ZnO
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composites via a physical absorption method and the reaction conditions were examined. The efficiency
of immobilization is expressed by the amount of lipase bound on a carrier of uniform mass, which was
determined by the Bradford method. The results, shown in Figure 4, indicate that the protein loading
content went up as the initial concentration of CRL solution increased, which is due to the abundance
of suitable functional groups on the surface of GO/ZnO nanoparticles and the high specific surface
area of GO. The protein loading reached the maximum when the initial concentration of CRL solution
was 15 mg/mL, which was the optimum concentration for immobilization. Afterwards, the loading
content of protein decreased as the amount of lipase solution further increased, which is probably
due to the excess lipase coating affecting the physical properties of the support and reduced enzyme
mobility [38]. The electrostatic repulsions between the same charges of CRL molecules led to less
protein loading when abundant CRL was introduced in to the GO/ZnO particles. Finally, under the
optimum reaction conditions, the lipase loading amount on the GO/ZnO nanoparticles was about
73.52 mg of protein per g.
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The pH and temperature are important parameters that influence the enzymatic activity in
aqueous solution. For comparison simplicity, we assigned the maximum activity value under optimal
conditions as 100% and the activities were expressed as relative activities under other conditions.
The results are shown in Figure 5a. Similar to reported results, the optimum pH shifted from 5.0
for the free lipase to 6.0 for immobilized CRL, which is due to the proton micro-environment being
influenced by the groups on the carriers when the free lipase directly accesses the substrate in the
soluble form during reactions. As we know, the net charge of the protein is positive at pH values
below the isoelectric point (pI) and negative at pH values above the pI. At the optimum pH of 6.0,
the electrostatic interaction between CRL and carriers was enhanced due to the negatively charged
CRL and the positively charged ZnO [34]. Meanwhile, the pH profiles of the immobilized CRL lipase
showed a broader pH range, which demonstrated the improved stability in comparison to that of the
free enzyme. At pH = 8.0, the relative activity of GO/ZnO@CRL can reach 81% of its initial activity,
while the free CRL can only reach 32%, and the performance of GO@CRL and ZnO@CRL is also better
than that of free CRL at a high pH. The remarkable pH tolerance of the immobilized CRL can be
explained by the fact that the integrity of CRL was preserved over a wider pH range by immobilization
on the obtained materials. Moreover, the pH profiles of the GO/ZnO@CRL are the broadest in the three
immobilized lipases for the change of the micro-enviroment around CRL after immobilization [39].
Compared to free CRL, immobilized CRL has advantages in terms of stability at different pH values,
which was similar to previous reports.
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Figure 5. (a) Effects of the pH value on the activities of free and immobilized lipase in various pH
(3.0–8.0) at 37 ◦C; (b) effects of the temperature on the activities of free and immobilized lipase at
various temperatures (30–70 ◦C) at pH 7.0. The activity under optimal conditions was taken as control
(100%); (c) thermal stabilities of free and immobilized lipase with various times (0–180 min) at pH 7.0
for 50 ◦C. The initial activity was defined 100%.
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Temperature could also affect the relative activity of free CRL and immobilized CRL. As shown in
Figure 5b, the optimum temperature for both free and immobilized lipases is 40 ◦C. GO/ZnO@CRL
shows the best relative activity in the whole temperature range from 30 ◦C to 60 ◦C (71% of the initial
activity at 60 ◦C). The relative activity of the free CRL decreased rapidly (19% of the initial activity at
60 ◦C) with an increase in temperature, due to denaturation. Lower temperature was adverse to the
expression of the high activity of immobilized lipase, which may result from the hampered substrate
penetration into the bound lipase [40].

In contrast, the three immobilized CRLs are more heat-resistant than the free form in the higher
temperature region. This may be explained that the formation of hydrogen bonds and electrostatic
interactions between lipase and supports that can restrict the conformation distortion or damage
during temperature elevated.

The thermal stability of lipase is one of the most important application criteria for different
applications [41,42]. From Figure 5c, we can see that both the free and immobilized CRL exhibit the
similar trend: the residual activity declined along with the prolonged reaction time while the free
CRL declined less and more slowly. The free CRL activity was reduced to 31% while GO/ZnO@CRL
kept its activity at about 63% when the incubation time reached at 180 min. Meanwhile, the relative
activity of the three immobilized lipases is considerably higher. In comparison, the thermal stability of
GO/ZnO@CRL is much higher than that of the other two immobilized lipases. These results indicate
that immobilized lipase is more stable than free one and GO/ZnO@CRL exhibited the highest thermal
stability among the three obtained immobilized lipases. The enhancement of thermal stability is
probably attributable to the strong interactions formed between the lipase and the carrier, which are
beneficial to maintain a stable configuration of the immobilized lipase. GO/ZnO@CRL, with the
synergetic effect of GO and ZnO nanoparticles, the optimized configuration and higher lipase loading
amount that can be achieved, displayed the best performance.

Reuse stability is one of the most important aspects for any potential industrial application. In this
paper, the recyclability of the GO/ZnO@CRL was evaluated in consecutive batches of hydrolysis of
p-nitrophenylpalmitate (p-NPP) carried out under identical reaction conditions as described previously.
According to Figure 6, the three obtained immobilized lipases exhibit a different cycle performance.
The GO/ZnO@CRL maintained the higher relative activity at 90% after 14 recycles, while lower relative
activities of 28% and 23% were observed for GO@CRL and ZnO@CRL, respectively. For GO@CRL,
the significant difference may be due to the properties of GO, whereby the GO@CRL materials was
easily agglomerated leading to CRL active site being covered during the reaction. For ZnO@CRL, the
strength of the interactions between CRL and ZnO is weak, which results in leakage of CRL from the
support and bad reuse stability. After the ZnO nanoparticles decorated the GO, the excellent reuse
stability of GO/ZnO@CRL can be explained by the following aspects: (i) the agglomeration of GO was
greatly suppressed; (ii) the strength of the interaction between lipase and GO/ZnO was enhanced with
the abundant functional groups on the surface of GO particles increased by the introduction of the
hydroxyls of ZnO; (iii) the enhanced specific surface area of GO/ZnO provides a favorable reaction site
and higher lipase loading amount for catalysis. In addition, the solvent may cause the leaching of the
enzyme, responsible of the lower activity in the recycling process. Interestingly, a slightly fluctuation
of activity in the three obtained immobilized lipase was observed, which might be because the activity
is influenced provisionally due to partial lipase present inside the layers within the curly GO sheets
during the reaction [3].
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Figure 6. Reusability of the immobilized lipase. Reaction conditions: 30 mg GO/ZnO@CRL, 1 mL 0.5%
p-NPP ethanol solution (w:v), 1 mL 0.1 M pH 7.0 phosphate buffer, 37 ◦C, 30 min. The biocatalyst was
separated by centrifugation and the reusability of the immobilized preparation was monitored for 14
successive cycles. The activity determined on the first cycle was taken as the control (100%).

3. Materials and Methods

3.1. Materials

Graphene flakes were purchased from Sigma-Aldrich (St. Louis, MO, USA), and used without
further purification. Candida rugosa lipase (lyophilized powder, Type VII, 700 U/mg solid) and
p-nitrophenylpalmitate (p-NPP) were also purchased from Sigma-Aldrich. Phosphate buffer solution
(PBS, 0.1 M, pH = 7.0), which was prepared by mixing standard stock solution of 0.1 M KH2PO4 and
0.1 M K2HPO4, was used as the supporting electrolyte. Unless otherwise stated, reagents were of
analytical grade and used as received.

3.2. Preparation of GO

Graphene oxide (GO) was prepared using a modified Hummer method [22]. Graphite flakes
(0.6 g), and NaNO3 (3.0 g) were mixed with an ice-water bath, then H2SO4 (120 mL) and KMnO4

(16.0 g) was added successively and the mixture stirred slowly for 2 h. After the reaction, the flask
was placed in a thermostatted water bath, and stirred at 35 ◦C for 30 min. Then the mixture was
cooled down in ice-water bath and deionized water was added gradually. Then, one more time, the
flask was put into the thermostatted water bath, and stirred for 20 min at 98 ◦C. The mixture was
allowed to cool down to room temperature. A bright yellow solution was obtained after H2O2 (250 mL,
30%) was added, the precipitate was collected by centrifugation and washed with dilute hydrochloric
acid. Finally, the precipitate was washed with double distilled water until the pH of the supernatant
was neutral.

3.3. Synthesis of ZnO and GO/ZnO Materials

The GO/ZnO composites were prepared by a simple hydrothermal method. Firstly, GO (0.5 g) was
added to distilled water (50 mL) to form a homogeneous dispersion, and then Zn(CH3COO)2·2H2O
(0.578 g) was added. The mixture was sonicated for 1 h, and then NaOH (1.053 g), ethylene glycol
(10.53 mL) and sodium citrate (5.0 g) were added and stirred quickly. After stirring for 1 h, the mixture
was transferred into a Teflon-lined stainless steel autoclave and reacted at 100 ◦C for 12 h. The obtained
samples were thoroughly washed with ethanol and water and dried in a vacuum oven at 60 ◦C to
obtain GO/ZnO materials. For the synthesis of nanostructured ZnO, the solution method was used,
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wherein Zn(CH3COO)2·2H2O (8.78 g) was added to a 4 M aqueous solution of sodium hydroxide,
stirred well and refluxed at 90 ◦C for 1 h. After refluxing, the precipitate (a white powder) was
neutralized with methanol and dried at room temperature.

3.4. Immobilization of Lipase

The obtained GO/ZnO, ZnO particles and GO were dispersed in lipase solution, respectively,
and the three mixed solution was incubated at 37 ◦C in a shaker operating at 160 rpm for 3 h.
The three mixture was washed with phosphate buffer (0.1 M, pH = 7.0) three times and then freeze
dried in a vacuum chamber. The three obtained immobilized lipases were stored at 4 ◦C until used.
The influences of initial concentration of CRL solution on efficiency of protein loading was explored
by contacting GO/ZnO carrier (50 mg) with 1–20 mg/mL of CRL solution with different initial
concentrations at a fixed temperature of 37 ◦C and pH 7.0 for 3 h.

3.5. Lipase Activity Assay

The protein concentration was determined by the Bradford method, using BSA as the standard.
The experimental result showed that the free Candida rugosa lipase solution contained 0.062 mg
of protein per mL. The amount of immobilized lipase was calculated by detecting the amount of
un-immobilized lipase. The activities of the free and immobilized lipases were measured by the
hydrolysis of p-NPP in 0.1 M PBS at pH 7.0 and 37 ◦C (ε = 1805 M−1 cm−1 under these conditions) for
5 min under 160 rpm. The concentration of the p-nitrophenol (p-NP) hydrolysis product was measured
using a spectrophotometric method at 410 nm. The blank of hydrolysis of p-NPP under similar
conditions without protein was also measured and the relative results are shown in Supplementary
Materials. One unit of activity (U) was defined as the amount of enzyme that hydrolyzes 1 µmol of
p-NPP per minute under the conditions described previously.

The effect of temperature and pH on the activity were investigated by incubating the free and
immobilized lipase at different temperatures and pHs for 30 min, respectively. Thermal stability assays
were studied by measuring the residual activities of the lipase after incubation from 0 h to 3 h at
50 ◦C [40]. The reusability of the immobilized lipase was determined by the following procedure:
30 mg of immobilized lipase was used for hydrolysis of p-NPP solution in phosphate buffer for
30 min at 37 ◦C under mild stirring (90 rpm). After each batch reaction, the immobilized lipase
was washed three times with absolute ethanol in order to remove the product, p-NP, and dried with
a nitrogen purge. Four cycles were performed during one day, and the immobilized lipase was
stored at room temperature overnight. The lipase activity was measured as the above description.
Similar to the previous reports [43,44], both of the free and immobilization lipase remain active during
testing procedure.

3.6. Characterization

The X-ray diffraction (XRD) spectra were collected using a D8 ADVANCE X-ray diffractometer
(Bruker, Karlsruhe, Germany). The morphological images of the products were obtained on a SU8010
field emission scanning electron microscope (Hitachi, Tokyo, Japan). A TENSOR27 instrument (Bruker,
Karlsruhe, Germany) were used to record the Fourier transform infrared spectroscopy (FTIR) spectra.
The thermal stability of samples was studied with a thermogravimetry (TG) analyzer (TAQ50, Netzsch,
Selb, Germany) at a heating rate of 50 ◦C min−1 in a nitrogen atmosphere. XPS analysis of the
surface was conducted with a PHI Quantera II X-ray photoelectron spectroscope (ULVAC-PHI, Japan)
equipped with an Al Kα X-ray radiation source.

4. Conclusions

In summary, three support materials—GO, ZnO and GO/ZnO—were prepared and relevant
characterization was carried out to systematically study their influence on the performance of lipase
immobilization. Candida rugosa lipase (CRL) was immobilized on the supports via physical absorption
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with a maximum protein loading amount of 73.52 mg·g−1. All the performance features of the
immobilized CRL are enhanced, while GO/ZnO supported materials exhibit superior performance
than free CRL. The high specific surface area and excellent mechanical properties of the supports
facilitate the ordering of catalytic reactions and the long-term operational stability and thermal stability
of lipase. Free CRL, GO@CRL and ZnO@CRL lost 64%, 62% and 41% of their initial activity, respectively,
within 30 min at 50 ◦C, while GO/ZnO@CRL still maintained 63% of its initial activity even after
180 min at 50 ◦C. Furthermore, the GO/ZnO@CRL shows excellent recycling performance, whereby
90% of the original activity is maintained after 14 reuse cycles. Based on the results obtained from this
study, we propose that GO/ZnO@CRL is a promising biocatalyst for practical applications.

Supplementary Materials: Supplementary materials are available online.
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