SUPPORTING INFORMATION

Dereplication-guided Isolation of New Phenylpropanoidsubstituted Diglycosides from *Cistanche salsa* and Their Inhibitory Activity on NO Production in Macrophage

Jongmin Ahn¹, Hee-Sung Chae², Young-Won Chin² and Jinwoong Kim^{1,*}

- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
- ² College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Gyeonggi-do 10326, Republic of Korea
- * Correspondence: jwkim@snu.ac.kr (J. Kim); Tel.: +82-2-880-7853

No.	Content	Page
Figure S1-1	The HRESIMS of 5 .	3
Figure S1-2	The ¹ H NMR (800 MHz) spectrum of 5 in DMSO- d_6	4
Figure S1-3	The ¹³ C NMR (200 MHz) spectrum of 5 in DMSO- d_6	5
Figure S1-4	The HSQC spectrum of 5 in DMSO- d_6	6
Figure S1-5	The ¹ H- ¹ H COSY spectrum of 5 in DMSO- d_6	7
Figure S1-6	The HMBC spectrum of 5 in DMSO- d_6	8
Figure S1-7	The $^{1}\text{H}-^{1}\text{H}$ NOESY spectrum of 5 in DMSO- d_{6}	9
Figure S1-8	The UV spectrum of 5	10
Figure S2-1	The HRESIMS of 6.	11
Figure S2-2	The ¹ H NMR (500 MHz) spectrum of 6 in DMSO- d_6	12
Figure S2-3	The ¹³ C NMR (125 MHz) spectrum of 6 in DMSO- d_6	13
Figure S2-4	The HSQC spectrum of 6 in DMSO- d_6	14
Figure S2-5	The $^{1}\text{H}-^{1}\text{H}$ COSY spectrum of 6 in DMSO- d_{6}	15
Figure S2-6	The HMBC spectrum of 6 in DMSO- d_6	16
Figure S2-7	The UV spectrum of 6	17
Figure S3-1	The HRESIMS of 12.	18
Figure S3-2	The ¹ H NMR (800 MHz) spectrum of 12 in DMSO- d_6	19
Figure S3-3	The ¹³ C NMR (200 MHz) spectrum of 12 in DMSO- d_6	20
Figure S3-4	The HSQC spectrum of 12 in DMSO- d_6	21
Figure S3-5	The ¹ H- ¹ H COSY spectrum of 12 in DMSO- d_6	22
Figure S3-6	The HMBC spectrum of 12 in DMSO- d_6	23
Figure S3-7	The UV spectrum of 12	24
Figure S4-1	The HRESIMS of 17.	25
Figure S4-2	The ¹ H NMR (300 MHz) spectrum of 17 in DMSO- d_6	26
Figure S4-3	The ¹³ C NMR (75 MHz) spectrum of 17 in DMSO- d_6	27
Figure S4-4	The HSQC spectrum of 17 in DMSO- d_6	28
Figure S4-5	The $^{1}\text{H}-^{1}\text{H}$ COSY spectrum of 17 in DMSO- d_{6}	29
Figure S4-6	The HMBC spectrum of 17 in DMSO- d_6	30
Figure S4-7	The UV spectrum of 17	31
Figure S5-1	The HRESIMS of 18 .	32
Figure S5-2	The ¹ H NMR (800 MHz) spectrum of 18 in DMSO- d_6	33
Figure S5-3	The ¹³ C NMR (200 MHz) spectrum of 18 in DMSO- d_6	34
Figure S5-4	The HSQC spectrum of 18 in DMSO- d_6	35
Figure S5-5	The ¹ H- ¹ H COSY spectrum of 18 in DMSO- d_6	36
Figure S5-6	The HMBC spectrum of 18 in DMSO- d_6	37
Figure S5-7	The UV spectrum of 18	38
Figure S6-1	Effects of compounds on the NO production and cell viability of	39
	RAW264.7 cells.	
Figure S6-2	Dose-response curves of compounds 5, 11, 13 and 18	40

List of Supplementary material :

Figure S 1- 1. The HRESIMS of **5.**

Formula (M)		Ion Formula	Mass (MFG)	m/z (Calc)	Diff (ppm)
	C28 H39 Na O14	C28 H39 Na2 O14	622.2238	645.213	-2.62
	C30 H38 O14	C30 H38 Na O14	622.2262	645.2154	1.25
	C46 H31 Na O	C46 H31 Na2 O	622.2273	645.2165	3.02
	C21 H43 Na O19	C21 H43 Na2 O19	622.2296	645.2188	6.82
	C48 H30 O	C48 H30 Na O	622.2297	645.2189	6.89

Figure S 1- 2. The ¹H NMR (800 MHz) spectrum of 5 in DMSO- d_6

Figure S 1- 3 The 13 C NMR (200 MHz) spectrum of 5 in DMSO- d_6

Figure S 1- 5. The COSY spectrum of **5** in DMSO- d_6

Figure S 1- 6. The HMBC spectrum of **5** in DMSO- d_6

Figure S 1- 7. The NOESY spectrum of **5** in DMSO-*d*₆

Figure S 1- 8. The UV spectrum of **5**

Counts vs	Mass-to-Charge	(m/z)
------------------	----------------	-------

	Formula (M)	Ion Formula	Mass (MFG)	m/z (Calc)	Diff (ppm)
	C24 H37 Na O13	C24 H37 Na2 O13	556.2132	579.2024	-5.38
•	C26 H36 O13	C26 H36 Na O13	556.2156	579.2048	-1.06
	C42 H29 Na	C42 H29 Na2	556.2167	579.2059	0.93
	C44 H28	C44 H28 Na	556.2191	579.2083	5.25

Figure S 2- 2. The ¹H NMR (500 MHz) spectrum of **6** in DMSO- d_6

Figure S 2- 3. The 13 C NMR (125 MHz) spectrum of **6** in DMSO- d_6

Figure S 2- 4. The HSQC spectrum of 6 in DMSO-*d*₆

Figure S 2- 5. The COSY spectrum of 6 in DMSO-*d*₆

Figure S 2- 6. The HMBC spectrum of **6** in DMSO- d_6

Figure S 2- 7. The UV spectrum of 6

Figure S 3- 1. The HRESIMS of **12**.

Formula (M)		Ion Formula	Mass (MFG)	m/z (Calc)	Diff (ppm)
	C24 H39 Na O13	C24 H39 Na2 O13	558.2288	581.2181	-5.81
•	C26 H38 O13	C26 H38 Na O13	558.2312	581.2205	-1.5
	C42 H31 Na	C42 H31 Na2	558.2323	581.2216	0.48
	C44 H30	C44 H30 Na	558.2348	581.224	4.79

Figure S 3- 2. The ¹H NMR (800 MHz) spectrum of **12** in DMSO- d_6

Figure S 3- 3. The 13 C NMR (200 MHz) spectrum of 12 in DMSO- d_6

Figure S 3- 4. The HSQC spectrum of 12 in DMSO-*d*₆

Figure S 3- 6. The HMBC spectrum of 12 in DMSO-*d*₆

Figure S 3-7. The UV spectrum of 12

Formula (M)		Ion Formula	Mass (MFG)	m/z (Calc)	Diff (ppm) /
	C29 H39 Na O14	C29 H39 Na2 O14	634.2238	657.213	-2.73
•	C31 H38 O14	C31 H38 Na O14	634.2262	657.2154	1.07
	C47 H31 Na O	C47 H31 Na2 O	634.2273	657.2165	2.81
	C22 H43 Na O19	C22 H43 Na2 O19	634.2296	657.2188	6.54
	C49 H30 O	C49 H30 Na O	634.2297	657.2189	6.6

Figure S 4- 2. The ¹H NMR (300 MHz) spectrum of 17 in DMSO- d_6

Figure S 4- 3. The 13 C NMR (75 MHz) spectrum of 17 in DMSO- d_6

Figure S 4- 4. The HSQC spectrum of 17 in DMSO-*d*₆

Figure S 4- 5. The COSY spectrum of 17 in DMSO-*d*₆

Figure S 4- 6. The HMBC spectrum of 17 in DMSO- d_6

Figure S 4- 7. The UV spectrum of 17

Figure S 5-1. The HRESIMS of **18**.

	Formula (M)	Ion Formula	Mass (MFG)	m/z (Calc)	Diff (ppm)
	C29 H39 Na O14	C29 H39 Na2 O14	634.2238	657.213	-5.72
Þ	C31 H38 O14	C31 H38 Na O14	634.2262	657.2154	-1.93
	C47 H31 Na O	C47 H31 Na2 O	634.2273	657.2165	-0.19
	C22 H43 Na O19	C22 H43 Na2 O19	634.2296	657.2188	3.54
	C49 H30 O	C49 H30 Na O	634.2297	657.2189	3.61
	C24 H42 O19	C24 H42 Na O19	634.232	657.2213	7.33

Figure S 5- 2. The ¹H NMR (800 MHz) spectrum of 18 in DMSO- d_6

Figure S 5- 3. The 13 C NMR (200 MHz) spectrum of 18 in DMSO- d_6

Figure S 5- 4. The HSQC NMR spectrum of **18** in DMSO-*d*₆

Figure S 5- 5. The COSY NMR spectrum of 18 in DMSO-*d*₆

Figure S 5-7. The UV spectrum of 18

Figure S6- 1. Effects of compounds on the NO production and cell viability of RAW 264.7 cells.

(A) Cells cultured in phenol red- and serum-free media were pretreated with each compound for 30 min and then stimulated with 500 ng/ml final concentration LPS for 24 h. In the culture medium, NO production was measured based on the Griess reaction, as described in the Materials and Methods section. * significant difference from LPS cells, p < 0.05. (B) Cells grown in serum-free media were treated with 50 µM of each compound for 24 h, and cell viability was assessed by MTT assay, as described in the Materials and Methods section. Results of independent experiments were averaged and are shown as the percentage of cell viability compared with the viability of normal control cells. Results of independent experiments were averaged and are shown as the percentage of cell viability compared with the viability of solvent control cells.

Figure S6- 2. Dose-response curves of compounds 5, 11, 13 and 18

