Supplementary material

Characterization of Danaparoid complex extractive drug by an orthogonal analytical approach

Cristina Gardini ¹, Elena Urso ², Marco Guerrini ², René van Herpen ³, Pauline de Wit ³ and Annamaria Naggi ^{2,*}

- ¹ Centro Alta Tecnologia Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni S.r.l., via G. Colombo 81, Milan, 20133, Italy; <u>gardini@cat-ronzoni.it</u> (C.G.)
- ² Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni S.r.l., via G. Colombo 81, Milan, 20133, Italy; <u>urso@ronzoni.it</u> (E.U.); <u>guerrini@ronzoni.it</u> (M.G.); <u>naggi@ronzoni.it</u> (A.N.)
- ³ Aspen Oss B.V., Kloosterstraat 6, 5349 AB Oss, Netherlands; <u>rvanherpen@nl.aspenpharma.com</u> (R.v.H.); <u>pdewit@nl.aspenpharma.com</u> (P.d.W.)
- * Correspondence: naggi@ronzoni.it; Tel.: +39 02 70641626

Contents:

Table S1: Abbreviations of assigned fragments.

Table S2: Results summary table regarding CS/DS fractions: assignment of main signals.

Table S3: Comparison of the main mass signals between Danaparoid CAT272 and its HS fraction.

Figure S1: ¹H NMR spectrum of Danaparoid samples: expansion of the acetyl region.

Figure S2: LC-MS chromatograms of a Danaparoid sample CAT277, the LC method was composed by an initial isocratic step followed by linear gradient: (a) Total Ion Chromatogram (TIC); (b) Base Peak Chromatogram (BPC).

Figure S3: LC-MS chromatograms: (a) repeatability of CAT277; (b) interday precision of CAT277; (c) interday precision of CAT271.

Figure S4: Acetyl region of proton spectra: comparison between (a) one Danaparoid sample CAT277; (b) its ChABC digestion product CAT469.

Figure S5: MS/MS spectrum of mass signal at m/z 466.0 (z -2) attributed to Δ U4,2,2(T1) at the Collision Energy (CE) of 25 eV and the assignment of fragments.

Figure S6: MS/MS spectrum of mass signal at m/z 524.0 (z -2) attributed to Δ U5,2,2(Ra) at the Collision Energy (CE) of 25 eV and the assignment of fragments.

Figure S7(a): Anomeric region of SEC fractions A-F of one Danaparoid sample (CAT272).

Figure S7(b): Anomeric region of SEC fractions G-N of one Danaparoid sample (CAT272).

 Table S1. Abbreviations of assigned fragments.

Residue	Abbreviation
H2/C2 N-sulfated glucosamine	ANS
H2/C2 3-O,N-sulfated glucosamine	A2*
H2/C2 N-acetyl glucosamine	ANAc
H6/C6 6-O-unsulfated glucosamine	A6OH
H6/C6 6-O-sulfated glucosamine	A6S
H1/C1 N-sulfated glucosamine <i>linked to</i> β-D-glucuronic acid	ANS-(G)
H1/C1 3-O,N-sulfated glucosamine	A1*
H1/C1 N-sulfated glucosamine <i>linked to</i> 2-O-sulfo α -L-iduronic	Atot
acid+ H1/C1 N-acetyl glucosamine <i>linked to</i> β-D-glucuronic acid	Alot
H1/C1 N-sulfated glucosamine <i>linked to</i> α -L-iduronic acid	ANS-(I)
H1/C1 N-acetyl glucosamine <i>linked to</i> α -L-iduronic acid	ANAc-(Ix)
H1/C1 reducing N-sulfated α -D-glucosamine + H1/C1 α -D-glucosamine	ANSαred+ANH2
H1/C1 reducing N-acetyl α -D- glucosamine	ANAcared
H1/C1 reducing N-sulfated β -D-glucosamine	Aβred
H1/C1 2-O-sulfo α -L-iduronic acid	I2S
H1/C1 α -L-iduronic acid <i>linked to</i> H6/C6 N sulfate /acetylated 6- O-sulfated α -D-glucosamine	I-(A6S)
H1/C1 α -L-iduronic acid <i>linked to</i> H6/C6 of N sulfate /acetylated	I-(A6OH)
H1/C1 B-D-glucuropic acid <i>linked</i> to N-sulfated a-D-	
glucosamine	G-(ANS)
H1/C1 β -D-glucuronic acid <i>linked to</i> N-acetvl α -D-glucosamine	G-(ANAc)
Oxidized N-acetylglucosamine	ANAc-ox
H1/C1 β-D-glucuronic acid <i>linked to</i> 4-O-sulfo-N-	
acetylgalactosamine	G-(GalNAc,4S)
H1/C1 β-D-glucuronic acid <i>linked to</i> 6-O-sulfo-N- acetylgalactosamine	G-(GalNAc,6S)
H1/C1 α -L-iduronic acid <i>linked to</i> β -N-acetylgalactosamine	I DS
H1/C1 2-O-sulfo α -L-iduronic acid <i>linked to</i> β-N-	I2S_DS
$H^2/C^2 \beta$ N acetularlactosamine (DS+CS)	CalNAc
H1/C1 $\alpha_{\rm L}$ -iduronic acid <i>linked</i> to Oxidized N-	GainAC
acetylglucosamine	I-(ANAcox)
Oxidized N-acetyl galactosamine	GalNAc-ox
Oxidized HS ox1	ox1
Oxidizex HS ox2	ox2
Non reducing N- acetyl galactosamine	GalNAc_NR

Peak	Experimental		Assigned	Peak	Experimental		Assigned
N.	m/z (z)	MW	composition	N.	m/z (z)	MW	composition
1	903.7(-2)	1809.4	-	14	1429.7(-3)	4292.1	A16,8,8(Ra)
	634.6(-2)	1271.2	A6,2,3(Ra)	15	1587.1(-3)	4764.3	A17,9,9(T1)
2	991.7(-2)	1985.4	-	16	1625.8(-3)	4880.4	A18,9,9(Ra)
3	910.7(-2)	1823.4	A7,4,4(T1)	17	1783.2(-3)	5352.6	A19,10,10(T1)
4	968.7(-2)	1939.4	A8,4,4(Ra)	18	1821.9(-3)	5468.7	A20,10,10(Ra)
-	1056.7(-2)	2115.4	-	19	1451.9(-4)	5811.6	A21,11,11(T1)
5	1285.8(-2)	2573.6	-	20	1448.7(-4)	5798.8	A22,11,11(Ra)
6	1204.8(-2)	2411.6	A9,5,5(T1)	21	1598.9(-4)	6399.6	A23,12,12(T1)
7	1262.8(-2)	2527.6	A10,5,5(Ra)	22	1628.2(-4)	6516.8	A24,12,12(Ra)
8	1415.4(-2)	2832.8	-	23	1746.5(-4)	6990	A25,13,13(T1)
9	1563.5(-2)	3129.0	A11,6,6(T1)	24	1775.3(-4)	7105.2	A26,13,13(Ra)
10	951.5(-3)	2857.5	-	25	1893.6(-4)	7578.4	A27,14,14(T1)
11	1195.0(-3)	3588.0	A13,7,7(T1)	26	1922.6(-4)	7694.4	A28,14,14(Ra)
12	1233.7(-3)	3704.1	A14,7,7(Ra)	27	2069.6(-4)	8282.4	A30,15,15(Ra)
13	1304.9(-3)	3917.7	-		· · ·		

Table S2. Results summary table regarding CS/DS fractions: assignment of main signals.

Table S3. Comparison of the main mass signals between Danaparoid CAT272 and its HS fraction.

HS-Danaparoid			_	CAT272		
Peak	Experimental	Assigned	_	Deel. N	Experimental	Assigned
N.	m/z	composition	_	reak IN.	m/z	composition
1	568.6062	A5,2,3*	_	-		
2	647.6176	∆U6,2,3*		-		
3	648.5645	A5,4,3*		-		
4	695.5908	ΔU6,3,3(T1)*		а	625.5269	A5,5,0
5	727.5733	∆U6,4,3*		-		
6	713.6211	∆U7,2,3(Ra)*		b	505.0112	U4,4,0
7	614.5498	A5,4,1(T1)		с	614.5497	A5,4,1(T1)
8	702.5671	U6,4,1(T1)		d	702.5654	U6,4,1(T1)
9	654.529	A5,5,1(T1)		e	654.5277	A5,5,1(T1)
10	742.5434	U6,5,1(T1)		f	742.5419	U6,5,1(T1)
11	967.6087	A7,7,1(T1)		g	967.6096	A7,7,1(T1)
12	1055.6233	U8,7,1(T1)		h	1055.627	U8,7,1(T1)
13	1072.1597	A7,8,1(T1)		i	1072.1602	A7,8,1(T1)
14	1160.1763	U8,8,1(T1)		1	1160.1752	U8,8,1(T1)
15	1176.7109	A7,9,1(T1)		m	1176.7131	A7,9,1(T1)

* These components could be CS/DS fragments not completely separated from the HS fraction.

Figure S1. 1 H NMR spectrum of a Danaparoid samples: expansion of the acetyl region.

Figure S2. LC-MS chromatograms of a Danaparoid sample CAT277, the LC method was composed by an initial isocratic step followed by linear gradient: (a) Total Ion Chromatogram (TIC); (b) Base Peak Chromatogram (BPC).

Figure S3. LC-MS chromatograms: (a) repeatability of CAT277; (b) interday precision of CAT277; (c) interday precision of CAT271.

2.2 2.1 2.0 1.9 [bbm] Figure S4. Acetyl region of proton spectra: comparison between (**a**) one Danaparoid sample CAT277; (**b**) its ChABC digestion product CAT469.

Figure S5. MS/MS spectrum of mass signal at m/z 466.0 (z -2) attributed to Δ U4,2,2(T1) at the Collision Energy (CE) of 25 eV and the assignment of fragments.

Figure S6. MS/MS spectrum of mass signal at m/z 524.0 (z -2) attributed to Δ U5,2,2(Ra) at the Collision Energy (CE) of 25 eV and the assignment of fragments.

Figure S7(a). Anomeric region of SEC fractions A-F of one Danaparoid sample (CAT272).

Figure S7(b). Anomeric region of SEC fractions G-N of one Danaparoid sample (CAT272).