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Abstract: We have developed a new method to prepare 4-acetoxy substituted 5(4H)-oxazolones
by direct oxidation of N-benzoyl amino-acids using hypervalent iodine. The method is efficient,
economical and easy to perform for the synthesis of quaternary substituted amino acid derivatives.
We used online FTIR monitoring techniques to analyze the reaction, and gave a plausible
reaction mechanism.
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1. Introduction

2-Substituted amino acids and their derivatives are known as structural elements with important
physiology [1–3]. As an important synthetic intermediate of 2-substituted amino acids, 2-acetoxy-2-amino
acids have attracted tremendous interest in organic synthesis [4]. However, to date, chemists have
only reported a few methods to synthesize these amino acids, such as oxidating the protected
cystinylserine with Pb(OAc)4 to the 2-acetoxy compound [5–7], using 2-benzamidotrifluorolactic
acid as starting materials to yield 4-acetoxy-4-trifluoromethyl-2-phenyloxazol-5(4H)-one [8], treating
oxazolone with mercuric acetate to form the diacetyl compound [9], transforming 2-acylaminoacrylate
with N-chlorosuccinimide/HCl/LiOAc in acetic acid to the 2-acetoxy-2-amine acid derivatives [2],
converting β-lactams with ruthenium trichloride in the presence of acetaldehyde and acetic acid
with molecular oxygen into the corresponding 4-acyloxy β-lactams [10], and using anodic oxidation
of 2-ethoxycarbonyl-2-acetamidoacetic acid derivatives, followed by saponification of the one ester
groups to 2-alkoxy-2-amino acids and 2-acetoxy-2-amino acids [11]. There are some problems in these
methods: 1. It is difficult to prepare the raw materials; 2. The use of metal reagents is expensive and
not environmentally-friendly.

Metal-free reagents such as hypervalent iodine compounds have received much attention for
low toxicity, mild reaction condition, easy handling and special reactivity compared with heavy
metal reagents in organic synthesis reactions. Furthermore, hypervalent iodine reagents have been
widely used in various oxidations, such as oxidative dearomatized reactions [12,13], oxidative
coupling reactions [14,15], oxidative halogenation reactions [16–18], oxidative cyclization reactions [19],
oxidative addition [20,21], oxidative amination reaction [22], and so on.

Boto synthesized 2-acetoxy glycine through an unstable α-iodoglycine intermediate, which was
then substituted by acetate ions from the reagent PhI(OAc)2 (Scheme 1a) [23]. Recently, Xu’s group
developed a cobalt-catalyzed decarboxylative C−O bond-forming reaction using hypervalent iodine
as oxidizing agent (Scheme 1a). However, these methods involve deiodination or decarboxylative
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process, which can only give tertiary substituted carbon atoms. Herein, we wish to report a direct
oxidation of α-C–H bond of N-benzoyl amino-acid using hypervalent iodine (Scheme 1b). With this
method, a new synthesis of 4-acetoxy substituted 5(4H)-oxazolones was carried out. There are three
advantages in our method: 1. Only hypervalent iodine oxidizing agent was used, which was cheap
and easy to get; 2. Our method can directly oxidize the α-C–H bond of amino acid derivatives, which
does not involve deiodination or decarboxylative process; 3. With this method, quaternary substituted
amino acid derivatives could be prepared.
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Scheme 1. Hypervalent iodine-mediated oxidation of 2-amino acids.

2. Results

Reaction of N-benzoyl isoleucine (1a) with 1.0 equiv PhI(OCOCF3)2 in acetic anhydride and
toluene (v/v = 4:1) at 60 ◦C for 1.5 h gave 4-acetoxy substituted 5(4H)-oxazolone (1b) as oxidative
product in 40% yield (dr = 1:1,Table 1). We found that 1.5 equiv of PhI(OCOCF3)2 give much better
yield, but the increase of PhI(OCOCF3)2 to 3.0 equivalent afford lower yield (entry 2–3). Replacement of
PhI(OCOCF3)2 with PhI(OAc)2 or PhI(OPiv)2 led to the reducing of the yield, and the latter gave only
19% yield (entry 5–6). In the absence of PhI(OCOCF3)2, only oxazolones (1c) was afforded, which can
give desired product 1b by the oxidative annulation with addition of PhI(OCOCF3)2 (see supporting
Information). AgF2 gave only coupling product without desired product. The temperature also has
great influence on this oxidation reaction, which gave lower yields at 30 ◦C and 90 ◦C (entry 7–8).
Further assessment of the solvent effect indicated that toluene was the best solvent for this reaction,
providing higher yield than other commonly used solvents such as ACN, DCE, Acetone and THF
(entry 10–13).

Table 1. Direct α-oxidation of N-benzoyl amino-acid using hypervalent iodine.
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Table 1. Cont.

Entry Oxidant (equiv) Temp (◦C) Solvent Yield (%) a

8 PhI(OCOCF3)2 (1.5) 30 toluene 38
9 PhI(OCOCF3)2 (1.5) 90 toluene 43
10 PhI(OCOCF3)2 (1.5) 60 ACN 50
11 PhI(OCOCF3)2 (1.5) 60 DCE 43
12 PhI(OCOCF3)2 (1.5) 60 Acetone 8
13 PhI(OCOCF3)2 (1.5) 60 THF no

a Yields were based on 1H NMR analysis of reaction mixture after 1.5 h using (2E)-2-Butenedioic acid as standard;
b Isolated yields.

With the optional conditions in hand, we then examined the substrate scope of N-benzoyl amino
acid substrates (Table 2). Both α-alkyl and benzyl substituted N-benzoyl amino-acid (2a–10a) gave
desired 4-acetoxyl 5(4H)-oxazolones (2b–10b) in moderated yields with some coupling products in
0–20% yields (except for 1a, see supporting information). Beside coupling products, α-alkyl substrates
3a and 5a also gave rearrangement product N-(1-oxo-alkyl)-benzamide in about 20% yields, while
substituted N-benzoyl amino-acids (6a–10a) gave some elimination products in about 10–30% yields
(see supporting Information). In these conditions, ether and ester groups were very tolerant, as shown
in entry 8–9.

Table 2. Substrate scope of N-benzoyl amino-acids.

Entry Substrates Products (Isolated Yield) Entry Substrates Products (Isolated Yield)

1
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3. Discussion 

In order to study the reaction kinetics, we used online FTIR techniques (fourier-transform 
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spectra, React IR 15) to monitor the reaction [24–26]. At first, we collected the FTIR data of raw
material 1a, the intermediate 1c, PhI(OCOCF3)2, acetic acid, trifluoroacetic acid and product 1b
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in the solvent (anhydrous toluene:acetic anhydride = 4:1) respectively. To prove the formation of
intermediate 1c before the oxidative annulation, we added the PhI(OCOCF3)2 in the reaction system
10 min after raw material 1a and acetic anhydride were heated at 60 ◦C. In the experiments, ReactIR
was continuously used to acquire online IR spectra. The ConcIRT analysis and 3D surface plot tracked
changes in absorbance profiles that occur over time of the intermediate 1c, PhI(OCOCF3)2, acetic acid,
trifluoroacetic acid, and product 1b, which were shown in Figures 1 and 2.
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Figure 2. In situ reaction of IR, 3D surface plot of oxidative reaction.

At first, the peak height at 1822 cm−1 (C=O bond, pale red line) increased due to the producing of
the intermediate 1c, and it decreased when we add the oxidant PhI(OCOCF3)2 to the reaction system.
The peak at 1719 cm−1 (C=O bond, green line) increased due to the formation of acetic acid, and it
reduced because of the ligand exchange with PhI(OCOCF3)2. The peak at 1792 cm−1 (C=O bond,
wathet blue line) increased, showing the formation of trifluoroacetic acid. At the same time, the peak
at 1078 cm−1 (C–O bond, brown line) and 1862 cm−1 (C=O bond) began to increase, indicating the
formation of the product 1b. Moreover, the variation trend of ConcIRT showed that the complete
reaction needed about 1.5 h (As shown in the Figure 1).
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On the basis of the above experiments, a plausible reaction mechanism was proposed as shown
in Scheme 2 [27]. At first, the raw material 1a was converted to intermediate 1c [28], which was then
transformed to the enoliazted intermediate 1d. After the ligand exchange of PhI(OCOCF3)2 with
AcOH, the I–O bond of 1e was formed accompanied by the leave of CF3COOH. Then the AcO− added
to the double bond accompanied by the elimination of PhI, the final product 1b was afforded.
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