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Abstract: Asymmetric synthesis of naturally occurring diverse ring systems is an ongoing and
challenging research topic. A large variety of remarkable reactions utilizing chiral substrates,
auxiliaries, reagents, and catalysts have been intensively investigated. This review specifically
describes recent advances in successful asymmetric cyclization reactions to generate cyclic
architectures of various natural products in a substrate-controlled manner.
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1. Introduction

Asymmetric construction of structurally diverse ring architectures has always been considered a
formidable task in natural product synthesis. Various natural sources have provided an enormous
number of enantiomerically enriched carbo- and heterocycles [1–5]. Their ring systems include
monocycles, such as small-sized, medium-sized, and large-sized rings and polycycles, such as spiro-,
fused-, bridged-, and ansa-rings. These intriguing structures have attracted considerable attention
from the organic synthesis communities. Many synthetic chemists have explored fascinating tactics
to construct chiral ring frameworks using chiral substrates, auxiliaries, reagents, and catalysts [6–8].
In particular the substrate-controlled cyclization strategy, which utilizes the nature of the built-in chiral
environment in the starting material, is a very powerful method. In addition, this strategy is more
environmentally and economically attractive than using chiral auxiliaries or catalysts [9,10].

The aim of this review is to highlight outstanding achievements in the construction of
enantioenriched rings in the field of total synthesis from 2010 to April 2017. Selected original articles
in this review contain various substrate-controlled cyclization strategies. The cyclization reactions
are categorized by reaction type, such as anionic, cationic, transition metal-mediated, pericyclic, and
radical reactions.

2. Anionic Cyclizations

Recently, a wide range of natural product syntheses via anionic cyclization in a
substrate-controlled manner have been reported. Carreira et al. accomplished the total synthesis of
(−)-dendrobine (8) [11], which was isolated from the ornamental orchid Dendrobium nobile Lindl [12,13].
To construct the core of 8, they utilized a special cascade sequence including enamine conjugate
addition and stereoselective protonation as shown in Scheme 1. Highly advanced precursor 2 was
readily prepared from ester 1 [14] in twelve steps. Treatment of 2 with N-methylbenzylamine followed
by exposure to H2 and Pd/C led to bicycle 7 in 68% yield. High diastereoselectivity was obtained
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by a substrate-controlled cascade process involving the conjugate addition of enamine 3, enamine
formation by proton loss of 4 and the convex protonation of enamine 5. This transformation allowed
the asymmetric formations of the important C–C bond and the desired pendant amine.
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N-Boc-indole-3-propenoate (9) and lithium N-benzyltrimethylsilylamide (10). Having successfully 
inserted two stereocenters onto 11, the three stereocenters of pentacyclic intermediate 16 were 
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Scheme 1. Total syntheses of (−)-dendrobine (8).

Another substrate-controlled asymmetric cyclization is summarized in Scheme 2 which depicts
the total synthesis reported by Tomioka et al. [15] of (−)-kopsinine (17), a Kopsia alkaloid isolated from
Kopsia longiflora Merr. in 1955 [16,17]. Key precursor 11 was smoothly formed via a high-yielding
process including the asymmetric one-pot [N+2+3] cyclization of tert-butyl N-Boc-indole-3-propenoate
(9) and lithium N-benzyltrimethylsilylamide (10). Having successfully inserted two stereocenters onto
11, the three stereocenters of pentacyclic intermediate 16 were generated in a substrate-controlled
manner. Mesylation of β-ketoester 11 and subsequent anionic cyclization of the resulting tetracycle 14
gave optically pure 16, presumably through transition states 12 and 15. The bridged ring of 17 was
later introduced by Diels-Alder cyclization.
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An elegant anionic polycyclization strategy of Deslongchamps et al. led to the total synthesis
of (+)-cassaine (23) as shown in Scheme 3 [18]. (+)-Cassaine was isolated from Erythrophleum
guineense in 1935 and reported as a nonsteroidal Na+-K+-ATPase inhibitor [19]. (+)-Carvone (18)
was selected as the starting building block to synthesize the pharmacologically interesting natural
product. The authors successfully prepared cyclization precursor 19 based on their previous synthetic
route [20]. With the asymmetric formation of the trans-decalin system of 19, the desired anionic
cyclization was performed using Nazarov reagent 20. Thus, treatment with cesium carbonate in EtOAc
gave rise to diastereomerically pure tricycle 22 via Michael adduct 21 in 62% yield. The newly created
stereocenters originated from the α-face attack of 20 toward 19, which was controlled by the steric
repulsion of the angular methyl group in the ring junction of 19. Synthesis of (+)-cassaine (23) was
completed through multiple chemical reactions.
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Stereoselective double Michael reactions have also been adopted for the construction of unique
ring systems. Shenvi et al. completed the impressive synthesis of (−)-jiadifenolide (31) [21], which is
one of the Illicium terpenes [22], as shown in Scheme 4. Key precursors butenolides 25 and 26 were
quickly synthesized through three- and two-step routes, respectively. The first intermolecular Michael
reaction of chiral butenolide 25 with achiral butenolide 26 in the presence of lithium diisopropylamide
(LDA) provided stable intermediate 28. The stereochemistry of the process derived from a chelated
transition state 27 and the newly created stereocenters of 28 were controlled by the chiral methyl group
of 25. Subsequent exposure of the resulting 28 to titanium(IV) isopropoxide and additional LDA finally
furnished ketolactone 30 via enolate 29 in 70% yield. The second intramolecular Michael reaction
enabled the construction of the entire skeleton of 31 in a substrate-controlled manner.
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3. Cationic Cyclizations

Cation-induced cyclization has been a powerful tool for controlling the stereochemistry of various
ring structures in natural product synthesis. The total synthesis of (+)-siebolidine A (37), which
is an alkaloid of club moss Lycopodium sieboldii [23], was firstly reported by Overman et al. [24,25].
This landmark synthesis was accomplished with a pinacol-terminated cyclization cascade as depicted
in Scheme 5. Cyclization precursor 33 was built from the readily available allylic lactone 32 [26,27]
in 9 steps. Initially, an increased cationic environment of gold alkyne species 34 enabled 1,6-enyne
cyclization. The subsequent pinacol shift of cyclized cationic intermediate 35 afforded the desired
cis-hydrindanone 36 as a single stereoisomer. The stereochemistry of enyne 33 was efficiently
reorganized in a substrate-controlled manner.
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Another interesting example of substrate-controlled cyclization is the total synthesis of
(−)-zampanolide (42) published by Ghosh et al. [28,29] (Scheme 6). (−)-Zampanolide was
initially separated from the marine sponge Fasciospongia rimosa and exhibited a potent microtubule-
stabilizing activity [30,31]. Synthesis of interesting macrolide 42 commenced from the known
ester 38, which was effectively prepared by the Noyori hydrogenation procedure [32]. Optically
active starting material 38 was converted to allylsilane 39 in three steps. With the desired
starting material 39 in hand, the authors carried out an oxidative Sakurai type cyclization
using 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) with mild Brønsted acid pyridinium
p-toluenesulfonate (PPTS). Cyclized product 41 was obtained diastereoselectively through the
Zimmerman-Traxler transition state 40. The cis-stereochemistry of tetrahydropyran ring 41 was
caused by the equatorial orientations of all substituents in 40. Having successfully assembled the core
ring, macrocycle 42 was successfully constructed via cross and ring-closing metatheses.
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Natural product clusianone is one of the polyprenylated polycyclic acylphloroglucinols (PPAPs)
possessing a structurally unique bicyclo[3.3.1]nonane-2,4,9-trione core [33]. A biomimetic cationic
cyclization was applied to construct the bicyclic template of (−)-clusianone (48) as shown in
Scheme 7 [34]. Porco Jr. et al. were interested in the synthesis and structure-activity relationship
of PPAP natural products and derivatives. Cyclization precursor 44 was accessible from starting
material 43 via an unprecedented alkylative dearomatization strategy. Thus, when optically active
44 was subjected to neat formic acid, a tertiary carbocation was initially formed, which led to the
intramolecular attack of the methyl enol ether to stereoselectively furnish the desired bicycle 47 in 72%
yield. The authors proposed the transition states 45 and 46 due to the observation of formate adduct
from ultrahigh performance liquid chromatography (UPLC) measurements. A final olefin metathesis
produced (−)-clusianone (48).
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As depicted in Scheme 8, another biomimetic cationic cyclization study was performed by
Takayama et al. [35]. Lycopodium alkaloids (+)-flabellidine (55) and (−)-lycodine (56) were reported from
Lycopodium complanatum in 1942 and Lycopodium annotinum in 1958, respectively [36,37]. The methyl
group of linear precursor 50 was diastereoselectively introduced by Hosomi-Sakurai allylation of
commercially available crotonamide 49 [38]. With linear substrate 50 in hand, the authors examined
the designed cationic cascade cyclization to form the tetracyclic backbone. Exposure of 50 in CH2Cl2
to an excess amount of (+)-camphorsulfonic acid (CSA) provided tetracycle 54 as the major product,
presumably through conjugate addition of ene-iminium intermediate 51 and olefin migration of 52,
Mannich-like reaction of 53. The diastereoselectivity was dominantly controlled by the stereocenter
of the methyl group. After protecting group manipulation a minor diastereomer of the cationic
cascade cyclization could be removed, and syntheses of (+)-flabellidine (55) and (−)-lycodine (56) were
completed by a chemoselective acetylation and selective IBX oxidation, respectively.
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More recently, a protecting-group-free total synthesis of (−)-lycopodine (63) was described
(Scheme 9). (−)-Lycopodine is one of the Lycopodium alkaloids and was originally isolated from
Lycopodium complanatum in 1881 [39]. To construct its polycyclic architecture, She et al. employed
an acid-promoted aza-Prins cyclization [40]. Cyclization substrate 58 was smoothly synthesized
from (R)-pulegone (57) via Wade’s enone synthesis, a one-pot amidation, and cyclization [41].
Alkyne-enamide 58 was subjected to a phosphoric acid-promoted cyclization and the desired product
62 was obtained in almost quantitative yield. Initially, enamine 58 was protonated stereoselectively
to furnish N-acyliminium 59. Subsequent intramolecular 6-exo-trig cyclization provided unstable
carbocation species 60, which was quickly transformed to enol 61 via the capture of water. Further
manipulation, including an intramolecular aldol cyclization, led to completion of the synthesis of
(−)-licopodine (63).
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natural products. The enantioselective total synthesis of (+)-isolysergol (69) [42], one of the biologically
important ergot alkaloids [43], was completed by Fujii and Ohno et al. The authors examined a special
palladium-catalyzed domino cyclization to build the ergot alkaloid backbone (Scheme 10). Allenic
amide 65, required for the cyclization, was prepared from commercially available 4-bromoindole (64).
Successful substrate-controlled cyclization of allene 65 in the presence of 5 mol % of Pd(PPh3)4 and
K2CO3 was achieved leading to the desired product 68 in 76% yield with high diastereoselectivity. After
oxidative addition, aminopalladation of the indolylpalladium halide proceeded via the conformation
66 to provide alkenylpalladium(II) intermediate 67. The stereochemistry of the ring junction in 68
ultimately derived from chiral allene 65.
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The nickel-mediated carboxylative cyclization of enyne precursor is another example of a
transition-metal mediated cyclization as depicted in Scheme 11. Sato et al. described the total synthesis
of indole alkaloid (−)-corynantheidine (76) [44], which was first reported in 1944 from the African
plant Pseudocinchona africana [45]. Desired enyne 71 was readily accessible from L-tryptophan (70)
in an optically active form through a sequence of usual transformations involving a cis-selective
Pictet-Spengler reaction [46]. Upon treatment of precursor 71 with a stoichiometric amount of
Ni(cod)2 and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) under an atmosphere of gaseous CO2, the crude
materials were obtained. Hydrolysis and methylation of the crude nickelacycle 73 stereoselectively led
to the desired tetracycle 75 in 73% yield. The fourth ring was formed through oxidative cycloaddition
of 71 and subsequent insertion of CO2 between the Csp3–nickel bond in 73. The new stereogenic
center of the ring junction in 75 was created by an asymmetric formation of the nickelacycle in a
substrate-controlled manner.
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The asymmetric synthesis of incarvillea alkaloids was studied by using palladium(0)-catalyzed
cyclization. Suh et al. completed an enantioselective synthesis of 7-epi-incarvilline (77) [47], which
is an advanced architecture for the formal syntheses of (−)-incarvilline (78), (+)-incarvine C (79),
and (−)-incarvillateine (80) (Scheme 12). Structurally, they consist of a common bicyclic piperidine
skeleton including five contiguous stereocenters [48–50]. The authors focused on the diastereoselective
construction of key intermediate 85, a highly functionalized bicyclic lactone containing three
stereocenters. The desired precursor 82 of the reaction was easily obtained from the known chiral
tosylate 81 [51]. Exposure of 82 in THF to Pd(dppb)2 resulted in the desired bicyclic lactone 85 in
90% yield and with excellent diastereoselectivity (>29:1). The two transition states, 83 and 84, were
controlled by the built-in chirality of lactone 82 and the high diastereoselectivity likely occurred
due to the steric repulsion between the benzenesulfonyl group and the R substituent in Pd–π-allyl
complex of 83. With the bicyclic lactone 85 in hand, 7-epi-incarvilline (77) was synthesized using
further manipulations such as a substrate-controlled catalytic hydrogenation and a 1,4-addition.
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Metal-catalyzed carbenoid transfer is also a useful method for asymmetric cyclizations.
Bolivianine was isolated from Hedyosmum angustifolium (Chloranthaceae) in 2007 [52].
The sesterterpenoid natural product consists of a highly complex heptacyclic skeleton and
nine stereocenters. Liu et al. reported a bioinspired total synthesis of bolivianine (90), which is
summarized in Scheme 13. [53,54]. Precursor tosylhydrazone 87 was well designed for the formation
of the chiral cyclopropyl moiety in 89 and produced from commercially available (+)-verbenone (86).
The programmed intramolecular cyclopropanation of 87 with a palladium catalyst and a sodium salt
afforded the desired product 89 as the sole isolable diastereomer in 65% yield. The stereochemistry
of the chiral cyclopropane was substrate-controlled via allylic metal carbene species 88, which its
conformation was caused by an equatorial positioning of two alkyl chains in chair-like transition state.
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5. Pericyclic Reactions

Diverse types of pericyclic reactions have been used as an attractive tactic for substrate-controlled
asymmetric cyclizations. Structurally interesting fluvirucins were isolated from actinomycetes by
scientists from Bristol-Myers Squibb [55–58] and Schering-Plough [59,60] independently. Suh et al.
employed a stereoselective aza-Claisen rearrangement-promoted ring expansion in the total synthesis
of antibiotic macrolactam fluvirucinine A1 (95), an aglycon of fluvirucine A1 (Scheme 14) [61].
The key precursor, 10-membered α-alkoxyvinyl acylazacycle 92, was obtained from piperidine 91
by a diastereoselective α-alkylation of an iminium ion generated from an N,O-acetal TMS ether [62].
With the functionalized precursor 92 in hand, the projected aza-Claisen reorganization was executed
in the presence of lithium bis(trimethylsilyl)amide (LHMDS) in refluxing toluene, to affording
14-membered macrolactam 94. The origin of the stereoselectivity could be explained based on a
selective (Z)-lactam enolate formation and an equatorial positioning of the alkoxyvinyl substituent in
chair-like transition state 93.
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(−)-Lingzhiol and its enantiomer were separated from Ganoderma lucidum in 2013 and found to
inhibit selectively p-Smad3 [63]. The architecture of lingzhiol is composed of a carbocyclo[4.3.0]nonane
skeleton and two quaternary bridgehead carbons (Scheme 15). Long et al. achieved the total synthesis
of (−)-lingzhiol (99) via a rhodium-catalyzed intramolecular [3 + 2] cycloaddition [64]. Important
precursor 97 was easily generated from 5,8-dimethoxy-3,4-dihydronaphthalen-1(2H)-one (96) in 10
steps by a ring expansion reaction employing Koser’s reagent [65] and an alkynylation using Waser’s
reagent [66]. Treatment of compound 97 with the rhodium catalyst in the presence of CO in DCE gave
rise to tricycle 98 in a diastereoselective manner. The catalytic cycle underwent a retro-propargylation,
Michael reaction, Conia-ene type reaction, and protonolysis. The stereochemistry of the product
was transferred stereospecifically from the chirality of the substrate. Further six steps completed the
synthesis of (−)-lingzhiol (99).
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Vanderwal et al. recently described the total synthesis of alsmaphorazine B (108) by an
intramolecular nitrone/alkene dipolar cycloaddition (Scheme 16) [67]. Alsmaphorazine B possesses a
highly dense, oxidized, and cage-like hexacyclic structure with a rare endo N–O bond [68]. The authors
analyzed the structure of 108 and then proposed an alternative biogenetic hypothesis of multiple
oxidations from akuammicine (109). Akuammicine-derived pivotal substrate 101 was prepared from
tryptamine (100) by applying a scalable process involving a Diels-Alder reaction and a Heck reaction.
Firstly, deoxygenation of α-ketol 101 with samarium iodide furnished two diastereomers, 102 and 103,
in 1:1.5 ratio. Subsequent DMDO oxidation of the mixture of tertiary amines 102 and 103 readily led
to the corresponding N-oxides, 104 and 105. Then, treatment of the obtained N-oxide mixture, 104
and 105, with DBU liberated a hydroxylamine and an enone. Finally, the desired cycloadduct 107 was
spontaneously produced in 49% yield for 3 steps. This surprising sequence proceeded stereoselectively
in a substrate-controlled manner.
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Intramolecular nitrile oxide-olefin cycloaddition (INOC) was utilized to form the macrocyclic
moiety of (−)-11β-hydroxycurvularin (115) (Scheme 17). This polyketide was isolated from Alternaria
tomato and contains a 3,5-dihydroxyphenylacetic acid skeleton [69]. Lee et al. described a remote
stereoinductive fashion of the key cyclization to synthesize the natural product [70]. Oxime 112, the
substrate of nitrile oxide 113, was efficiently prepared from commercially available 110 by esterification,
formylation, and oxime formation. Then oxime 112 was subjected to an intramolecular nitrile oxide
cycloaddition reaction. It is well known that isolated alkene group has decreased reactivity compared
to enone group and that regio- and stereoselectivity can be problematic in large ring formation with
remote stereocenter [71]. Unexpectedly, the desired isomer 114 was produced in 79% yield with good
diastereoselectivity. This reaction was an example of unprecedented remote stereoinduction and
concomitant macrocyclization.



Molecules 2017, 22, 1069 11 of 18
Molecules 2016, 21, 1069 11 of 18 

 

 

Scheme 17. Total synthesis of (–)-11β-hydroxycurvularin (115). 

More recently, unified syntheses of denudatine-type diterpenoid alkaloids were disclosed by 
Sarpong et al. [72]. Among these alkaloids, cochlearenine (120) consists of a highly complex 
bicyclo[2.2.2] structural architecture and exhibits a bradycardic activity in guinea pig atria [73,74]. 
Synthesis of cyclization precursor 117 began with the known bicycle 116, which was effectively 
prepared using Diels-Alder cycloaddition [75] (Scheme 18). Subjecting a solution of dienone 117 in 
p-xylene to heat resulted in the exclusive formation of hexacycle 119, which contains the whole ring 
backbone of 120. The excellent diastereoselectivity was determined by a substrate-controlled transition 
state. Total synthesis of cochlearenine (120) was completed in seven steps from hexacycle 119. 

 

Scheme 18. Total synthesis of cochlearenine (120). 

6. Radical Cyclizations 

Radical cyclizations have served as a useful strategy to create various ring systems. As shown 
in Scheme 19, a total synthesis of the akuammiline alkaloid (+)-scholarisine A (127) was completed 
by Snyder et al. [76]. The structurally unique alkaloid, which was isolated from Alstonia scholaris, 
contains an indolenine fused to a strained carbocyclic cage and several tertiary and quaternary 
stereogenic centers [77]. To access the cage architecture of 126, a tandem 6-exo-trig radical 
cyclization/Keck allylation was explored. The key precursor 122 of the tandem reaction was 
efficiently prepared in three steps from acrylate 121 [78]. Substrate 122 was smoothly cyclized using 

Cochlearenine (120)

p-xylene

117116

N

Me

HO

OH

H
OMe

H OH

H
N

MeO

OMeH
OMe

Me

H

O

OMe

O

N

MeO

OMe

Me

H
O

O
MeO O

MeMeO O

H

CO2Me

TBSO

119

N

MeO

OMeH
OMe

Me

H

O

OMe

O
87%

118

93% for
17 steps

20% for
7 steps

Scheme 17. Total synthesis of (−)-11β-hydroxycurvularin (115).

More recently, unified syntheses of denudatine-type diterpenoid alkaloids were disclosed
by Sarpong et al. [72]. Among these alkaloids, cochlearenine (120) consists of a highly complex
bicyclo[2.2.2] structural architecture and exhibits a bradycardic activity in guinea pig atria [73,74].
Synthesis of cyclization precursor 117 began with the known bicycle 116, which was effectively
prepared using Diels-Alder cycloaddition [75] (Scheme 18). Subjecting a solution of dienone 117 in
p-xylene to heat resulted in the exclusive formation of hexacycle 119, which contains the whole ring
backbone of 120. The excellent diastereoselectivity was determined by a substrate-controlled transition
state. Total synthesis of cochlearenine (120) was completed in seven steps from hexacycle 119.
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6. Radical Cyclizations

Radical cyclizations have served as a useful strategy to create various ring systems. As shown in
Scheme 19, a total synthesis of the akuammiline alkaloid (+)-scholarisine A (127) was completed by
Snyder et al. [76]. The structurally unique alkaloid, which was isolated from Alstonia scholaris, contains
an indolenine fused to a strained carbocyclic cage and several tertiary and quaternary stereogenic
centers [77]. To access the cage architecture of 126, a tandem 6-exo-trig radical cyclization/Keck
allylation was explored. The key precursor 122 of the tandem reaction was efficiently prepared in three
steps from acrylate 121 [78]. Substrate 122 was smoothly cyclized using allyltributylstannane and
the radical initiator Et3B [79] in benzene at 75 ◦C, providing the desired 126 in 59% yield as a single
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diastereomer. The transformation likely progressed in the mechanistic fashion shown in Scheme 19
through the initial radical formation of 123, 6-exo-trig cyclization onto the Michael accepter of 124, and
allylation of the resulting 125. The newly incorporated stereogenic centers were influenced by the
asymmetric geometry of bicyclic lactone 122.
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Another remarkable radical cyclization was reported by Zakarian et al. (Scheme 20) [80].
Maoecrystal V (133), a cytotoxic diterpenoid, was discovered in 2004 from Isodon eriocalyx, a Chinese
medicinal herb [81]. Structurally, three contiguous quaternary stereocenters are compactly arranged
on a pentacyclic framework; the complex molecular architecture provides an intriguing synthetic
challenge. Key precursor 129, having two quaternary stereocenters, was synthesized from alcohol
128 through a C–H-insertion and a [4 + 2] cycloaddition. With phenylselenocarbonate 129 in hand,
a substrate-controlled radical cyclization was explored. To a solution of substrate 129 in benzene at
80 ◦C was slowly added a mixture of TMS3SiH, as a less efficient hydrogen atom donor reagent, and
AIBN, resulting in the formation of lactone 132 (55% yield). The asymmetric cyclization successfully
generated the third quaternary stereocenter of 132 through the initially generated formyl radical 130.
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Ma et al. described the total syntheses of leucosceptroids A (139) and B (138) by applying
a SmI2-mediated intramolecular ketyl-olefin radical cyclization (Scheme 21) [82]. These two
sesterterpenoids were separated from glandilar trichomes of Leucosceptrum canum [83]. These intriguing
compounds contain a common tricyclic hydrindane ring skeleton and eight contiguous stereogenic
centers. Advanced intermediate 135 was smoothly accessed from commercially available enynol 134.
Exposure of 135 to samarium(II) iodide gave rise to fused tricycle 137 through ketyl radical species 136
in a substrate-controlled manner. The α-OTMS unit of 136 played a critical role to promote selective
6-exo-cyclization, which competed with 7-endo-cyclization, by blocking the chelation of the free hydroxy
group to SmI2, and high diastereoselectivity by decreasing the steric repulsion with the olefin. Further
transformations efficiently led to completion of the syntheses of leucosceptroids A (139) and B (138).
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More recently, a remarkable photochemical C–H acylation was utilized to cyclize a complicated
ring system (Scheme 22). Inoue et al. presented a total synthesis of zaragozic acid C (145) [84],
a potent inhibitor of mammalian squalene synthase [85]. Natural acid 145 is characterized by a
dioxabicyclo[3.2.1]octane architecture with an array of six stereocenters. Pivotal radical cyclization
precursor 141 was produced from commercially available gluconolactone derivative 140. Irradiation of
highly oxygenated substrate 141 with violet LED light excited the 1,2-diketone moiety and the resulting
1,2-biradical 142 spontaneously generated 1,4-biradical 143 via a hydrogen atom abstraction of the
proximal ethereal C–H bond. The facile C–C bond formation of the 1,4-biradical 143 stereoselectively
afforded the desired bicycle 144 (54% yield) by avoiding steric repulsions between the bulky
substituents. Careful functional group transformations provide final product 145.
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7. Conclusions

Substrate-controlled asymmetric cyclizations provide organic chemists with a powerful tool
for the construction of optically active ring frameworks of natural products. In this review, a
remarkable variety of cyclizations were classified by reaction type, such as anionic, cationic, transition
metal-mediated, pericyclic, and radical reaction and discussed in detail. Various ring systems of
natural products and their newly generated stereocenters were successfully established and defined.
To conclude, asymmetric cyclization induced by the chiral nature of the substrate is in continuous
development for the synthesis of natural products and related compounds.
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Abbreviations

The following abbreviations are used in this manuscript:

Ac Acetyl
AIBN Azobisisobutyronitrile
Bn Benzyl
Boc t-Butoxycarbonyl
Bu Butyl
Bz Benzoyl
cod 1,5-Cyclooctadiene
CSA Camphorsulfonic acid
dba Dibenzylideneacetone
DBU 1,8-Diazabicyclo[5.4.0]undec-7-ene
DCE 1,2-Dichloroethane
DDQ 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone
DMDO Dimethyldioxirane
DMF N,N-Dimethylformamide
dppb 1,4-Bis(diphenylphosphino)butane
Et Ethyl
HMPA Hexamethylphosphoramide
IBX o-Iodoxybenzoic acid
LDA Lithium diisopropylamide
LED Light emitting diode
LHMDS Lithium bis(trimethylsilyl)amide
Me Methyl
MS Molecular sieves
Ms Mesyl
Ph Phenyl
PMB 4-Methoxybenzyl
PPTS Pyridinium p-toluenesulfonate
Pr Propyl
Py Pyridine
TBDPS t-Butyldiphenylsilyl
TBS t-Butyldimethylsilyl
TES Triethylsilyl
THF Tetrahydrofuran
TMS Trimethylsilyl
Ts p-Toluenesulfonyl
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