1	Supplementary Materials		
2	Five new secondary metabolites; akanthol, akanthozine and three amide		
3	derivatives from the spiderparasitic fungus Akanthomyces novoguineensis		
4 5	Soleiman E. Helaly ^{1,2,a} , Wilawan Kuephadungphan ^{1,3,a} , Souwalak Phongpaichit ^{3,4} , Janet Jennifer Luangsa-ard ⁵ , Vatcharin Rukachaisirikul ^{6,7} , Marc Stadler ^{1,*}		
6			
7	Affiliation		
8 9	¹ Department of Microbial Drugs, Helmholtz Centre for Infection Research, Braunschweig 38124, Germany		
10	² Department of Chemistry, Faculty of Science, Aswan University, Aswan 81528, Egypt		
11 12	³ Department of Microbiology, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand		
13 14	⁴ Natural Products Research Center of Excellence and Department of Microbiology, Prince of Songkla University, Songkhla 90112, Thailand		
15 16	⁵ National Centre for Genetic Engineering and Biotechnology (BIOTEC), Pathumthani 12120, Thailand		
17 18	⁶ Department of Chemistry, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand		
19 20	⁷ Center of Excellence for Innovation in Chemistry, Prince of Songkla University, Songkhla 90112, Thailand		
21			
22	Correspondence		
23	Prof. Dr. Marc Stadler		
24	Department of Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124		
25	Braunschweig, Germany		
26	E-mail: marc.stadler@helmholtz-hzi.de		
27	Phone: +49 531 6181-4240		
28	Fax: +49 531 6181-9499		

29 ^a These authors contributed equally to this work

30 Isolation and characterization of fungal materials

The isolation of pure cultures was performed immediately after the fungal specimens were collected. 31 Briefly, agar plug of potato dextrose agar (PDA) containing 50 mg/L penicillin and streptomycin were 32 33 cut into small pieces and then gently swiped over the spores located on synnemata using a fine sterile 34 needle. Agar plugs with spores were placed on PDA containing antibiotics which was then incubated at 25 °C and the conidial germination was observed daily as well as fungal contamination. Pure 35 36 cultures were isolated onto fresh PDA plate without antibiotics by hyphal tip isolation, allowed to grow for 4-6 weeks and subsequently deposited to Prince of Songkla University and BIOTEC. 37 38 Thailand with the BCC code no. BCC47869 (EPF036), BCC47876 (EPF057), BCC47877 (EPF063), BCC47878 (EPF068), BCC47880 (EPF070), BCC47881 (EPF071), BCC47894 (EPF097) and 39 BCC47895 (EPF098). 40

- 41
- 42

Figure S1. Morphological characteristics of *A. novoguineensis*. *A. novoguineensis* BCC47881 and its colonies on PDA at 25 °C for 16 days (A-C), BCC47894 and its colonies on PDA at 25 °C for 11 days (D-F), part of synnema showing phialides (G-H), conidia (I), Scale bar: $G = 500 \mu m$, H-I = 10 μm

46

The producing strains were characterized as *Akanthomyces novoguineensis* according to Samson and Brady [1], Hywel-Jones [2] and Hsieh et al. [3] by producing 2-5 creamish white, erect, cylindrical synnemata on the hosts (Figure S1). The globose, hyaline, smooth-walled phialides, each with a single

distinct neck were located scatteringly along the entire length of synnema (Figure S1). The conidia forming at the tip of the neck were hyaline and ellipsoid (Figure S1). On PDA, the white to cream colonies were slow-growing, reaching a diameter of 0.8-1.0 cm in 14 days at 25 °C. The colony reverse was pink or yellowish-orange with diffused pale pink or yellow pigment in the agar (Figure S1). Sporulation was not found.

Based on the nucleotide-nucleotide search using the Basic Local Alignment Search Tool (BLAST) from the National Center for Biotechnology Information (NCBI, USA), the ITS rDNA sequences of the producers were most closely related to *A. novoguineensis* and the strain BCC41865 (GenBank accession no. JN201872) was the top BLAST match with 99% identity for all isolates except BCC47894 (97% identity).

61 A. novoguineensis.

62 **Table S1.** A list of species of Cordycipitaceae in which akanthopyrones [4] and compounds 1-5 were

63 not detected in their EtOAc extracts (4.5 mg/mL) of fermentation broths using HPLC profiling. The

fungal isolates were cultured in YMG medium (yeast extract, 4 g; malt extract, 10 g; D-glucose, 4 g;

distilled water, 1,000 mL) or PDB supplemented with 0.1% of yeast extract or both.

Original code	Species	Medium
NHJ06753	Akanthomyces arachnophilus (Petch) Samson & H.C. Evans	YMG
NHJ11602	A. arachnophilus (Petch) Samson & H.C. Evans	YMG
NHJ11619	A. arachnophilus (Petch) Samson & H.C. Evans	YMG
EPF094	A. cinereus Hywel-Jones	YMG, PDB
EPF128	A. cinereus Hywel-Jones	YMG, PDB
EPF155	A. cinereus Hywel-Jones	YMG
EPF156	A. cinereus Hywel-Jones	YMG
MY04459	A. cinereus Hywel-Jones	YMG, PDB
MY04461	A. cinereus Hywel-Jones	YMG, PDB
NHJ05984	A. cinereus Hywel-Jones	YMG
EPF069	A. novoguineensis Samson & B.L. Brady	YMG
EPF071	A. novoguineensis Samson & B.L. Brady	YMG
EPF093	A. novoguineensis Samson & B.L. Brady	YMG
EPF098	A. novoguineensis Samson & B.L. Brady	YMG
EPF141	A. novoguineensis Samson & B.L. Brady	YMG
MY01626	A. novoguineensis Samson & B.L. Brady	YMG
MY01627	A. novoguineensis Samson & B.L. Brady	YMG
MY02831	A. novoguineensis Samson & B.L. Brady	YMG
MY00736	A. pistillariiformis (Pat.) Samson & H.C. Evans	YMG
MY00830	A. pistillariiformis (Pat.) Samson & H.C. Evans	YMG
MY00832	A. pistillariiformis (Pat.) Samson & H.C. Evans	YMG
MY04489	A. websteri Hywel-Jones	YMG
MY06006.02	Akanthomyces sp.	YMG

⁶⁰ According to morphological features and the BLAST search results, the species could be identified as

- 67 Table S1 (Cont.) A list of species of Cordycipitaceae in which akanthopyrones [4] and compounds 1-
- **5** were not detected in their EtOAc extracts (4.5 mg/mL) of fermentation broths using HPLC profiling.

69 The fungal isolates were cultured in YMG medium (yeast extract, 4 g; malt extract, 10 g; D-glucose, 4

g; distilled water, 1,000 mL) or PDB supplemented with 0.1% of yeast extract or both.

Original code	Species	Medium
MY04258	Cordyceps nelumboides Kobayasi & Shimizu	YMG
MY06110	C. nelumboides Kobayasi & Shimizu	YMG
MY01458.02	C. tuberculata (Lebert) Maire	YMG
MY01459	C. tuberculata (Lebert) Maire	YMG
EPF083	Gibellula pulchra Cavara	YMG
MY02556	G. leiopus (Vuill. Ex Maubl.) Mains	YMG
MY02561	G. leiopus (Vuill. Ex Maubl.) Mains	YMG
NHJ12168-2	G. leiopus (Vuill. Ex Maubl.) Mains	YMG
EPF004	<i>Gibellula</i> sp.	YMG
EPF034	Gibellula sp.	YMG
EPF060	<i>Gibellula</i> sp.	PDB
EPF079	<i>Gibellula</i> sp.	PDB
EPF081	<i>Gibellula</i> sp.	PDB
EPF120	<i>Gibellula</i> sp.	YMG
EPF147	Gibellula sp.	PDB
EPF150	<i>Gibellula</i> sp.	PDB
EPF169	<i>Gibellula</i> sp.	PDB
EPF171	<i>Gibellula</i> sp.	PDB
EPF172	<i>Gibellula</i> sp.	YMG, PDB
EPF173	<i>Gibellula</i> sp.	YMG, PDB
EPF174	<i>Gibellula</i> sp.	YMG, PDB
EPF175	Gibellula sp.	PDB
EPF180	Gibellula sp.	PDB
EPF182	Gibellula sp.	PDB
EPF183	Gibellula sp.	PDB
MY04487.02	Gibellula sp.	YMG
MY04894	Gibellula sp.	YMG
MY05051.02	Gibellula sp.	YMG
MY05247.02	Gibellula sp.	YMG
MY05842.02	Gibellula sp.	YMG
MY06077.02	Gibellula sp.	YMG
MY06216.02	Gibellula sp.	YMG
MY06357	Gibellula sp.	YMG
MY06585	Gibellula sp.	YMG
MY01654	Isaria cateniannulata (Z.Q. Liang) Samson & Hywel-Jones	YMG
NHJ05763	I. cateniannulata (Z.Q. Liang) Samson & Hywel-Jones	YMG
MY01338	I. farinosa (Holmsk.) Fr.	YMG
MY03945	I. farinosa (Holmsk.) Fr.	YMG
MY00700	I. fumosorosea Wize	YMG
MY01362	I. javanica (Bally) Samson & Hywel-Jones	YMG

- 72 Table S1 (Cont.) A list of species of Cordycipitaceae in which akanthopyrones [4] and compounds 1-
- **5** were not detected in their EtOAc extracts (4.5 mg/mL) of fermentation broths using HPLC profiling.

The fungal isolates were cultured in YMG medium (yeast extract, 4 g; malt extract, 10 g; D-glucose, 4

g; distilled water, 1,000 mL) or PDB supplemented with 0.1% of yeast extract or both.

Original code	Species	Medium
MY01820	I. javanica (Bally) Samson & Hywel-Jones	YMG
MY01821	I. javanica (Bally) Samson & Hywel-Jones	YMG
MY02252	I. javanica (Bally) Samson & Hywel-Jones	YMG
MY02849	I. javanica (Bally) Samson & Hywel-Jones	YMG
MY02853	I. javanica (Bally) Samson & Hywel-Jones	YMG
MY02946.01	I. javanica (Bally) Samson & Hywel-Jones	YMG
MY02948	I. javanica (Bally) Samson & Hywel-Jones	YMG
MY02949	I. javanica (Bally) Samson & Hywel-Jones	YMG
MY02951	I. javanica (Bally) Samson & Hywel-Jones	YMG
NHJ02458	I. javanica (Bally) Samson & Hywel-Jones	YMG
NHJ03004	I. javanica (Bally) Samson & Hywel-Jones	YMG
NHJ13336	I. javanica (Bally) Samson & Hywel-Jones	YMG
MY08816	I. takamizusanensis Kobayasi	YMG
MY08817	I. takamizusanensis Kobayasi	YMG
MY08819	I. takamizusanensis Kobayasi	YMG
MY08820	I. takamizusanensis Kobayasi	YMG
MY08821	I. takamizusanensis Kobayasi	YMG
MY01146	I. tenuipes Peck	YMG
MY03904	I. tenuipes Peck	YMG
MY03940	I. tenuipes Peck	YMG
MY00949	Isaria sp.	YMG
MY00954	Isaria sp.	YMG
MY01037	Isaria sp.	YMG
MY01787	Isaria sp.	YMG
MY01822	Isaria sp.	YMG
MY03195	Isaria sp.	YMG
MY04316	Isaria sp.	YMG
MY04954	Isaria sp.	YMG
MY06686.01	Isaria sp.	YMG
MY06686.02	Isaria sp.	YMG
MY05246.01	<i>Torrubiella</i> sp.	YMG
MY05247.01	<i>Torrubiella</i> sp.	YMG
MY05248.01	<i>Torrubiella</i> sp.	YMG
MY05255	Torrubiella sp.	YMG
MY05583.01	<i>Torrubiella</i> sp.	YMG
MY05979.01	<i>Torrubiella</i> sp.	YMG
MY06006.01	<i>Torrubiella</i> sp.	YMG
MY06077.01	<i>Torrubiella</i> sp.	YMG
MY06113.01	Torrubiella sp.	YMG
MY06216.01	Torrubiella sp.	YMG
MY06535.01	Torrubiella sp.	YMG
MY06567.01	Torrubiella sp.	YMG

References

1. Samson, R. A.; Brady, B. L. Akanthomyces novoguineensis sp. nov. Trans. Br. Mycol. Soc. 1982, 79, 571–572.

2. Hywel-Jones, N. Akanthomyces on spiders in Thailand. Mycol. Res. 1996, 100, 1065-1070.

3. Hsieh, L. S.; Tzean, S. S.; Wu, W. J. The genus *Akanthomyces* on spiders from Taiwan. *Mycol. Soc. Am.* **1997**, *89*, 319–324.

4. Kuephadungphan, W.; Helaly, S. E.; Daengrot, C.; Phongpaichit, S.; Luangsa-Ard, J. J.; Rukachaisirikul, V.; Stadler, M. Akanthopyrones A – D, α -pyrones bearing a 4-O-methyl- β -D-glucopyranose moiety from the spider-associated ascomycete *Akanthomyces novoguineensis*. *Phytochemistry* **2017** (submitted).

Figure S2. HR (+) ESIMS spectra of akanthol (1)

Figure S3. HR (+) ESIMS spectra of akanthozine (2)

Figure S4. HR (+) ESIMS spectra of compound 3

Figure S5. HR (+) ESIMS spectra of compound 4

Figure S6. HR (+) ESIMS spectra of compound 5

Figure S7. ¹H NMR spectrum for akanthol (1) (500 MHz, DMSO-d₆)

Figure S8. ¹³C NMR spectrum for akanthol (1) (125 MHz, DMSO-d₆)

Figure S9. COSY NMR spectrum for akanthol (1) (500 MHz, DMSO-d₆)

Figure S10. HSQC NMR spectrum for akanthol (1) (500 MHz, DMSO-d₆)

Figure S11. HMBC NMR spectrum for akanthol (1) (500 MHz, DMSO-d₆)

Figure S13.¹³C NMR spectrum for akanthozine (2) (125 MHz, Methanol-d₄)

097BE_F6_DEPT.esp

Figure S14. DEPT NMR spectrum for akanthozine (2) (125 MHz, Methanol-d₄)

Figure S15. COSY NMR spectrum for akanthozine (2) (500 MHz, Methanol-d₄)

Figure S16. HSQC NMR spectrum for akanthozine (2) (500 MHz, Methanol-d₄)

Figure S17. HMBC NMR spectrum for akanthozine (2) (500 MHz, Methanol-d₄)

Figure S18.¹H NMR spectrum for compound 3 (500 MHz, Methanol-d₄)

Figure S19.¹³C NMR spectrum for compound 3 (125 MHz, Methanol-d₄)

Figure S20. COSY NMR spectrum for compound 3 (500 MHz, Methanol-d₄)

Figure S22. HMBC NMR spectrum for compound 3 (500 MHz, Methanol-d₄)

Figure S23. ¹H NMR spectrum for compound 4 (500 MHz, Methanol-d₄)

Figure S24. ¹³C NMR spectrum for compound **4** (125 MHz, Methanol-d₄)

Figure S25. COSY NMR spectrum for compound 4 (500 MHz, Methanol-d₄)

Figure S26. HSQC NMR spectrum for compound 4 (500 MHz, Methanol-d₄)

Figure S27. HMBC NMR spectrum for compound 4 (500 MHz, Methanol-d₄)

071BE_F4_1H.esp

Figure S29. ¹³C NMR spectrum for compound 5 (125 MHz, CDCl₃)

Figure S30. COSY NMR spectrum for compound 5 (500 MHz, CDCl₃)

Figure S31. HSQC NMR spectrum for compound 5 (500 MHz, CDCl₃)

