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Abstract: We describe the first gram scale preparation of the reagent dichlorotrifluoromethoxyacetic 
acid. This stable compound is obtained in five steps starting from the cheap diethylene glycol. The 
reactivity of the sodium salt of this fluorinated acid was also tested and allowed the preparation of 
new amides. 
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1. Introduction 

Since the seminal preparation of the trifluoromethoxy group by Yagupolskii in 1955 [1], the 
interest in this very specific organic moiety has grown continuously, in particular for life sciences 
purposes [2–9]. Such interest can be explained by the conjunction of its multiple advantages: the 
“pseudohalogen” character of this entity which makes it comparable to a fluorine atom in terms of 
electronic properties, and the deep modifications of the conformation as well as the physico-chemical 
behavior induced in molecules linked to this group [10–14]. The unrivaled and promising properties 
brought by this ether function are in deep contrast with the synthetic difficulties to prepare it [15–17]. 
Major and recent progresses have been made in either the direct introduction of the trifluoromethoxy 
moiety [18–23] (often through a nucleophilic pathway) or in its preparation from alcohols or phenols 
[24–28]. There is nevertheless still an urgent need for new methods able to selectively introduce this 
moiety at a late stage of a synthetic procedure. The design of new reagents enabling the grafting of 
this substituent should be a highly valuable addition to the presently existing methods. Based on our 
ongoing research project in this field, we thought that related trifluoromethoxy group-bearing 
molecules should be easily accessible based on previous work of our laboratory [29–32]. 

In this communication we describe the preparation of the sodium salt of 
dichlorotrifluoromethoxyacetic acid, its attempted use in chlorotrifluoromethoxycarbene generation 
and trapping thereof, as well as the concomitant preparation of some interesting new nitrogen-based 
trifluoromethoxy-bearing building blocks. 
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2. Results and Discussion 

The planned synthesis of the target dichlorotrifluoromethoxyacetic acid, 3 (Scheme 1) was based 
on initial chlorination of the trifluoromethoxy ester 1 previously described by our group [24]. Thus, 
exhaustive chlorination of ester 1, dissolved in CCl4, under UV irradiation in an intermittent stream 
of dichlorine easily afforded the perchlorinated ester 2. 19F NMR spectra of this ester exhibited clear 
evidence for partial restricted rotation as shown by the presence of one sharp (δ = −54.4 ppm) and 
one very broad peak (δ = −54.5 ppm) instead of the expected two sharp signals. Further saponification 
of one equivalent of ester 2 with sodium hydroxide gave two equivalents of the unknown targeted 
acid 3 after acidification of the reaction medium, gratifyingly making use of both trifluoromethoxy 
groups present in the starting molecule. Free acid 3, which tenaciously retained diethyl ether solvent, 
could only be partially characterized and was then transformed in a final step. The derived sodium 
salt 4 of acid 3 could however be readily isolated in acceptable overall yield from ester 1 after simple 
treatment of a diethyl ether solution of acid 3 with a stoichiometric amount of sodium bicarbonate 
followed by thorough drying under high vacuum. 

 

Scheme 1. First preparation of dichlorotrifluoromethoxyacetic acid 3. 

With compound 4 in hand, we then studied the opportunity to generate the 
chlorotrifluoromethoxycarbene 6 (Scheme 2). 
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Scheme 2. Attempts at carbene generation. 

Most fluorinated carbenes are known for their electrophilic character. They usually react with 
electron rich functionalities [33–35]. The presence of an oxygen atom adjacent to the carbenic center 
in the carbenic species 6 (Scheme 2) we planned to generate, was however susceptible to alter this 
normal behavior [36–38]. We thus attempted the trapping of the derived carbene 6 with a wide panel 
of variously substituted olefins with either electrophilic (trichlorofluoroethene, dimethylbutadiene, etc.) 
or nucleophilic (enol ethers, etc.) character. Whatever the conditions employed (solvents, 
temperature, aromatic, double or triple bonds as a trap), no trace of the desired 
chlorotrifluoromethoxymethylated compounds was obtained. In some cases, the only perfluorinated 
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molecule detected was the dichlorotrifluoromethoxymethane 5 [39]. Even if very volatile, we were 
able to isolate it by careful distillation (from a crude mixture with diglyme as solvent), yielding small 
amounts of pure product 5. The latter was characterized by NMR. The generation of the expected 
carbene 6 was assumed to proceed in a two-step pathway: first a decarboxylation followed by the 
elimination of a chlorine atom. The presence of the compound 5 was a formal proof of the success of 
the first step but also of the inability of the carbanionic intermediate to evolve into a carbenic species. 
Its final reprotonation (from a proton coming from the reaction medium) delivered then the neutral 
molecule 5. In order to assess the shelf stability and utility of salt 4, we tried to use it in the preparation 
of some amide derivatives 7, using an already described method for chlorodifluoroacetic acid 
(Scheme 3) [40]. 

 
Scheme 3. Preparation of various dichlorotrifluoromethoxy acetamides. 

As shown by the results depicted in the Scheme 3, these derivatives were isolated in relatively 
modest but satisfactory yields comparable to those obtained with the sodium salt of 
chlorodifluoroacetic acid [40]. Aliphatic, benzylic and aromatic amines were suitable for this 
transformation. Obviously, sodium salt 4 exhibited sufficient stability for normal handling. To the 
best of our knowledge, none of the compounds 7a–e have been described so far. The reagent 4 is 
consequently a new building block for the introduction of a trifluoromethoxy moiety. 

3. Materials and Methods 

3.1. General Information 

Each reaction was carried out under an argon atmosphere in freshly distilled solvent, unless 
otherwise noted. All chemicals were purchased from commercial sources (Sigma-Aldrich, Saint-
Quentin Fallavier, France; ABCR, Karlsruhe, Deutschland or Alfa Aesar, Haverhill, MA, USA) and 
were used without further purification. Organic solvents were purchased from Merck (Darmstadt, 
Deutschland) and Carlo Erba (Val-de-Reuil, France). NMR spectra were recorded on AC-200 and  
AC-300 spectrometers (Bruker, Wissembourg, France). Reported coupling constants and chemicals 
shifts were based on a first order analysis. Internal reference was the residual peak of CHCl3  
(7.26 ppm) for 1H (200 MHz), central peak of CDCl3 (77.1 ppm) for 13C (50 MHz) spectra, and internal 
CFCl3 (0 ppm) for 19F (188 MHz) NMR spectra. Chemical shifts are reported in parts per million (ppm) 
and constants J in hertz (Hz). Mass spectra (MS) in the positive ion mode (ESI+) were obtained on a 
Xevo Q-Tof instrument (WATERS, Guyancourt, France). IR spectra were recorded on a Nicolet 400SD 
spectrophotometer (Thermo Fisher, Villebon-sur-Yvette, France). 
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1,1,2,2-Tetrachloro-2-(trifluoromethoxy)ethyl 2,2-dichloro-2-(trifluoromethoxy)acetate (2). Dichlorine gas 
was bubbled into a solution of ester 1 (3 g, 11.7 mmol) in CCl4 (2 mL) contained in a quartz vessel 
until the solution remained yellow, and was then irradiated with a high-pressure mercury lamp  
(HPK 125 W Philips, Suresnes, France) for 18–32 h with intermittent bubbling of dichlorine until  
1H NMR showed complete chlorination (absence of protons). The solvent was evaporated to give 
essentially pure chlorinated product 2 as a colourless oil (4.5–5.3 g; 84%–99% yield). 19F NMR (CDCl3, 
188 MHz): δ = −54.5 (br s), −54.4 (s); ¹³C NMR (CDCl3, 50 MHz): δ = 154.0, 120.4 (q, J = 267.8 Hz, OCF3), 
120.2 (q, JCF = 268.1 Hz, OCF3), 108.9 and 108.7 (2 × br s (rotamers), CCl2), 97.2 (q, J = 2.5 Hz, 1C, CCl2), 
87.7 (q, J = 1.1 Hz, 1C, CCl2); IR (neat): ν = 1757, 1818 cm−1. 

2,2-Dichloro-2-(trifluoromethoxy)acetic acid (3). NaOH (163 mg, 4 mmol) solubilized in a minimal 
amount of water (1.5 mL) was added to a solution of chlorinated ester 2 (940 mg, 2 mmol) in Et2O  
(10 mL). The mixture was vigorously stirred for 6 h at room temperature, acidified with 37% HCl and 
extracted with diethyl ether (2 × 5 mL), dried over MgSO4 and concentrated under vacuum to afford 
acid 3 still containing diethyl ether. The exact quantity of remaining diethyl ether was quantified by 
19F and 1H NMR using methyl trifluoroacetate as standard (79% corrected yield).  
¹H NMR (CDCl3, 300 MHz): δ = 8.35 (br s, 1H); 19F NMR (CDCl3, 188 MHz): δ = −54.3 (s); ¹³C NMR 
(CDCl3, 50 MHz): δ = 163.6, 120.0 (q, J = 265.1 Hz, OCF3), 98.15 (q, J = 2.1 Hz, CCl2);  

MS (ESI+): m/z = 167.9 [M − CO2 + H]+; IR (neat): ν = 1629, 1747, 3406, 3467 cm−1. 

2,2-Dichloro-2-(trifluoromethoxy)acetic acid sodium salt (4). Powdered sodium bicarbonate (1 equiv) was 
added in portions to a solution of the preceding acid 3 in diethyl ether (10 mL). The resulting suspension 
was stirred overnight. The solvent was removed under reduced pressure and the resulting off-white 
powder was thoroughly dried under high vacuum at room temperature (0.75 g; 80%yield); 19F NMR 
(D2O, 188 MHz): δ = −53.8 (s); MS (m/z): 257.0 (M + Na+), 100%; IR (KBr): ν = 1675, 3432 cm−1. 

Dichlorotrifluoromethoxymethane 5. ¹H NMR (CDCl3, 300 MHz): δ = 7.27 (s, 1H); 19F NMR (CDCl3,  
188 MHz): δ = −60.6 (s); ¹³C NMR (CDCl3, 50 MHz): δ = 120.1 (q, J = 266.1 Hz, OCF3), 90.9 (q, J = 5.0 Hz). 

General procedure for the synthesis of amides from sodium 2,2-dichloro-2-(trifluoromethoxy)acetic acid sodium 
salt (4), as exemplified by the preparation of 2,2-dichloro-N-(4-methoxyphenyl)-2-(trifluoromethoxy)acetamide 
(7a). Sodium 2,2-dichloro-2-(trifluoromethoxy)acetate (4, 59 mg, 0.25 mmol, 1.0 equiv) was added to 
a solution of triphenylphosphine (79 mg, 0.30 mmol, 1.2 equiv) and iodine (76 mg, 0.30 mmol,  
1.2 equiv) in CH2Cl2 (3 mL). After 30 min of stirring, a solution of p-anisidine (46 mg, 0.38 mmol,  
1.5 equiv) and triethylamine (53 µL, 0.38 mmol, 1.5 equiv) in CH2Cl2 (1 mL) was transferred via 
cannula in the reaction mixture at room temperature, which was further stirred for 16 h. Water  
(10 mL) and CH2Cl2 (5 mL) were then added and the aqueous phase was extracted with CH2Cl2  
(2 × 15 mL). The combined organic layers were dried over magnesium sulfate, filtered and 
concentrated under vacuum. Purification by silica gel preparative plate (solvent: pentane/Et2O 7:3) 
afforded the expected amide 7a (41 mg, 52%) as a light brown oil. HRMS calcd. for C10H835Cl2F3NNaO3: 
339.9731; found: 339.9743 (δ = 3.5 ppm). 1H NMR (CDCl3, 300 MHz): δ = 8.01 (br s, 1H, NH), 7.50–7.45 
(m, 2H), 6.93–6.88 (m, 2H), 3.81 (s, 3H); 19F NMR (CDCl3, 188 MHz): δ = −53.9 (s, 3F, OCF3); 13C NMR 
(75 MHz, CDCl3): δ = 158.5, 157.8, 128.6, 122.5, 120.3 (q, J = 268.3 Hz, OCF3), 114.6, 100.7 (q, J = 2.1 Hz, 
CCl2), 55.6. The following amides were similarly prepared: 

2,2-Dichloro-1-(piperidin-1-yl)-2-(trifluoromethoxy)ethanone (7b). Colorless oil (20 mg, 28%). HRMS 
calcd. for C8H1035Cl2F3NNaO2: 301.9938; found: 301.9948 (δ = 3.3 ppm). 1H NMR (CDCl3, 300 MHz): δ 
= 3.82–3.51 (m, 4H), 1.51–1.78 (m, 6H); 19F NMR (CDCl3, 188 MHz): δ = −53.9 (s, 3F); 13C NMR (CDCl3, 
75 MHz): δ = 158.2, 120.1 (q, J = 267.4 Hz, OCF3), 102.8 (q, J = 1.8 Hz, CCl2), 48.7 and 46.8  
(2 × br s (rotamers), 2C), 25.8, 24.3. 

2,2-Dichloro-N-propyl-2-(trifluoromethoxy)acetamide (7c). Colorless oil (25 mg, 40%). HRMS calcd. for 
C6H835Cl2F3NNaO2: 275.9782; found: 275.9786 (δ = 1.4 ppm). 1H NMR (CDCl3, 300 MHz): δ = 6.44 (br 
s, 1H, NH), 3.42–3.25 (m, 2H), 1.73–1.53 (m, 2H), 0.97 (t, J = 7.4 Hz, 3H); 19F NMR (CDCl3,  
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188 MHz): δ = −54.0 (s, 3F, OCF3); 13C NMR (CDCl3, 75 MHz): δ = 161.1, 120.2 (q, J = 267.9 Hz, OCF3), 
100.6 (q, J = 1.8 Hz, CCl2), 42.7, 22.5, 11.3. 

N-Benzyl-2,2-dichloro-2-(trifluoromethoxy)acetamide (7d). Colorless oil (24 mg, 32%). HRMS calcd. for 
C10H835Cl2F3NNaO2: 323.9782; found: 323.9781 (δ = −0.3 ppm). 1H NMR (CDCl3, 300 MHz): δ = 7.43–7.28 
(m, 5H), 6.74 (br s, 1H, NH), 4.55 (d, J = 5.8 Hz, 2H); 19F NMR (CDCl3, 188 MHz): δ = −54.0 (s, 3F, OCF3); 
13C NMR (CDCl3, 75 MHz): δ = 161.1, 136.4, 129.2, 128.4, 128.0, 120.2 (q, J = 268.1 Hz, OCF3), 100.2 (q, 
J = 2.0 Hz, CCl2), 45.0. 

(R)-2,2-Dichloro-N-(1-phenylethyl)-2-(trifluoromethoxy)acetamide (7e). Colorless oil (18 mg, 23%). HRMS 
calcd. for C11H1035Cl2F3NNaO2: 337.9938; found: 337.9951 (d = 3.8 ppm). 1H NMR (CDCl3,  
300 MHz): δ = 7.44–7.27 (m, 5H), 6.56 (br s, 1H, NH), 5.11 (quint, J = 7.1 Hz, 1H), 1.60 (d, J = 6.9 Hz, 
3H); 19F NMR (CDCl3, 188 MHz): δ = −53.9 (s, 3F, OCF3); 13C NMR (CDCl3, 75 MHz): δ = 160.1, 141.3, 
129.1, 128.2, 126.3, 120.2 (q, J = 268.1 Hz, OCF3), 100.6 (q, J = 1.9 Hz, 1C, CCl2), 50.7, 21.2. 

4. Conclusions 

An easy access to the sodium salt 4 of dichlorotrifluoromethoxyacetic acid was devised. 
Attempted trapping of chlorotrifluoromethoxycarbene generated by decarboxylation of this salt with 
alkenes failed presumably because of the poor reactivity of this carbene under the conditions used 
for its formation. Nevertheless, salt 4 proved sufficiently stable for the preparation of new 
trifluoromethoxylated-bearing amide synthons 7a–e. Improved precursors of 
trifluoromethoxycarbene are under current development in our laboratories. We are studying in 
particular the preparation of chlorofluorotrifluoromethoxyacetic acid. 
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