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Abstract: Herein, a series of imidazo[4,5-f ][1,10] phenanthroline derivatives RPIP (PIP = imidazo
[4,5-f ][1,10] phenanthroline, R = NO2, 1; CF3, 2; Cl, 3; OH, 4) have been synthesized in yields of
82.3–94.7% at 100 ◦C under the irradiation of microwave. MTT assay has been utilized to evaluate
the inhibitory activity (IC50) of these compounds against the growth of various tumor cells, and the
results revealed that these compounds, especially 1, exhibited excellent inhibitory activity against
the growth of A549 cells with IC50 of 15.03 µM. Moreover, it’s also confirmed that 1 can penetrate
into the membrane of tumor cells and distribute in mitochondria when observed under microscopy,
resulting apoptosis of tumor cells. The further studies showed that 1 can bind to bcl-2 G-quadruplex
DNA, which demonstrated by the increase of melting point of bcl-2 G4 DNA in the presence of 1,
as well as electronic titration and emission spectra. In a word, this kind of compound may develop
as a potential apoptosis inducer in cancer chemotherapy via binding and stabilizing to the bcl-2
G-quadruplex DNA.

Keywords: microwave-assisted synthesis; imidazo[4,5-f ][1,10]phenanthroline derivatives; apoptosis
inducers; bcl-2 G-quadruplex DNA

1. Introduction

1,10-Phenanthroline derivatives with an extended π-conjugated unit of fused imidazole, which can
bind to duplex DNA and G-quadruplex DNA through π-π stacking, exhibit great antitumor,
anti-inflammatory and antiviral activity [1], as well as probes of DNA due to their strong fluorescence
sensory properties towards acid [2]. Accumulated evidences show that this type of compounds
exhibit promising inhibitory activity against various tumor cells. For example, it’s reported
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that imidazo[4,5-f ][1,10]phenanthroline-dione derivatives might increase the chemosensitivity of
esophageal cancer patients [3]. It’s also revealed that di-substituted phenanthroline derivatives can
induce apoptosis of tumor cells through binding to human telomeric G-quadruplexes DNA and
inhibit the telomerase activity significantly [4,5]. In our previous work, it has been suggested that
imidazo[4,5-f ][1,10]phenanthroimidazole derivatives showed excellent inbitory effect against the
growth of breast cancer cells and lung cancer cells through binding to G-quadruplex DNA and thus
blocking the replication of DNA molecules [6,7].

The bcl-2 G-quadruplex DNA, a secondary structure of G-rich sequence in promoter of Bcl-2 gene
via Hoogsteen hydrogen bond, is a key director to regulate the expression of Bcl-2, which is a crucial
member of the Bcl-2 family of proteins to inhibit the apoptosis and usually over-expressed in various
human tumor cells [8]. More recently, a number of small molecules like pyridostatin analog [9],
metal complexes [10], quindoline derivatives [11], with high affinity to bcl-2 G-quadruplex DNA
have been reported to inhibit the transcription of Bcl-2 and thus inducing apoptosis of tumor
cells. Attributed to the high ability to bind and stabilize G-qudruplex DNA, phenanthroline
derivatives exhibit effectively in inducing apoptosis of various tumor cells, and it’s possible that
this kind of compounds may also inhibit the growth of tumor cells through interacting with bcl-2
G-quatruplex DNA.

In this study, a series of imidazo[4,5-f ][1,10]phenanthroline derivatives have been synthesized
under microwave irradiation (Scheme 1). The anti-tumor activity of these compounds against the
human lung adenocarcinoma A549 cells, human hepatocarcinoma SMMC7721 cells, and human
colorectal carcinoma SW620 cells were evaluated by MTT assay. The results showed these compounds,
especially 1 can effectively inhibit the growth of A549 cells. The further studies revealed that 1 could
distribute in mitochondria of A549 cells, and thus inducing apoptosis of tumor cells through G1 phase
arrest. Moreover, it was found that 1 exhibited moderate binding affinity to bcl-2 G-quadruplex DNA.
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2. Results and Discussion

2.1. Microwave-Assisted Synthesis of the Imidazo[4,5-f][1,10]phenanthroimidazole Derivatives

Microwave-assisted synthesis technology has been widely developed in the fields of chemical
synthesis, materials science, and biotechnology [12,13]. The technique obviously shorten reaction time,
while increasing yield and product purity over traditional synthesis methods, especially in organic
synthesis which typically require long hours of heating in high-boiling solvents [14]. In this study,
the reaction temperature rapidly reached setting value less than 60 s, and kept great stabilization and
homogeneous of temperature and pressure in the whole heating process. As a result, the application
of microwave irradiation has significantly increased the yields for most of the compounds to
approximately 90% (Table 1), which was much higher than those with conventional methods [15].
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Table 1. The yields of the target complexes by microwave-assisted synthesis method.

Comp. Microwave-Assisted

Temperature/◦C Time/min Yield%

1 100 20 91.3%
2 100 20 82.3%
3 100 20 94.7%
4 100 20 89.7%

2.2. Biological Activity

The synthetic imidazo[4,5-f ][1,10]phenanthroimidazole derivatives can effectively inhibit the
human lung adenocarcinoma A549 cells, human hepatocarcinoma SMMC7721 cells, and human
colorectal carcinoma SW620 cells growth and proliferation, which were confirmed by MTT assay.
Cis-platin was used as a positive control, and the inhibitory activities (IC50) of these complexes were
listed in Table 2. It was observed that these compounds displayed great growth inhibition against
various tumor cells after 72 h treatment. It’s worthy to indicate that 1 exhibited excellent inhibitory
activity against A549 cells (IC50 = 15.03 µM) but low toxicity in normal cells. These data suggested that
imidazo[4,5-f ][1,10]phenanthroimidazole derivatives exhibited promising inhibitory activity against
the growth of tumors cells.

Table 2. The inhibitory effect IC50 (µM) of the target complexes and cis-platin on human cancer cells
and normal cells at 72 h.

Comp. IC50 (µM)

A549 SW620 SMMC-7721 HaCaT

1 15.03 ± 1.01 26.48 ± 0.59 17.51 ± 1.84 27.26 ± 1.49
2 13.79 ± 0.53 27.23 ± 0.53 12.93 ± 0.51 17.48 ± 0.58
3 14.27 ± 0.21 16.02 ± 0.29 12.64 ± 0.35 13.37 ± 0.56
4 3.00 ± 0.14 16.52 ± 0.28 24.22 ± 2.28 13.94 ± 0.64

cis-platin 32.01 ± 4.66 6.29 ± 0.17 11.66 ± 1.45 18.48 ± 1.64

2.3. Apoptosis Induction

According to the results of the MTT assay, flow cytometric analysis was carried out to further
understand the underlying mechanisms of 1. In general, apoptosis and cell cycle arrest, or a combined
action of both can result in growth inhibition or death of cells [16]. After A549 cells were exposed
to different concentrations of 1 (0, 5, 10, and 20 µM) for 24 h, a significant increase in G1-phase was
observed, and was dosage depend (Figure 1a). At concentration of 20 µM for 1, the ratio of G1-phase
reached about 67.37%, which was about 12% higher than that of the control (55.75%) [17,18]. These data
indicating that 1 may inhibit the growth of A549 cells through inducing apoptosis of tumor cells since
G1 phase arrest was more related to cell apoptosis, and pro-apoptotic proteins like Bcl-2 usually plays
key roles in accelerating the apoptosis of tumor cells [19–23].
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Figure 1. (a) G1-phase arrest of A549 cells induced by 1; (b) Change in cell cycle distribution of A549
cells induced by 1. A549 cells were treated with 1 (0, 5, 10, and 20 µM) for 24 h, almost 67.37% cycling
cells were in the G1-phase and the sharp peak suggested that some cells were experiencing G1-phase
delay or arrest.

2.4. Drug Distribution and Location

Cellular localization of 1 in A549 cells was further investigated, as shown in Figure 2. It was
observed that 1 can be uptook by A549 cells and glow weak green fluorescence, a possible reason is
mainly due to the absence of hypochrome nitro-group. Here, the mitochondria were marked in red
by Mito-tracker, and the nuclei of A549 cells were stained blue by Hoechst 33,258. After incubated
with 1 for 6 h at 37 ◦C, an green fluorescence was great merged with red fluorescence in the cell
mitochondria, but little overlay in cell nucleus. These results indicated this compound entered into
cells majorly accumulated in the mitochondria of A549 cells, which may induce the cell apoptosis
through mitochondria-mediated pathway.
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2.5. The Interaction of Bcl-2 G-quadruplex DNA with Imidazo[4,5-f][1,10]phenanthroimidazole Derivatives

2.5.1. Electronic Titrations

Electronic spectra titration experiment was carried out to monitor the interaction of 1 with bcl-2
G-quadruplex DNA. As shown in Figure 3a, the electronic spectra of 1 in Tris-HCl buffer (pH = 7.2)
solution exhibited the characteristic IL (intraligand charge transfer) absorption in the range of 250–300
nm with the maximum at about 273 nm. When the DNA was gradually added to the solution of the
complex, a hyperchromic effect and a bathochromic effect were observed. The hyperchromism value
of 1 at the IL absorption band was about 14.1% (∆λ = 2.1 nm), which may be attributed to bases of
the DNA exposed, when the ligand binding to DNA, induced external contact or to partial uncoiling
of the DNA structure [24,25]. Furthermore, the value of the intrinsic binding constant (Kb) for 1 was
about 8.7 × 107 M−1, calculated according to the decay of IL absorption. These data implied that 1
bound to bcl-2 G-quadruplex DNA with high affinity in intercalating mode [26]. The interaction was
further confirmed by the following fluorescence quenching experiment.Molecules 2017, 22, 829 5 of 11 
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Figure 3. The study of the interaction between 1 with bcl-2 G-quadruplex DNA by spectroscopic
methods. (a) The electronic spectra of 1 in absence and in presence of bcl-2 G-quadruplex
DNA. [1] = 60 µM, [DNA] = 100 µM; (b) Emission spectra of EB and bcl-2 G-quadruplex DNA in
the incubation buffer in the absence and presence of 1, [EB] = 16 µM, [DNA] = 2 µM.

2.5.2. Fluorescence Quenching

Owing to the low fluorescence of 1 in the Tris-HCl KCl buffer (pH = 7.2), fluorescence quenching
of ethidium bromide (EB) and DNA was carried out. As shown in Figure 3b, when excited at 350 nm,
the EB-DNA (bcl-2 G4 DNA) emitted a strong fluorescence in the range of 500 nm to 700 nm with the
maximum at about 597 nm [27]. Upon the addition of 1, it was observed the fluorescence intensity of
the solution decreased gradually. At [1] = 20.89 µM, the relative intensity (I/I0) for solution was about
0.83. The results implied that 1 exhibited a certain interaction with bcl-2 G-quadruplex DNA.

2.5.3. FRET Melting Point Curves

To confirm the stability of the bcl-2 G4 DNA in presence of 1, FRET melting assay was carried out,
the results were shown in Figure 4a, and the melting point of the concentration–dependent melting
curves of 1 were showed in Figure 4b. Treated with 3.0 µM of 1, the ∆Tm of bcl-2 G4 DNA was about
2.4 ◦C, while the ∆Tm of bcl-2 G4 DNA increased about 11 ◦C after incubated with increasing the
concentration 6.0 µM of 1. These results indicated that 1 behaved to stabilize bcl-2 G-quadruplex
DNA [28].
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Figure 4. FRET melting profiles of bcl-2 G4 DNA in the absence and in presence of 1 (a) ([bcl-2 G4
DNA] = 0.2 µM) and the melting rising trend with the increasing of 1 (b).

3. Experimental Section

3.1. Materials

All reagents were purchased from commercial suppliers and used without further purification.
Solvents were dried and purified by conventional methods prior to use. Distilled water was used
in all experiments. Bcl-2 G-quadruplex DNA (5′-CGGGCGCGGGAGGAAGGGGGCGGGAGC-3′)
and 5′-FAM-bcl-2-TAMRA-3′ were purchased from Sangon Biotech Co., Ltd. (Shanghai, China) Bcl-2
G-quadruplex DNA formed a G-quadruplex conformation as literature by renaturation for 24 h at 4 ◦C,
after denaturation for 5 min at 90 ◦C [29]. All aqueous solutions were prepared with doubly distilled
water. The Tris-HCl buffer consisting of Tris and KCl, and the pH value was adjusted to 7.2 by HCl
solution, which was applied to UV titration, Fluorescence emission titrations.

3.2. Instruments

The imidazo[4,5-f ][1,10]phenanthroline derivatives were synthesized by using Anton Paar
Monowave 300 microwave reactor (Anton Paar, Graz, Austria). ESI-MS spectra were obtained
in methanol on Agilent 1100 ESI-MS system (Agilent, Palo Alto, CA, USA) operating at room
temperature. The 1H-NMR and 13C-NMR spectra were recorded on a dimethyl-d6 sulfoxide (DMSO-d6)
solution on a Bruker Avance III 500 spectrometer (Bruker, Bremen, Germany) operating at room
temperature. The HPLC spectra were recorded on a Agilent 1200 high pressure liquid chromatograph
(Agilent, Palo Alto, CA, USA). UV-vis absorption spectra were recorded on a Shimadzu UV-2550
spectrophotometer (Shimadzu, Tokyo, Japan). The steady-state emission spectra were recorded on a
RF-5301 fluorescence spectrophotometer (Shimadzu, Tokyo, Japan). Cellular localization experiment
was performed with an LSCM510 Meta Duo Scan (Carl Zeiss, Oberkochen, Germany).

3.3. Synthesis of Imidazole[4,5-f][1,10] phenantholine Derivatives

Imidazole[4,5-f ][1,10]phenanthroimidazole derivatives were synthesized according to the
literature procedure with some modification [30]. All of the compounds were appropriately
characterized and the HPLC analysis showed the average purity of target compounds was about 97%
(see Supplementary Materials).

3.3.1. Synthesis of 1

A mixture of 1,10-phenanthroline-5,6-dione (315.06 mg, 1.50 mmol), 3-nitrobenzaldehyde
(339.81 mg, 2.25 mmol), ammonium acetate (4 g, 51.9 mmol) and glacial acetic acid (20 mL) was
heated at 100 ◦C for 20 min under microwave irradiation. Then, 20 mL of water was added and the
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pH value was adjusted to 7.0 at room temperature. The solution was filtered and dried in vacuum to
obtain a yellow precipitate, which was collected and washed with water and small amounts of ethanol.
The crude product dissolved in ethanol was purified by filtration on silicagel column (60–100 mesh).
ESI-MS (in MeOH, m/z): 342.1 [M + H]+. Anal. Calcd. for C19H11N5O2·CH3COOH: C, 62.84; H, 3.77;
N, 17.45. Found: C, 61.66; H, 3.69; N, 18.72. 1H-NMR (500 MHz, DMSO) δ 9.03–9.02 (m, 1H), 9.00 (dd,
J = 4.3, 1.7 Hz, 2H), 8.84 (dd, J = 8.1, 1.7 Hz, 2H), 8.64 (d, J = 8.0 Hz, 1H), 8.27 (dd, J = 8.1, 1.5 Hz, 1H),
7.83 (t, J = 8.0 Hz, 1H), 7.78 (dd, J = 8.1, 4.3 Hz, 2H). 13C-NMR (126 MHz, DMSO) δ 150.38 (s), 145.70 (s),
134.14 (s), 132.63 (s), 131.70 (s), 125.58 (s), 125.29 (s), 122.30 (s), HPLC purity, 98.2% at 273 nm (method
A, tR = 4.72 min).

3.3.2. Synthesis of 2

2 was prepared using the method described above, but with 3-trifluoromethylbenzaldehyde
(391.5 mg, 2.25 mmol). ESI-MS (in MeOH, m/z): 365.5 [M + H]+. Anal. Calcd. for C20H11F3N4·
H2O·CH3CH2OH: C, 61.68; H, 4.47; N, 13.08. Found: C, 62.23; H, 4.26; N, 13.70. 1H-NMR (500 MHz,
DMSO) δ 9.00 (dd, J = 4.3, 1.7 Hz, 2H), 8.84 (dd, J = 8.1, 1.6 Hz, 2H), 8.55 (s, 1H), 8.53 (d, J = 7.3 Hz, 1H),
7.84 (t, J = 3.6 Hz, 2H), 7.78 (dd, J = 8.1, 4.3 Hz, 2H). 13C-NMR (126 MHz, DMSO) δ 150.88 (s), 149.99 (s),
145.75 (s), 133.03 (s), 132.29 (s), 131.98 (s), 131.64 (s), 125.30 (s), HPLC purity, 99.3% at 273 nm (method
A, tR = 7.84 min).

3.3.3. Synthesis of 3

3 was prepared using the method described above, but with 3-chlorobenzaldehyde (315 mg,
2.25 mmol). ESI-MS (in MeOH, m/z): 331.3 [M + H]+. Anal. Calcd. for C19H11ClN4·H2O·CH3COOH:
C, 61.69; H, 4.19; N, 13.70. Found: C, 61.62; H, 3.95; N, 14.13. 1H-NMR (500 MHz, MeOD:CDCl3 = 1:1)
δ 8.95–8.89 (m, 2H), 8.79 (s, 1H), 7.99 (t, J = 9.4 Hz, 2H), 7.62 (s, 2H), 7.57 (s, 1H), 7.29 (t, J = 8.7 Hz,
2H). 13C-NMR (126 MHz, MeOD:CDCl3 = 1:1) δ 149.06 (s), 144.91 (s), 141.69 (s), 131.63–131.46 (m),
131.08 (s), 127.96 (s), 124.76 (s), HPLC purity, 98.8% at 273 nm (method A, tR = 6.30 min).

3.3.4. Synthesis of 4

4 was prepared using the method described above, but with 3-Hydroxybenzaldehyde (274.59 mg,
2.25 mmol). ESI-MS (in MeOH, m/z): 313.1 [M + H]+. Anal. Calcd for C19H12N4O·H2O·CH3CH2OH:
C, 67.01; H, 5.36; N, 14.88. Found: C, 67.06; H, 5.20; N, 15.25. 1H-NMR (500 MHz, DMSO) δ 9.02 (dd,
J = 4.3, 1.7 Hz, 2H), 8.91 (dd, J = 8.1, 1.7 Hz, 2H), 7.81 (dd, J = 8.1, 4.3 Hz, 2H), 7.73 (dd, J = 6.0, 3.8 Hz,
1H), 7.72–7.69 (m, 1H), 7.39 (t, J = 7.9 Hz, 1H), 6.91 (ddd, J = 8.1, 2.4, 0.8 Hz, 1H). 13C-NMR (126 MHz,
DMSO) δ 152.95 (s), 149.75 (s), 145.55 (s), 133.43 (s), 132.07 (s), 131.68 (s), 125.30 (s), 119.07 (s), 118.72 (s),
115.16 (s), HPLC purity, 93.2% at 273 nm (method A, tR = 4.17 min).

3.4. Cell Lines, Cell Culture and MTT Assay

Human cancer cell lines, human lung adenocarcinoma A549 cells, human hepatocarcinoma
SMMC7721 cells, human colorectal carcinoma SW620 cells and HaCaT cells were purchased from
American Type Culture Collection (ATCC, Manassas, VA, USA). All cell lines were maintained in
Dulbecco’s Modified Eagle Medium (DMEM) media supplemented with fetal bovine serum (10%),
penicillin (100 units/mL), and streptomycin (50 units/mL) at 37 ◦C in a CO2 incubator (95% relative
humidity, 5% CO2).

Cell viability was confirmed by measuring the ability of cells to transform 3-(4,
5-dimethylthia-zol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) to a purple formazan dye [31].
Cells were seeded in 96-well tissue culture plates (3 × 103 cells per well) for 24 h. The cells were then
incubated with the tested compounds at different concentrations for 72 h. After incubation, 20 µL per
well of MTT solution (5 mg/mL in phosphate buffered saline, PBS) was added, followed by incubation
for a further 5 h. The medium was aspirated and replaced with 150 µL/well of DMSO to dissolve the
formazan salt formed. The colour intensity, which reflects the cell growth condition, was measured
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at 570 nm using a microplate spectrophotometer (SpectroAmaxTM250, BioTek Instruments, Inc.,
Winooski, VT, USA).

3.5. Flow Cytometric Analysis

Cells were seeded in six-well tissue culture plates (1 × 105 cells per well), and the cell cycle
arrest was analyzed by flow cytometry as previously described [32]. After incubating with different
concentrations of 1 (0, 5, 10, and 20 µM) for 72 h, cells were trypsinized, washed with PBS, and fixed
with 70% ethanol overnight at 4 ◦C. The fixed cells were washed with PBS and stained with propidium
iodide (PI) for 15 min in the dark, then the cell cycle arrest was analyzed with an Epics XL-MCL flow
cytometer (Beckman Coulter, Miami, FL, USA).

3.6. Cellular Localization

Cells were cultured in DMEM medium supplemented with 10% fetal bovine serum (FBS) at 37 ◦C
under 5% CO2. Cells in complete growth medium at 5 × 104 cells per mL were incubated for 6 h at
37 ◦C. Cells were treated with 1 in DMEM for 6 h at 37 ◦C under 5% CO2. Then, cells were stained with
Mito-tracker and Hoechst 33,258 for another 20 min, and finally, luminescence imaging was carried
out by confocal laser scanning microscope.

3.7. Electronic Absorption Measurements

Electronic absorption spectra were recorded on a Shimadzu UV-2550 spectrophotometer using
1 cm path length quartz cuvettes (3 mL). The absorption titration of the target complex in Tris-HCl
buffer was performed by using a fixed complex concentration to which increments of the DNA stock
solution were added. The concentration of the complex solution was 20 µM and bcl-2 G4 DNA was
added by degrees. Complex-DNA solutions were allowed to incubate for 3 min before the absorption
spectra were recorded.

3.8. Fluorescence Quenching Measurements

Fluorescence spectroscopy measurements were performed on a RF-5301 fluorescence
spectrophotometer using a 1 cm path length quartz cell. Fluorescence quenching of the EB + bcl-2 G4
DNA system can be used for a compound having an affinity to DNA in spite of its binding mode, and
only measures the ability of the compound to affect the EB fluorescence intensities in the EB + bcl-2 G4
DNA system. The titration processes were repeated until there was no apparent change in the spectra
for at least three titrations, indicating the achievement of the binding saturation [33].

3.9. FRET Melting Assays

The fluorescent labeled oligonucleotide, bcl-2 G-quadruplex DNA (5′-FAM-CGGGCGC
GGGAGGAAGGGGGCGGGAGC-TAMRA-3′, FAM: carboxyfluorescein, TAMRA: 6-carboxy
tetramethylrhodamine) used as the FRET probe was diluted in TrisHCl buffer and then annealed by
being heated to 90 ◦C for 5 min, followed by slowly cooling to room temperature [29]. Ds26 duplex
DNA (CAATCGGATCGAATTCGATCCGATTG) was competitive binders to evaluate the selective
binding ability of 1 with bcl-2 G4 DNA. Fluorescence melting curves were determined with a
Bio-RadiQ5 realtime PCR detection system (Bio-Rad, Berkeley, CA, USA), by using a total reaction
volume of 25 mL, with labeled oligonucleotide (1 µM) and different concentrations of complex in
Tris-HCl buffer [34]. A constant temperature was maintained for 30 s prior to each reading to ensure a
stable value. Final analysis of the data was carried out by using Origin7.5 (Origin Lab, Northampton,
MA, USA).
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4. Conclusions

In summary, a series of imidazole[4,5-f ][1,10]phenanthroimidazole derivatives have been
synthesized by using microwave-assisted synthesis technology, with high yields of approximately
90%, which can rapid rising to the required temperature, and kept almost no change during the whole
process. The results of MTT assay showed these complexes can block the growth of tumor cells,
especially 1, exhibited excellent antitumor activity against A549 cells through inducing apoptosis of
the cells. The further study displayed 1 can distribute at mitochondria, and inhibit tumor cells at G1
phase then induce apoptosis. Furthermore, this compound can bind to the bcl-2 G-quadruplex DNA.
Take together, the results suggested that the target compound could act as a potential apoptosis inducer
mediated-mitochondria through binding to the bcl-2 G-quadruplex DNA in cancer chemotherapy
(Figure 5).
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