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Abstract: An efficient and green method has been developed for the synthesis of new substituted
Hantzsch thiazole derivatives in 79%–90% yield, via the one-pot multi-component procedure,
by the reaction of 3-(bromoacetyl)-4-hydroxy-6-methyl-2H-pyran-2-one, thiourea and substituted
benzaldehydes in the presence of silica supported tungstosilisic acid, as a reusable catalyst, under
conventional heating or under ultrasonic irradiation. The catalyst is recoverable by a simple
filtration and can be reused in the subsequent reactions. Most of the thiazoles exhibited significant
antibacterial activity compared toamoxicillin and ciprofloxacin as positive controls. In addition, the
new compounds showed moderate to good antioxidant (DPPH) radical scavenging activity.

Keywords: thiazoles; multi-component reaction; Hantzsch condensation; heterogeneous catalysis;
antioxidant; antibacterial

1. Introduction

Molecular entities bearing thiazole ring system(s) form an important class of natural and
synthetic compounds because of their physicochemical properties [1–4].Furthermore, they exhibit
a wide range of biological activities such as cardiotonic [5], antifungal [6,7], analgesic [8],
anticonvulsant [9], antituberculosis [10], antiviral [11], anti-inflammatory [12], anti-HIV [13,14], and
anticancer activities [15,16].

It is known that thiazoles can be synthesized from α-bromoketone and a thiourea via Hantzsch
thiazole synthesis in high yields [17]. A literature survey revealed that there are numerous routes
reported for the synthesis of substituted thiazoles according to Hantzsch thiazole synthesis [18,19].
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Due to the importance of these heterocycles in medicinal and material chemistry, the development
of new routes—which leads to these heterocycles in higher yields, shorter reaction time, milder
or greener conditions—has received considerable attention in organic synthesis [20–27]. When
designing organic synthesis, chemists have to face the ecocompatibility concern of their synthesis
plan. Multi-component reactions (MCRs) are a special type of synthetically useful organic reaction,
in which, three or more different starting materials react, to generate a single product in a one-pot
procedure [28–32]. Thus, MCRs also represent a possible instrument to perform near ideal synthesis,
because they possess one of the aforementioned qualities, namely the possibility of building up complex
molecules with maximum simplicity and brevity [33,34]. On the other hand, the use of catalysis in
organic synthesis has received considerable attention owing to its important advantages: it helps to
reduce energy consumptionand increases control of selectivity [35–37].In particular, heterogeneous
catalysis appears as the solution of choice since many groups have clearly shown that the molecular
structure and/or texture of catalytic materials could directly affect the selectivity of the reactions
involved [38,39]. Heteropolyacids (HPAs) are widely used as heterogeneous catalysts and offer
many advantages, especially polyoxometalate compounds such as tungstosilisic acid H4SiW12O40

(SiW) [36,37].
Despite its unusual activation mode, ultrasonic irradiation (US) has been increasingly used in

organic synthesis in the last three decades [40,41]. A large number of organic reactions can be carried
out in higher yields, shorter reaction time and milder conditions under ultrasound irradiation [42,43].
In comparison to conventional methods, the US method is more convenient and easily controlled [44–46].
Owing to the above facts and in continuation of our research work on the development of MCRs for the
synthesis of novel heterocyclic compounds, in this article, we report on the synthesis of functionalized
thiazoles, in good yields, using SiW.SiO2 as a reusable solid support catalyst (Scheme 1) and their
biological evaluation.
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2. Results and Discussion

2.1. Chemistry

The required α-haloketone (1), 3-(bromoacetyl)-4-hydroxy-6-methyl-2H-pyran-2-one, is not
commercially available. It could be easily obtained via the selective α-monobromination of
dehydroacetic acid (DHAA) (5) in 70% yield according to a known procedure [47].
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In that way, we decided to study the reactivity of (1) with several binucleophilic amines and
initiate our studies with the reaction of thiourea (2) to afford the corresponding thiazoles. The
thiazoles were assembled according to a slightly modified version of the Hantzsch thiazoles synthesis [48,49].
Herein, the three-component one-pot condensation of an equimolar amount of (1), (2) and substituted
benzaldehydes (3a–3j), using SiW.SiO2 as a catalyst under conventional heating and under ultrasonic
irradiation, yielded the corresponding thiazole derivatives (4a–4j) in good to excellent yield. In order
to enhance the process, the reaction condition was optimized for the transformation of (1), (2)
and benzaldehyde (3a) under different conditions of temperature, solvents and amount of catalyst.
The observed results are summarized in Table 1.

Table 1. Screening of the amount of catalyst, solvents, and temperature in the one-pot synthesis of
Hantzsch thiazole derivative 4a.

Entry Solvent Catalysis (%) Time (h) Temp (◦C) Yield (%)

1 Water 15 24 RT 10
2 Water 15 6 100 45
3 MeOH 15 24 RT 18
4 MeOH 15 4 60 55
5 EtOH 15 24 RT 60
6 EtOH 15 2 65 87
7 1-Butanol 15 6 110 60
8 2-propanol 15 3 80 65
9 EtOH/Water 15 24 RT 70

10 EtOH/Water 15 2 65 87
11 EtOH/Water - 7 65 50
12 EtOH/Water 5 2 65 74
13 EtOH/Water 10 2 65 79
14 EtOH/Water 18 2 65 87
15 EtOH/Water 20 2 65 87

Initially, we investigated the effect of various solvents in this model reaction. The above
3-(bromoacetyl)-4-hydroxy-6-methyl-2H-pyran-2-one (1), thiourea (2) and benzaldhyde (3a) were
stirred in various solvents, such as water, ethanol, methanol, 1-butanol and 2-propanol at their
respective reflux condition (Entries 2, 4, 6–8, Table 1). The reaction smoothly proceeded in 1-butanol,
2-propanol and water under reflux condition but not at ambient temperature (25 ◦C). These conditions
remained unsuccessful for obtaining acceptable yields (Entries 1, 3, 5, Table 1), whereas the use of a
mixture of ethanol/water (50/50 v/v) at reflux allowed the desired product in higher yield, typically
from 50% to 87% (entries 10–16, Table 1). Therefore, the 1 to 1 mixture of ethanol/water represents the
suitable, cheap, safe and environmentally benign solvent for the present investigation.

We further examined the amount of SiW.SiO2 required for this reaction under the above conditions.
The effect of catalyst amount on the multi-component reaction was investigated by varying the catalyst
amount (5%, 10%, 15%, 18% and 20%). It was found that when increasing the amount of the SiW.SiO2

from 5% to 15%, the yield also increased (Table 1). A further increase of the catalyst loading (above
15%) does not affect the yield. Therefore, 15% SiW.SiO2 in the mixture of ethanol/water is sufficient
to push this reaction forward. Next, we investigated the reusability of SiW.SiO2. At the end of the
reaction, the catalyst could be recovered by a simple filtration. The recycled catalyst could be washed
well with acetone and subjected to a second run of the reaction process. To ensure that the catalyst
did not dissolve in acetone, it was weighted before using it then after filtration and reuse for the next
reaction. The results show that this catalyst is not soluble in acetone. The catalyst remained active and
exhibited no substantial loss of activity over up to three reaction cycles. The yield gradually decreased
(72%) for the fourth run. This may be due to loss of SiW on the SiO2 surface area.

Encouraged by the results obtained for the synthesis of 4a, we extended this methodology to
various substituted benzaldehydes (3b–3j), to prepare the corresponding thiazole derivatives (4b–4j)
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by two methods: under conventional heating (method A) and under ultrasonic irradiation (method B).
By using ultrasonic activation assisted synthesis, at room temperature, the reaction time could be
decreased compared to the previously reported conventional method as worked out for some analogs
(2h compared to 3.5h), without affecting the yield. The scope and generality of this process are
illustrated with respect to various substituted benzaldehydes as shown in Table 2.

Table 2. Synthesis of Hantzsch thiazole derivatives under conventional heating and under ultrasonic
irradiation.

Product
Substitutions Method A a Method B b

R1 R2 R3 Time (h) Yield (%) Time (h) Yield (%)

4a H H H 2 87 1.5 90
4b H OH H 2 85 1.5 88
4c OH H OH 3.5 80 2 82
4d NO2 H H 2 82 1.5 85
4e Cl H H 2 84 1.5 87
4f OH H H 2 85 1.5 88
4g H OH OH 3.5 79 2 82
4h H H OCH3 3.5 75 2 79
4i OCH3 H H 2 84 1.5 87
4j H OCH3 H 2 82 1.5 85

a Conventional heating, 65 ◦C, ETOH/Water (50/50). b Ultrasonic irradiation, RT, ETOH/Water (50/50).

In order to obtain more insight into the mechanism of the functionalized thiazoles formation,
the stepwise reaction was studied. Thus, the intermediate (II) had been prepared by cyclocondensation
of (1) with (2) in a mixture of ethanol and water (50/50, v/v) under ultrasonic irradiation. The
reaction of an equimolar amount of (II) with (3a) in the same conditions gave (4a) with a yield of 60%.
The characterisation of (II) had been reported in our previous work [50]. Our experiments showed that
the target thiazole derivatives can be obtained “in one flask” by initially conducting cyclocondensation
of the α-haloketone (1) with thiourea (2) followed by condensation of the intermediaite (II)with
substituted benzaldehydes (3a–3j) whichsupport the plausible mechanism as depicted in Scheme 2.
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Scheme 2. A plausible mechanism for the formation of Hantzsch thiazole derivatives.

All the new target compounds were completely characterized by using infrared (IR), 1H-NMR,
13C-NMR and mass spectroscopy (see supplementary). The spectroscopic data of the new compounds
are given in the experimental section and are fully consistent with the proposed structures. IR spectra
of 4a–4j had strong N=C absorptions at about 1669 cm−1 and displayed absorptions at about 1617–1546
cm−1 and 1582 cm−1 which were assigned to C=O and C=C functionalities respectively. This study
confirmed the conservation of 2-pyroneby the presence of large elongation and intense bands in the
absorption range at 1718–1693 cm−1. The 1H-NMR spectra of the compounds 4a–4j exhibited broad
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signals at 6.02–6.92 ppm, which were assigned to the C–H proton of the thiazole ring. 13C-NMR of
compounds 4a–4j showed peaks at about 111.98–115.10 and 164.33–167.46 for C-S (thiazole) and C=N
(amide), respectively.

2.2. Biological Evaluation

2.2.1. Antioxidant Activity

The 2,2-diphenyl-1-picrylhydrazil (DPPH) is a stable free radical that has been widely accepted
as a tool for estimating the free radical scavenging activities of antioxidants [51]. The lower IC50

value indicates a stronger ability of the compound to act as a DPPH scavenger, while the higher IC50

value indicates a lower scavenging activity of the scavengers. This is because more scavengers were
required to achieve a 50% scavenging reaction. In reaction with a hydrogen donor, the purple color
of DPPH fades or disappears, due to its conversion to 2,2-diphenyl-1-picryl hydrazine, resulting in
an absorbance decrease. The greater the decrease in absorption, in the presence of scavengers in the
fractions, the more effective is its antioxidant activity.

In the current study, the antioxidant activity of compounds (4a–4j) was expressed as IC50 with a
low IC50 value, indicating that the synthesis compounds act as an effective DPPH scavenger (Figure 1).
IC50 values were between 11.23 and 16.96 µg/mL for the compounds (4a–4j), while 10.46 µg/mL for
butylhydroxytoluene (BHT, positive control). The newly synthesized thiazoles display significant
antioxidant capacitywith an insignificant variation, which indicates that the thiazole ring enhances the
antioxidant activity of thiazoles, not the benzene ring where the variation is. However, compounds 4b,
4c and 4g with both electrons donating and electron withdrawing groups in para position exhibited a
promising antioxidant (DPPH) radical scavenging activity compared to BHT.
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Figure 1. The antioxidant activity of compounds (4a–4j) using DPPH assay (IC50= µg/mL), compared
with reference standard butylhydroxytoluene (BHT) activity.

2.2.2. In Vitro Antibacterial Activity

The in vitro antibacterial activity of compounds (4a–4j), expressed as an MIC value, was assessed
by the serial dilution methods against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa
and two standard antibiotics (amoxicillin and ciprofloxacin) (Figure 2). The MICs of the synthesis
compounds were within concentration ranges of 50–153 µg/mL. The entire synthesized compounds
and standard antibiotics had higher antibacterial activity against bacteria strains and are most active
against Gram-negative bacteria than the Gram-positive bacteria. In general, all compounds are,
approximately, behaving as the reference compounds with same activities. This potent antibacterial
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activity exhibited may be due to the thiazole ring. However, we observed that both electron donating as
well as electron withdrawing groups were found to increase the antibacterial properties. Compounds
4b, 4c, 4f and 4g displayed moderate antibacterial activity whereas the remaining compounds showed
less activity.
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3. Experimental Section

3.1. Materials and Methods

All research chemicals and solvents were purchased from Sigma-Aldrich (mainly Sigma-Aldrich,
Saint-Quentin-Fallavier, France) and were used as such for the reactions. The progress of all the
reactions was monitored by thin-layer chromatography (TLC) using glass plates precoated with silica
gel-60 F254 to a thickness of 0.5 mm. The melting points were taken in an open capillary tube using
Electrothermal melting point apparatus (Electrotermal, Rochford, Great Britain). The values are
reported in ◦C and are uncorrected. IR spectra were recorded as neat solid or liquid on a Fourier
Transform Bruker Vector 22 spectrometer (Villebon-sur-Yvette, France). NMR spectra were recorded
with a Bruker Avance 300 spectrometer [300 MHz (1H) and 75 MHz (13C)] (Bruker Biospin GmbH,
Rheinstetten, Germany). Chemical shifts are expressed in parts per million (ppm) downfield from
Tetramethylsilane (TMS). Data are reported as follows: chemical shift [multiplicity (s: singlet, d:
doublet, dd: double doublet, ddd: double double doublet, dm: double multiplet, dt: double triplet, t:
triplet, td triple doublet, tm, triple multiplet, tt: triple triplet, q: quartet, quint: quintuplet, m: multiplet,
br: broad), coupling constants (J) in Hertz, integration]. The numbers of attached proton(s) in the
13C-NMR spectra were elucidated by use of JMOD experiments (DEPT 135) and are described as (CH3)
methyl; (CH2) methylene; (CH) methine; (C) quaternary carbon atoms. Shifts of 1H- and 13C-NMR
spectra were calibrated against the solvent residual isotopic peak as internal reference. Reference
peaks for the NMR spectra in (CD3S)2O: 2.50 (1H) and 39.51 (13C) ppm. Mass spectra were recorded
on a Waters Micromass LCT Premier Q-TOF Mass spectrometer (Waters, Guyancourt, France) coupled
with a Waters Alliance HPLC. Synthesis under ultrasonic irradiation was carried out with 3510E-MT
Bransonic ultrasonic apparatus (Bransonic, Danbury, CT, USA).

3.2. General Procedure for the Preparation of Compounds (4a–4j)

A mixture of 3-(bromoacetyl)-4-hydroxy-6-methyl-2H-pyran-2-one) ((1) (1 mmol), thiourea (2)
(1 mmol), benzaldehyde (3a–3j) (1 mmol) and SiW.SiO2(15%) [36] was refluxed in ethanol/water 1/1
(5 mL) with stirring for 2 h to 3.5 h at 65 ◦C or under ultrasonic activation for 1.5 h to 2 h at room
temperature (Table 2).The obtained solid was filtered off and washed with ethanol; the remaining
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solid was dissolved in acetone and SiW.SiO2 was removed by filtration. The filtrated solution was
evaporated under vacuum and the resulting product oven-dried (60 ◦C).

3.3. Characterization Data of Synthesized Compounds

4-Hydroxy-6-methyl-3-(2-[-phenylmethylidene]amino-1,3-thiazol-4-yl)-2H-pyran-2-one (4a). Yield 90%;
Yellow solid; m.p. 220 ◦C; IR neat (cm−1): 3050–3500, 2957, 2165, 1683, 1616, 1494, 1450, 1358,
1314, 1249, 1172, 1031, 997, 866, 827, 719. 1H-NMR (300 MHz, (CD3S)2O), δ ppm: 2.21 (s, 3H, CH3),
5.52 (s, 1H, H-pyrone), 6.05 (s, 1H, H-thiazole), 7.25–7.72 (m, 5H, ArH), 7.93 (s, 1H, N=C-H), 9.16 (s,
1H, OH-pyrone); 13C-NMR (75 MHz, (CD3S)2O), δ ppm: 19.68 (H3C-pyrone), 90.29 (C-3), 99.50 (C-5),
123.05 (C-S thiazole), 127.84, 128.20, 128.52, 128.63, 129.52, 130.77 (ArC and ArCH), 132.91 (C-N at
thiazole), 138.61 (C-6), 161.59 (C=N at thiazole), 164.54 (C-2), 167.35 (C=N), 169.25 (C-4); HRMS (ESI)
m/z calc for C16H13N2O3S 313.0647, found 313.0645 [M + H]+.

4-Hydroxy-3-(2-[-(3-hydroxyphenyl)methylidene]amino-1,3-thiazol-4-yl)-6-methyl-2H-pyran-2-one (4b). Yield
88%. Red solid; m.p. 128 ◦C; IR neat (cm−1): 3050–3500, 2919, 1934, 1681, 1617, 1491, 1450, 1360, 1310,
1210, 1170, 1036, 997, 873, 824, 722. 1H-NMR (300 MHz, (CD3S)2O), δ ppm: 2.21 (s, 3H, CH3), 5.47 (s,
1H, H-pyrone), 6.05 (s, 1H, H-thiazole), 6.70 (d, J = 7.90 Hz, 1H, ArH), 7.10 (d, J = 7.78 Hz, 1H, ArH),
7.25 (s, 1H, ArH), 7.36 (s, 1H, N=C-H), 7.44 (t, J1 = 7.90 Hz, J2 = 7.78 Hz, 1H, ArH), 9.15 (s, 1H, ArOH),
9.91 (s,1H, OH-pyrone); 13C-NMR (75 MHz, (CD3S)2O) δ ppm: 19.80 (CH3-pyrone), 90.69 (C-3), 99.94
(C-5), 114.95(C-S at thiazole), 118.76, 121.53, 122.26, 123.60, 128.59 (ArC and ArCH), 129.94 (C-N at
thiazole), 130.30 (ArC-OH), 140.53 (C-2), 157.69 (C=N thiazole), 164.46 (C-6), 167.46 (C=N), 169.66 (C-4);
HRMS (ESI) m/z calc for C16H13N2O4S 329.0596, found 329.0597 [M + H]+.

3-(2-[(2,4-Dihydroxyphenyl)methylidene]amino-1,3-thiazol-4-yl)-4-hydroxy-6-methyl-2H-pyran-2-one (4c).
Yield 82%. Brown solid; m.p. 237 ◦C; IR neat (cm−1): 3050–3500, 2956, 1718, 1681, 1613, 1503, 1450, 1358,
1284, 1209, 1167, 1036, 996, 862, 831, 716. 1H-NMR (300 MHz, (CD3S)2O), δ ppm: 2.20 (s, 3H, CH3),
5.43 (s, 1H, H-pyrone), 6.04 (s, 1H, H-thiazole), 6.44 (s, 1H, ArH), 6.65 (d, J = 7.88 Hz, 1H, ArH), 6.79 (d,
J = 7.88 Hz, H, ArH), 7.09 (s, 1H, N=C-H), 9.05 (s, 1H, ArOH), 10.18 (s, 1H, OH-pyrone); 13C-NMR
(75 MHz, (CD3S)2O) δ ppm: 19.52 (CH3-pyrone), 37.81 (C-3), 90.16 (C-5), 99.73, 114.89, 118.31, 120.00
(ArC and ArCH), 123.32 (C-S thiazole), 125.19 (C-N thiazole), 127.30 (C-2), 142.78, 145.04 (ArC-OH),
161.58 (C-6), 164.02 (C=N thiazole), 167.29 (C=N), 169.25 (C-4); HRMS (ESI) m/z calc for C16H13N2O5S
345.0545, found 345.0552 [M + H]+.

4-Hydroxy-6-methyl-3-(2-[(4-nitrophenyl)methylidene]amino-1,3-thiazol-4-yl)-2H-pyran-2-one (4d). Yield
85%. Brown solid; m.p. 94 ◦C; IR neat (cm−1): 3050–3500, 2957, 2174, 1684, 1608, 1563, 1510, 1450, 1358,
1303, 1250, 1179, 1027, 996, 874, 827, 721. 1H-NMR (300 MHz, (CD3S)2O), δ ppm: 2.21 (s,3H, CH3),
6.05 (s, 1H, H-thiazole), 7.60 (s, 1H, H-pyrone), 8.15 (d, J = 8.51 Hz, 2H, ArH), 8.40 (d, J = 8.51 Hz,
2H, ArH), 9.21(s, 1H, OH-pyrone), 10.17 (s, 1H, N=C-H);13C-NMR (75 MHz, (CD3S)2O), δ ppm: 19.61
(H3C-pyrone), 90.65 (C-3) 99.42 (C-5), 121.43 (C-S at thiazole), 123.35, 123.81, 130.61, 136.04, 142.80 (ArC
and ArCH), 150.54 (C-N at thiazole), 161.60 (C-6), 164.61 (ArC-NO2), 167.45 (C=N at thiazole), 167.70
(C-2), 171.43 (C=N), 192.38 (C-4);HRMS (ESI) m/z calc for C16H12N3O5S 358.0498, found 358.0495
[M + H]+.

3-(2-[(4-Chlorophenyl)methylidene]amino-1,3-thiazol-4-yl)-4-hydroxy-6-methyl-2H-pyran-2-one (4e). Yield
87%. Orange solid; mp 238 ◦C; IR neat (cm−1): 3050–3500, 2955, 1992, 1693, 1618, 1489, 1450, 1354,
1322, 1207, 1172, 1038, 997, 865, 821, 779, 721. 1H-NMR (300 MHz, (CD3S)2O), δ ppm: 2.20 (s, 3H, CH3),
5.43 (s, 1H, H-pyrone), 6.03 (s, 1H, H-thiazole), 6.47 (d, J = 8.63 Hz, 1H, ArH), 6.68 (d, J = 8.63 Hz, 1H,
ArH), 7.79 (d, J = 8.57 Hz, 1H, ArH), 7.07 (s, 1H, N=C-H), 7.12 (d, J = 8.57 Hz, 1H, ArH), 9.01 (s, 1H,
OH-pyrone); 13C-NMR(75 MHz, (CD3S)2O), δ ppm:19.50 (H3C-pyrone), 90.55 (C-3), 99.55 (C-5), 121.51
(C-S at thiazole), 128.31, 129.11, 129.68 (ArC and ArCH), 131.10 (C-N at thiazole), 132.38 (C-6), 137.75
(ArC-Cl), 161.55 (C=N at thiazole), 164.31 (C-2), 167.35 (C=N), 169.24 (C-4); HRMS (ESI) m/z calc for
C16H12ClN2O3S 347.0257, found 347.0256 [M + H]+.
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4-Hydroxy-3-(2-[(4-hydroxyphenyl)methylidene]amino-1,3-thiazol-4-yl)-6-methyl-2H-pyran-2-one (4f). Yield
88%. Orange solid; m.p. 129 ◦C; IR neat (cm−1): 3050–3500, 2957, 1717, 1683, 1621, 1512, 1450, 1359,
1285, 1213, 1175, 1037, 996, 859, 835, 723. 1H-NMR (300 MHz, (CD3S)2O), δ ppm: 2.21 (s, 3H, CH3), 5.41
(s, 1H, H-pyrone), 6.06 (s, 1H, H-thiazole), 6.69 (d, J = 8.7 Hz, 1H, ArH), 6.92 (d, J = 8.4 Hz, 1H, ArH),
7.07 (s, 1H, N=C-H), 7.04 (d, J = 8.4 Hz, 1H, ArH), 7.74 (d, J = 8.7 Hz, 1H, ArH), 9.17 (s, 2H, ArOH),
9.79 (s, 1H, OH-pyrone); 13C-NMR (75 MHz, (CD3S)2O), δ ppm: 19.50 (H3C-pyrone), 90.55 (C-3), 99.55
(C-5), 121.51 (C-S at thiazole), 128.31, 129.11, 129.68 (ArC and ArCH), 131.10 (C-N at thiazole), 132.38
(C-6), 137.75 (ArC-Cl), 161.55 (C=N at thiazole), 164.31 (C-2), 167.35 (C=N), 169.24 (C-4); HRMS (ESI)
m/z calc for C16H13N2O4S 329.0596, found 329.0595 [M + H]+.

3-(2-[(2,3-Dihydroxyphenyl)methylidene]amino-1,3-thiazol-4-yl)-4-hydroxy-6-methyl-2H-pyran-2-one (4g).
Yield 82%. Brown solid; m.p. 134 ◦C; IR neat (cm−1): 3050–3500, 2958, 2836, 1719, 1683, 1621, 1510,
1450, 1358, 1303, 1215, 1179, 1023, 995, 858, 832, 721. 1H-NMR (300 MHz, (CD3S)2O), δ ppm: 2.21 (s, 3H,
CH3), 5.41 (s, 1H, H-pyrone), 6.06 (s, 1H, H-thiazole), 6.69 (d, J = 8.75 Hz, 1H, ArH), 6.92 (d, J = 8.39 Hz,
1H, ArH), 7.07 (s, 1H, N=C-H), 7.04 (d, J = 8.39 Hz, 1H, ArH), 7.74 (d, J = 8.75 Hz, 1H, ArH), 9.17 (s, 2H,
ArOH), 9.79 (s, 1H, OH-pyrone); 13C-NMR (75 MHz, (CD3S)2O), δ ppm: 19.33 (H3C-pyrone), 90.29
(C-3), 99.49 (C-5), 115.10 (C-S at thiazole), 116.08, 123.56, 127.75, 128.55, 128.70 (ArC and ArCH), 132.04
(C-N at thiazole), 156.74 (C-6), 161.35 (ArC-OH), 163.27 (C=N at thiazole), 164.35 (C-2), 167.02 (C=N),
169.12 (C-4); HRMS (ESI) m/z calc for C16H13N2O5S 345.0545, found 345.0541 [M + H]+.

4-Hydroxy-3-(2-[(2-methoxyphenyl)methylidene]amino-1,3-thiazol-4-yl)-6-methyl-2H-pyran-2-one (4h). Yield
79%. Green solid; m.p. 242 ◦C; IR neat (cm−1): 3050–3500, 2957, 2838, 1717, 1682, 1610, 1510, 1451, 1358,
1303, 1208, 1163, 1028, 996, 856, 827, 721. 1H-NMR (300 MHz, (CD3S)2O), δ ppm: 2.17 (s, 3H, CH3),
3.72 (s, 3H, OCH3), 5.42 (s, 1H, H-pyrone), 6.05 (s, 1H, H-thiazole), 6.79 (t, J1 = 11.31 Hz, J2 = 9.77 Hz
1H, ArH), 6.92 (d, J = 11.31 Hz, 1H, ArH), 7.09 (s, 1H, N=C-H), 7.22 (d, J = 10.51 Hz, 1H, ArH), 7.67 (t,
J1 = 11.31 Hz, J2 = 9.77 Hz 1H, ArH), 7.87 (s, 1H, N=C-H), 9.86 (s, 1H, OH-pyrone); 13C-NMR (75 MHz,
(CD3S)2O), δ ppm: 19.46 (H3C-pyrone), 40.33 (OCH3), 55.16 (ArC-OCH3), 99.77 (C-3), 113.67 (C-5),
114.56 (C-S at thiazole), 115.66, 123.75, 129.01 (ArC and ArCH), 129.45 (C-N at thiazole), 158.55 (C=N at
thiazole), 161.63 (C-2), 163.91 (C-6), 167.17 (C=N), 169.25 (C-4); HRMS (ESI) m/z calc for C17H15N2O4S
343.0753, found 343.0748 [M + H]+.

4-Hydroxy-3-(2-[(4-methoxyphenyl)methylidene]amino-1,3-thiazol-4-yl)-6-methyl-2H-pyran-2-one (4i). Yield
87%. Yellow solid; m.p. 204 ◦C; IR neat (cm−1): 3050–3500, 2956, 1718, 1683, 1620, 1489, 1450, 1358,
1264, 1210, 1169, 1034, 995, 870, 822, 721. 1H-NMR (300 MHz, (CD3S)2O), δ ppm: 2.20 (s, 3H, CH3), 3.71
(s, 3H, OCH3), 5.46 (s, 1H, H-pyrone), 6.02 (s, 1H, H-thiazole), 6.70 (d, J = 11.31 Hz, 2H, ArH), 7.09 (s,
1H, N=C-H), 7.17 (d, J = 11.31 Hz, 2H, ArH), 9.90 (s, 1H, OH-pyrone); 13C-NMR (75 MHz, (CD3S)2O),
δ ppm: 19.59 (H3C-pyrone), 55.17 (OCH3), 62.80 (ArC-OCH3), 90.26 (C-3), 99.52 (C-5), 112.95 (C-S
at thiazole), 119.86, 122.87, 128.08, 129.75 (ArC and ArCH), 140.03 (C-N at thiazole), 159.28 (C=N at
thiazole), 161.63 (C-2), 164.61 (C-6), 167.37 (C=N), 169.09 (C-4); HRMS (ESI) m/z calc for C17H15N2O4S
343.0753, found 343.0746 [M + H]+.

4-Hydroxy-3-(2-[(3-methoxyphenyl)methylidene]amino-1,3-thiazol-4-yl)-6-methyl-2H-pyran-2-one (4j). Yield
85%. Orange solid; m.p. 227 ◦C; IR neat (cm−1): 3050–3500, 2956, 1718, 1683, 1620, 1489, 1450, 1358,
1264, 1210, 1169, 1034, 995, 870, 822, 721. 1H-NMR(300 MHz, (CD3S)2O)), δ ppm: 2.21 (s, 3H, CH3), 3.71
(s, 3H, OCH3), 5.48 (s, 1H, H-pyrone), 6.07 (s, 1H, H-thiazole), 6.78 (s, 1H, ArH), 6.84 (d, J = 11.31 Hz,
1H, ArH), 6.87 (d, J = 10.51 Hz, 1H, ArH), 7.23 (t, J1 = 11.31 Hz, J2 = 10.51 Hz, 1H, ArH), 7.28 (s, 1H,
N=C-H), 9.21 (s, 1H, OH-pyrone);13C-NMR(75 MHz, (CD3S)2O), δ ppm: 19.51 (H3C-pyrone), 55.77
(OCH3), 90.26 (C-3), 99.52 (C-5), 112.53(C-S at thiazole), 113.98, 120.08, 122.87, 128.16, 129.42 (ArC and
ArCH), 140.03 (C-N at thiazole), 158.81 (C=N and ArC-OCH3), 161.37 (C=N at thiazole), 164.45 (C-2),
167.29 (C-6), 169.18 (C-4); HRMS m/z calc for C17H15N2O4S 343.0753, found 343.0753 [M + H]+.
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4. Pharmacological Assay

4.1. Antioxidant Activity Evaluation

The antioxidant capacity of compounds 4a–4k was evaluated by the method of Wang et al.
52(1998) [52]. The absorbance was measured at 517 nm against a blank, i.e., without DPPH. All tests
were run in triplicate and an average was used. Decrease of DPPH solution absorbance indicates
an increase of DPPH radical scavenging activity. The amount of sample necessary to decrease the
absorbance of DPPH by 50% (IC50) was calculated graphically and the percentage inhibition was
calculated according to the equation:

% inhibition =
(Ao−At)

Ao
× 100

where Ao is the absorbance of the control at t = 0 min; and At is the absorbance of the antioxidant at
t = 30 min. The food preservative butylhydroxytoluene (BHT) was used as positive control.

4.2. Antibacterial Assay

Clinical isolation of two Gram-negative (Escherichia coli ATCC 25922 and Pseudomonas aeruginosa
ATCC 27853) and one Gram-positive (Staphylococcus aureus ATCC 43300) bacteria strains was obtained
from the Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, Houari
Boumediene University of Sciences and Technology (USTHB), Algeria. The minimum inhibitory
concentration (MIC) values were evaluated using the serial dilution method according to standard
methods (NCCLS, 532003) [53]. Stock solutions of the compounds 4a–4k and antibiotic standards
(amoxicillin and ciprofloxacin) were prepared in DMSO. Dilution series, using MHB, were prepared
from 10 to 200 µg/mL. After incubation at 37 ◦C for 24 h, the microorganism growth inhibition
was evaluated by measuring absorbance at 630 nm, using a spectrophotometer. Experiments were
performed in triplicate at three different times.

5. Conclusions

In conclusion, an efficient and simple one-pot multi-component condensation procedure was
introduced and developed for the synthesis of new thiazole derivatives, under conventional heating
or under ultrasound irradiation, using SiW.SiO2 as a reusable catalyst. The present method is
bestowed with several advantages, such as an inexpensive and efficient catalyst, high reaction
rate, high yield, simple workup procedure and high regioselectivity. Utilizing ultrasonic irradiation
techniques provided dramatic improvements in terms of higher yields and shorter reaction times
compared with the conventional heating method. This procedure would be a valuable addition to the
current methodologies.

The preliminary studies of these compounds proved that the thiazole ring enhances the
antibacterial as well asantioxidantactivities of the synthesis thiazoles, which might serve as new
templates in the synthesis and development of potent therapeutics.

Supplementary Materials: Supplementary materials are available online.
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