

Article Improved Synthesis of 1-O-Acyl-β-D-Glucopyranose Tetraacetates

Yu Chen^{1,2}, Huan Lu², Yanyu Chen¹, Wansheng Yu², Hui Dai² and Xianhua Pan^{1,2,*}

- ¹ School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Rd., Shanghai 201418, China; chenyu@sit.edu.cn (Y.C.); 156071203@mail.sit.edu.cn (Y.C.)
- ² Shanghai Research Institute of Fragrance and Flavor Industry, 480 Nanning Rd., Shanghai 200232, China; aijiudu@sina.com (H.L.); yu102658@126.com (W.Y.); ddai_hui@126.com (H.D.)
- * Correspondence: panxh@sit.edu.cn; Tel./Fax: +86-21-5496-1786

Academic Editor: Roman Dembinski Received: 16 February 2017; Accepted: 17 April 2017; Published: 21 April 2017

Abstract: An improved synthesis of 1-*O*-acyl glucosyl esters that avoids the use of expensive Ag reagents as well as the hydrolysis of unstable glucosyl bromides is reported. Notably, β -configuration products were obtained exclusively in good yields.

Keywords: glucosyl esters; glucosyl bromide; aromatic acids; aliphatic acids

1. Introduction

Numerous glycosyl esters have been investigated because of their biologically activity. Compounds such as tuliposide-A and tuliposide-B show bacteriotoxic and fungitoxic effects [1,2]. Some saturated fatty acid glycosyl esters were examined for antitumor activity [3]. In addition, glycosyl esters have also been used in cosmetics, detergents, oral-care products and medical supplies as flavor precursors.

The fact that few 1-O-acyl glycosyl esters have been found in Nature, has led to the development of various synthetic methods to access these compounds. The Koenigs-Knorr reaction using glycosyl bromide and an acid is the most attractive. Several publications have disclosed the glycosylation of carboxylic acids promoted by Ag catalysts through Koenigs-Knorr reaction (**1a**) [4–6]. However, the need for expensive Ag catalysts (at least one equivalent) has limited its application (Scheme 1).

Scheme 1. Glycosylation of carboxylic acids promoted by Ag catalysts.

Therefore, other alternative methods have been reported (Scheme 2), involving compounds such as orthoesters [7,8], trifluoroacetates [9,10], TMSET glycosides [11], glucosyl fluorides [12–15], trichloroacetimidates [16], etc. In addition, the activation of the carboxylic acid group using the Mitsunobu protocol [17], DCC [18–20] or EDCI [21] were also explored. However several drawbacks including troublesome preparation of the intermediates, the use of toxic reagents or the harsh conditions of these methods, make the reactions challenging.

Scheme 2. Other alternative methods.

2. Results and Discussion

Among the 1-O-acyl glycosyl esters, 1-O-acyl glucosyl esters are the most important and common. The formation of 1-O-acyl glucosyl esters by condensation of acids with glucosyl bromide in aqueous/DCM in the presence of an inorganic base seemed to be a good choice [22], but in our hands this reaction gave low yields for most substrates when run on a larger scale (1 g), with lactol 4 (as an α/β mixture) being formed during the condensation. The reason was found to be the hydrolysis of the glucosyl bromide 1 in the presence of H₂O. Herein, we describe the improvement of this synthesis and preparation of a series of glucosyl esters.

We started to study this reaction with benzoic acid (**2**) which was reacted with α -glucosyl bromide **1** in the presence of tricaprylylmethylammonium chloride (a mixture of C₈-C₁₀ species in which C₈ is dominant, sold under the brand name Aliquat 336[®]) as the phase transfer catalyst (PTC). From Table **1**, we can see that the reaction was greatly influenced by water. The more water added, the more compound **4** was formed in the reaction (Table **1**, entries 1–3). When only DCM was used as the solvent, product **3** was obtained in high yield, with less than 5% of the lactol **4** (Table **1**, entry **4**). Considering 0.5 equiv. of water would be formed in the reaction with K₂CO₃ itself, 4 Å molecular sieves (4 Å MS) were added, which increased the yield by 6% (Table **1**, entry **5**). It was found that K₂CO₃ was the best base after comparing different ones according to the yield and the cost (Table **1**, entries 6–10). The reaction was completely suppressed when NaOH or Et₃N were used as the base with recycled compound **1**, probably because of the instability of the PTC in the presence of stronger base (Table **1**, entry **9**) or due to the weaker basicity of Et₃N (Table **1**, entry 10). Notably, compared and

in contrast with the known data [9–11,23,24] the β -configuration product was exclusively obtained through SN₂ substitution,.

ACO Br +	HO_Ph O A 2	base DCM/H ₂ O Jiquat 336 [®] Acco OAc OAc OAc	Ph ⁺ 0	AACO ACO 4
Entry	Base	H ₂ O	3 ^b	4 ^b
1	K ₂ CO ₃	5 mL (278 mmol) ^c	35%	55%
2	K ₂ CO ₃	2.5 mL (139 mmol)	54%	35%
3	K_2CO_3	0.5 mL (27.8 mmol)	78%	12%
4	K ₂ CO ₃	-	88%	4%
5	K ₂ CO ₃	_ d	94%	trace
6	Na ₂ CO ₃	_ d	80%	trace
7	NaHCO ₃	_ d	69%	trace
8	Cs_2CO_3	_ d	90%	trace
9	NaOH	_ d	NR	trace
10	Et ₃ N	_ d	NR	trace

Table 1. The influence of water and the screening of base for the reaction of 1 with 2^a.

^a The reaction was conducted with **1** (2.5 mmol), **2** (5 mmol), base (5 mmol) and Aliquat 336[®] (0.25 mmol) in 35 mL DCM with or without H₂O. ^b Isolated yield. ^c About 115 equiv. of H₂O to glucosyl bromide was used according to reference 22. ^d 0.25 g 4 Å molecular sieve was added.

Next, the PTC and the solvent were varied. From Table 2, it seems that the reaction did not happen without a PTC. Only 10% mol of a PTC such as tetrabutylammonium bromide (TBAB), tetraethylammonium bromide (TEAB), benzyltriethylammonium chloride (BTEAC), hexadecyl-trimethylammonium bromide (CTMAB) led the reaction to give the product in high yield (Table 2, entries 1–4).

Table 2. Variation of PTC and the solvent ^a.

Aco Br 1	HO Ph O 2	K ₂ CO ₃ solvent/4Å MS 10% mol PTC	Acco Ph OAc Ph OAc Ph
Entry	РТС	Solvent	3 ^b
1	TBAB	DCM	99%
2	TEAB	DCM	99%
3	BEAC	DCM	96%
4	CMAB	DCM	97%
5	-	DCM	NR
6	TEAB	THF	<10%
7	TEAB	CH ₃ CN	78%
8	TEAB	DMF	<10%

^a The reaction was conducted with 1 (2.5 mmol), 2 (5 mmol), K_2CO_3 (5 mmol), PTC (0.25 mmol) and 0.25 g 4 Å MS in 35 mL solvent. ^b Isolated yield.

In the comparison of the solvents, DCM proved to be the best solvent (Table 2, entries 6–8). The role of the PTC is unclear, but it seems to increase the solubility of carboxylate formed at the beginning of the reaction, due to the quite low solubility of the latter.

Next, various acids were chosen to verify the scope of this reaction (Tables 3 and 4). Aromatic acids with different kind of substituent groups at different positions on benzene ring, gave the desired

product in 80–99% yield. For example, electron-donating groups, such as methoxy, benzyloxy or methyl could all make the reaction happen smoothly (Table 3, entries 1–5). Electron-withdrawing group also produced the corresponding products in 85–99% yield (Table 3, entries 6–8). Similarly, β -naphtoic acid gave product **22** quantitatively (Table 3, entry 9). In the comparison experiments, the yield decreased evidently because compound **1** is sensitive to hydrolysis as described before when the reaction was conducted in the presence of water (Table 3, entry 1, 3, 7 and 9). The β -configuration of the products was confirmed by 2D-NMR data of compound **8** [25]

Entry	Aromatic Acids	Product	Yield ^b (%)
1	HO O O Me 5	Ageo Ac OAc OAc OAc OMe	95 ^c
2	HO O O T	AASO OAC OAC OAC S	98
3	HO O O 9	Ageo OAc OAc OAc OAc OAc OMe	91 ^c
4	HO O O Me O O Me O Me O Me O Me O Me O M	Acco OAc OMe OMe OMe OMe	80
5	HO HO Me 13	Aggo OAc OAc OAc OAc OAc O Me	96
6	HO O 15	ALEO OAC OAC OAC OAC OAC OAC OAC	99
7	HO O CI 17	$A_{ACO} \xrightarrow{OAc}_{OAc} \xrightarrow{F}_{OAc}$ $A_{ACO} \xrightarrow{O}_{OAc} \xrightarrow{CI}_{CI}$ 18	85 ^c
8		$A_{ABO} \rightarrow O_{OAC} \rightarrow O_{O$	90
9	HO ₂ C 21	AACO OAC OAC OAC OAC OAC OAC	99 c

Table 3. The reaction of glucosyl bromide 1 with aromatic acids ^a.

^a The reaction was conducted with 1 (2.5 mmol), aromatic acid (5 mmol), K_2CO_3 (5 mmol), TEAB (0.25 mmol) and 0.25 g 4 Å MS in 35 mL DCM. ^b Isolated yield. ^c 28–54% yields of these compounds were obtained when 5 mL H₂O was added in the reaction mixture.

Entry	Aliphatic Acids	Product	Yield ^b (%)
1	HO O 23	$A_{A} = 0$	95 ^c
2	HO F F 25	AASO OAC F AASO OAC F OAC F F F	97
3	HO O 27	AACO OAC OAC OAC OAC OAC	91
4	HO 0 29	AARO OAC OAC OAC OAC OAC OAC OAC	99 c
5		$\begin{array}{c} OAc \\ O \\ O \\ OAc \\ O \\ OAc \\ 0 \\ 32 \end{array}$	72
6	HO 0 33	$A_{ACO} \rightarrow O_{AC} \rightarrow $	92 ^c
7		AARO OAC OAC OAC OAC OAC OAC	96
8	H0 0 37	ALCO OAC OAC OAC 38	79
9	HO 0 39	ALCO OAC OAC O OAC O OAC O 40	94
10		$A_{\text{A}} = \begin{bmatrix} O & A_{\text{C}} \\ O & O \\ O & A_{\text{C}} \end{bmatrix} \begin{bmatrix} O & A_{\text{C}} \\ O & O \\ O & O \\ O & O \end{bmatrix}$	99 c
11	HO 0 43	Ageo OAc OAc OAc OAc	78

Table 4. The reaction of glucosyl bromide **1** with aliphatic acids ^a.

^a The reaction was conducted with 1 (2.5 mmol), aliphatic acid (5 mmol), K_2CO_3 (5 mmol), TEAB (0.25 mmol) and 0.25 g 4 Å MS in 35 mL DCM. ^b Isolated yield. ^c 40–58% yields of these compounds were obtained when 5 mL H₂O was added to the reaction mixture.

Not only aromatic acids, but aliphatic acids could be used in the reaction too. The results are listed in Table 4. Phenylacetic acid (23) and 2,4,5-trifluorophenylacetic acid (25) provided the corresponding product in no less than 95% yield (Table 4, entries 1–2). Good results were also obtained using other aliphatic acids. For example, isobutyric acid (27) and isovaleric acid (29) gave the products in more than 90% yield respectively. Lower yield was obtained for pivalic acid (31), probably due to the steric hindrance (Table 4, entries 3–5).

In addition, a long chain glucosyl ester was prepared in good yield from acid **33** (Table 4, entry 6). Satisfactorily, this reaction could be also be extended to aliphatic acids with olefins and rings (Table 4, entries 7–11). For the same reason as before, the results were not good when water was added in the comparison sample due to the hydrolysis of **1** (Table 4, entry 1, 4, 6 and 10).

It is noteworthy that when we tried to prepare two 1-*O*-acyl- β -D-glucopyranose tetraacetates on a large scale (**3** and **24**, more than 100 g), these could be purified without column chromatography. It seems that this method could be applicable in industrial manufacture due to the high yields generally obtained. The scaled-up synthesis of other compounds and the study of other kinds of glycosylation are now underway.

3. Materials and Methods

3.1. General Methods

All solvents and reagents, except for compound **1**, were purchased from the commercial supplier Tansoole (Shanghai, China) and were used without further purification. Compound **1** was prepared according to the known method [26]. 4 Å MS were activated at 600 °C for one-day and kept in a dessicator. The progress of the reactions was assessed by thin-layer chromatography (TLC) with GF₂₅₄ silica-gel precoated sheets using EtOAc/hexane as eluent. Column chromatography was performed on silica gel (200–300 mesh) using EtOAc/hexane or EtOAc/petroleum ether as eluent. ¹H (400 MHz) and ¹³C (100 MHz) NMR spectra were recorded on an Avance 400 spectrometer (Bruker, Karlsruhe, Germany) in CDCl₃ using tetramethylsilane (TMS) as internal standards. 2D-NMR was recorded on a Bruker Avance 500 spectrometer. *J* values were given in Hertz. Mass spectra a high resolution mass spectra were recorded on an Elemental Vario-III CHN analyzer (Elementar Analysensysteme GmbH, Hanau, Germany). Optical rotations were measured on a WZZ-2S polarimeter (Suoguang Electric Tech Co., Shanghai, China) in DCM, with concentrations denoted in *g*/100 mL. Melting points were determined on a SGW-X4 melting point instruments (Shenguang Instrument Co., Ltd., Shanghai, China).

3.2. General Procedure for the Synthesis of 1-O-Acyl-β-D-Glucopyranose Tetraacetates

A mixture of glucosyl bromide 1 (1.03 g, 2.5 mmol), acid (5.0 mmol), K_2CO_3 (0.69 g, 5.0 mmol), TEAB (0.05 g, 0.25 mmol) and 4 Å MS (0.25 g) in 35 mL DCM was stirred 24–48 h at room temperature. Next, the insoluble substances, made up of the slightly soluble potassium carboxylate, 4 Å MS and other salts, were filtered off. The filtrate was washed with water, and the separated organic layer was then washed with 25% aqueous K_2CO_3 to removed any remaining potassium carboxylate. After drying over MgSO₄ and concentration in vacuo, the residue was purified via silica gel column chromatography using EtOAc/hexane or EtOAc/petroleum ether (1:10 to 1:1) as eluents to yield the desired product.

3.3. Scaled-Up Synthesis of Compound 3

A mixture of glucosyl bromide **1** (150.0 g, 0.36 mol), benzoic acid **2** (89.0 g, 0.73 mol), K_2CO_3 (100.7 g, 0.73 mol), TEAB (7.5 g, 36 mmol) and 4 Å MS (36.0 g) in 5 L DCM was stirred 24 h at room temperature. Next, the insoluble substances, made up of the slightly soluble potassium benzoate, 4 Å MS and other salts, were filtered off. The filtrate was washed by water, and the separated organic layer was then washed with 25% aqueous K_2CO_3 to remove any remaining potassium benzoate. After

drying over MgSO₄ and concentration in vacuo, the crude was purified in refluxing EtOH to give **3** as a white solid in 89% yield after cooling down.

3.4. Scaled-Up Synthesis of Compound 24

A mixture of glucosyl bromide 1 (150.0 g, 0.36 mol), phenylacetic acid **23** (99.3 g, 0.73 mol), K_2CO_3 (100.7 g, 0.73 mol), TEAB (7.5 g, 36 mmol) and 4 Å MS (36.0 g) in 5 L DCM was stirred 26 h at room temperature. After work-up as described in Section 3.3, compound **24** was obtained as a white solid in 78% yield after cooling down.

1-*O*-*Benzoyl*-2,3,4,6-*tetra*-*O*-*acetyl*-β-D-*glucopyranose* (**3**). White solid, m.p. 143–144 °C; $[\alpha]_D^{20} = +55.6$ (*c* = 0.5, DCM); ¹H-NMR: δ = 1.99 (s, 3H), 2.04 (s, 3H), 2.05 (s, 3H), 2.07 (s, 3H), 3.93–3.97 (m, 1H), 4.14 (dd, *J* = 2.0, 12.8 Hz, 1H), 4.33 (dd, *J* = 4.4, 12.4 Hz, 1H), 5.18–5.23 (m, 1H), 5.34–5.37 (m, 2H), 5.93–5.95 (m, 1H) [9,11,27], 7.46 (t, *J* = 8.0 Hz, 1H), 7.61 (t, *J* = 7.2 Hz, 1H), 8.05 (dd, *J* = 1.2, 8.0 Hz, 2H); ¹³C-NMR: δ = 20.45, 20.49, 20.51, 20.58, 61.4, 67.9, 70.1, 72.6, 72.7, 92.2 [23,28], 128.4, 128.6, 130.1, 133.9, 164.4, 169.3, 169.4, 170.0, 170.5; ESI-MS (*m*/*z*) 475 [M + Na]⁺; HRMS calcd. for C₂₁H₂₄O₁₁ 452.1330, found 452.1321; Anal. Calcd. for C₂₁H₂₄O₁₁ (%): C, 55.75; H, 5.35. Found: C, 55.85; H, 5.26.

1-*O*-(2-*Methoxybenzoyl*)-2,3,4,6-tetra-O-acetyl-β-D-glucopyranose (**6**). White solid, m.p. 89–90 °C; $[\alpha]_D^{20}$ = +71.2 (*c* = 0.5, DCM); ¹H-NMR: δ = 2.01 (s, 3H), 2.04 (s, 3H), 2.05 (s, 3H), 2.07 (s, 3H), 3.91 (s, 3H), 3.91–3.94 (m, 1H), 4.14 (dd, *J* = 2.0, 12.8 Hz, 1H), 4.33 (dd, *J* = 4.4, 12.4 Hz, 1H), 5.17–5.22 (m, 1H), 5.31–5.33 (m, 2H), 5.95–5.97 (m, 1H), 6.97–7.01 (m, 2H), 7.50–7.55 (m, 1H), 7.87 (dd, *J* = 1.6, 8.0 Hz, 2H); ¹³C-NMR: δ = 20.44, 20.46, 20.5, 20.6, 55.7, 61.5, 67.8, 70.2, 72.6, 72.8, 91.8, 112.0, 117.4, 120.1, 132.4, 134.8, 160.1, 163.2, 169.2, 169.3, 170.0, 170.4; ESI-MS (*m*/*z*) 505 [M + Na]⁺; Anal. Calcd. for C₂₂H₂₆O₁₂ (%): C, 54.77; H, 5.43. Found: C, 54.90; H, 5.30.

1-*O*-(3,4-*Dimethoxybenzoyl*)-2,3,4,6-*tetra*-*O*-*acetyl*-β-D-*glucopyranose* (8). White solid, m.p. 135–136 °C; [α]_D²⁰ = +75.6 (*c* = 0.5, DCM); ¹H-NMR: δ = 1.99 (s, 3H), 2.04 (s, 3H), 2.06 (s, 3H), 2.08 (s, 3H), 3.94 (s, 3H), 3.95 (s, 3H), 3.96–3.98 (m, 1H, H-5), 4.14 (dd, *J* = 2.0, 12.4 Hz, 1H, H-6), 4.33 (dd, *J* = 4.4, 12.8 Hz, 1H, H-6), 5.18–5.23 (m, 1H, H-4), 5.34–5.36 (m, 2H, H-3 and H-2), 5.88–5.90 (m, 1H, H-1), 6.91 (d, *J* = 8.4 Hz, 1H), 7.54 (d, *J* = 2.0 Hz, 1H), 7.70 (dd, *J* = 1.6, 8.0 Hz, 2H); ¹³C-NMR: δ = 20.5, 20.6, 55.9, 56.0, 61.4 (C-6), 67.9 (C-4), 70.1 (C-2), 72.5 (C-3), 72.6 (C-5), 92.2 (C-1), 110.4, 112.2, 120.6, 124.5, 148.7, 153.8, 164.1, 169.3, 169.4, 170.0, 170.5; ESI-MS (*m*/*z*) 535 [M + Na]⁺; Anal. Calcd. for C₂₃H₂₈O₁₃ (%): C, 53.91; H, 5.51. Found: C, 54.00; H, 5.65.

1-O-(4-Benzyloxy-3-methoxybenzoyl)-2,3,4,6-tetra-O-acetyl-β-D-glucopyranose (**10**). White solid, m.p. 126–127 °C; $[\alpha]_D^{20}$ = +27.5 (*c* = 0.5, DCM); ¹H-NMR: δ = 1.98 (s, 3H), 2.04 (s, 3H), 2.05 (s, 3H), 2.07 (s, 3H), 3.92–3.96 (m, 1H), 3.94 (s, 3H), 4.14 (dd, *J* = 2.4, 12.4 Hz, 1H), 4.33 (dd, *J* = 4.4, 12.4 Hz, 1H), 5.17–5.21 (m, 1H), 5.2 (s, 3H), 5.33–5.35 (m, 2H), 5.87–5.89 (m, 1H), 6.91 (d, *J* = 8.8 Hz, 1H), 7.32–7.44 (m, 5H), 7.55 (d, *J* = 1.6 Hz, 1H), 7.62 (dd, *J* = 1.6, 8.4 Hz, 1H); ¹³C-NMR: δ = 20.6, 20.7, 56.1, 61.5, 67.9, 70.2, 70.7, 72.5, 72.7, 92.2, 112.5, 112.7, 120.9, 124.3, 127.2, 128.1, 128.7, 136.1, 149.2, 152.9, 164.2, 169.3, 169.4, 170.0, 170.6; ESI-MS (*m*/*z*) 611 [M + Na]⁺; Anal. Calcd. for C₂₉H₃₂O₁₃ (%): C, 59.18; H, 5.48. Found: C, 59.01; H, 5.60.

1-*O*-(3,4,5-*Trimethoxybenzoyl*)-2,3,4,6-*tetra*-*O*-*acetyl*-β-D-*glucopyranose* (**12**). White solid, m.p. 55–56 °C; [α]_D²⁰ = +26.9 (*c* = 0.5, DCM); ¹H-NMR: δ = 1.97 (s, 3H), 2.02 (s, 3H), 2.03 (s, 3H), 2.05 (s, 3H), 3.85–3.95 (m, 1H), 3.88 (s, 9H), 4.12 (d, *J* = 12.8 Hz, 1H), 4.32 (dd, *J* = 4.4, 12.8 Hz, 1H), 5.16–5.20 (m, 1H), 5.30–5.36 (m, 2H), 5.83–5.85 (m, 1H), 7.28 (s, 2H); ¹³C-NMR: δ = 20.4, 20.5, 20.6, 56.2, 60.8, 61.4, 67.9, 70.2, 72.3, 72.6, 92.4, 107.3, 123.1, 142.9, 152.9, 164.0, 169.3, 169.4, 170.0, 170.5; ESI-MS (*m*/*z*) 565 [M + Na]⁺; Anal. Calcd. for C₂₄H₃₀O₁₄ (%): C, 53.14; H, 5.57. Found: C, 53.31; H, 5.71.

 $1-O-(2,5-Dimethylbenzoyl)-2,3,4,6-tetra-O-acetyl-\beta-D-glucopyranose$ (14). Syrup; $[\alpha]_D^{20} = +78.3$ (c = 0.5, DCM); ¹H-NMR: $\delta = 1.94$ (s, 3H), 1.97 (s, 3H), 1.98 (s, 3H), 2.00 (s, 3H), 2.28 (s, 3H), 2.48 (s, 3H), 3.84–3.88 (m, 1H), 4.07 (dd, J = 2.4, 12.4 Hz, 1H), 4.26 (dd, J = 4.4, 12.4 Hz, 1H), 5.11–5.16 (m, 1H), 5.25–5.28 (m,

2H), 5.86–5.88 (m, 1H), 7.07 (d, J = 8.0 Hz, 1H), 7.18 (d, J = 8.0 Hz, 1H), 7.69 (s, 1H); ¹³C-NMR: $\delta = 20.53$, 20.56, 20.6, 20.7, 21.4, 21.5, 61.5, 67.9, 70.3, 72.7, 72.9, 91.9, 127.0, 131.7, 131.8, 133.9, 135.6, 138.4, 165.0, 169.3, 169.5, 170.2, 170.7; ESI-MS (m/z) 503 [M + Na]⁺; Anal. Calcd. for C₂₃H₂₈O₁₁ (%): C, 57.50; H, 5.87. Found: C, 57.60; H, 5.79.

1-*O*-(3-*Bromobenzoyl*)-2,3,4,6-tetra-*O*-acetyl-β-D-glucopyranose (**16**). White solid, m.p. 119–120 °C; $[\alpha]_D^{20}$ = +50.7 (*c* = 0.5, DCM); ¹H-NMR: δ = 2.00 (s, 3H), 2.05 (s, 3H), 2.06 (s, 3H), 2.08 (s, 3H), 3.92–3.97 (m, 1H), 4.14 (dd, *J* = 2.0, 12.8 Hz, 1H), 4.33 (dd, *J* = 4.4, 12.4 Hz, 1H), 5.17–5.22 (m, 1H), 5.33–5.35 (m, 2H), 5.92–5.94 (m, 1H), 7.35 (t, *J* = 8.0 Hz, 1H), 7.72–7.75 (m, 1H), 7.95–7.98 (m, 1H), 8.18 (t, *J* = 1.6 Hz, 1H); ¹³C-NMR: δ = 20.50, 20.53, 20.55, 20.6, 61.4, 67.8, 70.1, 72.5, 72.7, 92.5, 122.6, 128.6, 130.2, 130.4, 133.0, 136.9, 163.2, 169.3, 169.4, 170.0, 170.5; ESI-MS (*m*/*z*) 553 [M + Na]⁺; Anal. Calcd. for C₂₁H₂₃BrO₁₁ (%): C, 47.47; H, 4.36. Found: C, 47.50; H, 4.41.

1-*O*-(2-*Chloro*-4-*fluorobenzoyl*)-2,3,4,6-*tetra*-*O*-*acetyl*-β-D-*glucopyranose* (**18**). White solid, m.p. 116–117 °C; $[\alpha]_D^{20} = +72.2 \ (c = 0.5, DCM); {}^1\text{H-NMR}: \delta = 2.00 \ (s, 3H), 2.03 \ (s, 3H), 2.04 \ (s, 3H), 2.07 \ (s, 3H), 3.90–3.94 \ (m, 1H), 4.13 \ (dd, J = 2.0, 12.0 \ Hz, 1H), 4.32 \ (dd, J = 4.8, 12.4 \ Hz, 1H), 5.15–5.20 \ (m, 1H), 5.30–5.33 \ (m, 2H), 5.92–5.93 \ (m, 1H), 7.03–7.08 \ (m, 1H), 7.21 \ (dd, J = 6.8, 8.4 \ Hz, 1H), 7.97 \ (dd, J = 2.0, 6.0 \ Hz, 1H); {}^{13}\text{C-NMR}: \delta = 20.5, 20.6, 61.4, 67.7, 70.1, 72.6, 72.8, 92.3, 114.4 \ (d, J = 21.7 \ Hz), 119.0 \ (d, J = 24.5 \ Hz), 123.6 \ (d, J = 3.4 \ Hz), 134.5 \ (d, J = 9.9 \ Hz), 137.1 \ (d, J = 10.7 \ Hz), 161.8, 164.7 \ (d, J = 257.1 \ Hz), 169.2, 169.3, 170.0, 170.5; ESI-MS \ (m/z) 527 \ [M + Na]^+; HRMS calcd for C₂₁H₂₂ClFO₁₁ 504.0808, found 504.0805; Anal. Calcd. for C₂₁H₂₂ClFO₁₁ (%): C, 49.96; H, 4.39. Found: C, 49.62; H, 4.46.$

1-*O*-(3-*Nitrobenzoyl*)-2,3,4,6-tetra-*O*-acetyl-β-D-glucopyranose (**20**). White solid, m.p. 109–110 °C; $[\alpha]_D^{20}$ = +32.9 (*c* = 0.5, DCM); ¹H-NMR: δ = 1.99 (s, 3H), 2.03 (s, 3H), 2.04 (s, 3H), 2.07 (s, 3H), 3.93–3.97 (m, 1H), 4.13 (dd, *J* = 2.0, 12.0 Hz, 1H), 4.31 (dd, *J* = 4.4, 12.8 Hz, 1H), 5.17–5.21 (m, 1H), 5.33–5.35 (m, 2H), 5.94–5.96 (m, 1H), 7.68 (t, *J* = 8.0 Hz, 1H), 8.32–8.35 (m, 1H), 8.44–8.46 (m, 1H), 8.86–8.87 (m, 1H); ¹³C-NMR: δ = 20.4, 20.5, 20.6, 61.4, 67.8, 70.1, 72.3, 72.8, 92.8, 125.1, 128.2, 130.0, 130.2, 135.5, 148.3, 162.5, 169.2, 169.4, 170.0, 170.5; ESI-MS (*m*/*z*) 520 [M + Na]⁺; Anal. Calcd. for C₂₁H₂₃NO₁₃ (%): C, 50.71; H, 4.66; N, 2.82. Found: C, 50.65; H, 4.78; N, 2.70.

1-O-(2-Naphthoyl)-2,3,4,6-tetra-O-acetyl-β-D-glucopyranose (**22**). White solid, m.p. 135–136 °C; $[\alpha]_D^{20}$ = +47.8 (*c* = 0.5, DCM); ¹H-NMR: δ = 1.99 (s, 3H), 2.01 (s, 3H), 2.07 (s, 3H), 2.08 (s, 3H), 3.97–4.00 (m, 1H), 4.16 (dd, *J* = 2.0, 12.8 Hz, 1H), 4.35 (dd, *J* = 4.4, 12.4 Hz, 1H), 5.24 (t, *J* = 9.6 Hz, 1H), 5.35–5.44 (m, 2H), 6.01 (d, *J* = 8.0 Hz, 1H), 7.55–7.59 (m, 1H), 7.60–7.64 (m, 1H), 7.88–7.91 (m, 2H), 7.98 (d, *J* = 7.2 Hz, 1H), 8.04 (dd, *J* = 2.0, 8.8 Hz, 1H), 8.63 (d, *J* = 0.8 Hz, 1H); ¹³C-NMR: δ = 20.51, 20.56, 20.58, 20.6, 61.5, 67.9, 70.3, 72.7, 72.8, 92.4, 125.1, 125.6, 126.9, 127.8, 128.5, 128.8, 129.6, 132.2, 132.3, 135.9, 164.7, 169.4, 169.5, 170.1, 170.6; ESI-MS (*m*/*z*) 525 [M + Na]⁺; Anal. Calcd. for C₂₅H₂₆O₁₁ (%): C, 59.76; H, 5.22. Found: C, 59.89; H, 5.15.

1-*O*-(2-*Phenylacetyl*)-2,3,4,6-tetra-*O*-acetyl-β-D-glucopyranose (**24**). White solid, m.p. 108–109 °C; $[\alpha]_D^{20}$ = +91.7 (*c* = 0.5, DCM); ¹H-NMR: δ = 1.76 (s, 3H), 1.99 (s, 3H), 2.03 (s, 3H), 2.09 (s, 3H), 3.66 (s, 2H), 3.82–3.86 (m, 1H), 4.12 (dd, *J* = 2.0, 12.8 Hz, 1H), 4.30 (dd, *J* = 4.4, 12.4 Hz, 1H), 5.10–5.15 (m, 2H), 5.21 (t, *J* = 8.8 Hz, 1H), 5.69 (d, *J* = 7.6 Hz, 1H), 7.25–7.34 (m, 5H); ¹³C-NMR: δ = 20.2, 20.5, 20.6, 41.1, 61.4, 67.7, 69.9, 72.6, 72.7, 91.8, 127.4, 128.7, 129.2, 132.9, 169.0, 169.3, 169.4, 170.0, 170.5; ESI-MS (*m*/*z*) 489 [M + Na]⁺; HRMS calcd for C₂₂H₂₆O₁₁ 466.1481, found 466.1477; Anal. Calcd. for C₂₂H₂₆O₁₁ (%): C, 56.65; H, 5.62. Found: C, 56.78; H, 5.50; Anal. Calcd. for C₂₂H₂₆O₁₁ (%): C, 56.65; H, 5.68.

1-O-(2-(2,4,5-Trifluorophenyl)acetyl)-2,3,4,6-tetra-O-acetyl-β-D-glucopyranose (**26**). White solid, m.p. 100–101 °C; $[\alpha]_D^{20} = +49.4$ (c = 0.5, DCM); ¹H-NMR: $\delta = 1.99$ (s, 3H), 2.01 (s, 3H), 2.03 (s, 3H), 2.09 (s, 3H), 3.67 (s, 2H), 3.82–3.87 (m, 1H), 4.12 (dd, J = 2.0, 12.8 Hz, 1H), 4.30 (dd, J = 4.4, 12.4 Hz, 1H), 5.10–5.15 (m, 2H), 5.25 (t, J = 8.8 Hz, 1H), 5.73 (d, J = 8.8 Hz, 1H), 6.91–6.98 (m, 1H), 7.07–7.13 (m, 1H); ¹³C-NMR: $\delta = 20.2$, 20.4, 20.6, 33.5 (d, J = 1.9 Hz), 61.3, 67.6, 70.0, 72.5, 72.7, 92.2, 105.5 (dd, J = 20.5, 27.5 Hz), 116.5 (d, J = 17.5 Hz), 119.0 (dd, J = 5.6, 19.0 Hz), 146.6 (dd, J = 12.7, 243.1 Hz), 149.5 (d, J = 251.5 Hz), 156.0

(dd, J = 10.4, 243.5 Hz), 167.9, 169.0, 169.3, 170.0, 170.5; ESI-MS (m/z) 543 [M + Na]⁺; Anal. Calcd. for C₂₂H₂₃F₃O₁₁ (%): C, 50.77; H, 4.45. Found: C, 50.66; H, 4.50.

1-O-Isobutyryl-2,3,4,6-tetra-O-acetyl-β-D-glucopyranose (**28**). White solid, m.p. 108–109 °C; $[\alpha]_D^{20} = +49.2$ (*c* = 0.5, DCM); ¹H-NMR: δ = 1.16 (d, *J* = 7.2 Hz, 3H), 1.17 (d, *J* = 7.2 Hz, 3H), 2.02 (s, 6H), 2.04 (s, 3H), 2.09 (s, 3H), 2.57–2.64 (m, 1H), 3.83–3.87 (m, 1H), 4.12 (dd, *J* = 2.0, 12.4 Hz, 1H), 4.30 (dd, *J* = 4.4, 12.8 Hz, 1H), 5.12–5.19 (m, 2H), 5.26 (t, *J* = 8.8 Hz, 1H), 5.72 (d, *J* = 8.4 Hz, 1H); ¹³C-NMR: δ = 18.1, 18.7, 20.3, 20.4, 20.6, 33.7, 61.4, 67.8, 70.1, 72.6, 91.5, 169.0, 169.3, 169.9, 170.4, 174.9; ESI-MS (*m*/*z*) 441 [M + Na]⁺; Anal. Calcd. for C₁₈H₂₆O₁₁ (%): C, 51.67; H, 6.26. Found: C, 51.79; H, 6.20.

1-O-(3-Methylbutanoyl)-2,3,4,6-tetra-O-acetyl-β-D-glucopyranose (**30**). White solid, m.p. 73–74 °C; $[\alpha]_D^{20}$ = +126 (*c* = 0.5, DCM); ¹H-NMR: δ = 0.95 (d, *J* = 6.8 Hz, 6H), 2.02 (s, 6H), 2.04 (s, 3H), 2.08 (s, 3H), 2.10–2.12 (m, 1H), 2.25 (d, *J* = 6.4 Hz, 2H), 3.83–3.87 (m, 1H), 4.11 (dd, *J* = 2.0, 12.4 Hz, 1H), 4.30 (dd, *J* = 4.4, 12.8 Hz, 1H), 5.11–5.17 (m, 2H), 5.26 (t, *J* = 9.2 Hz, 1H), 5.74 (d, *J* = 8.4 Hz, 1H); ¹³C-NMR: δ = 20.3, 20.4, 20.5, 22.0, 25.4, 42.9, 61.4, 67.7, 70.1, 72.5, 72.7, 91.3, 168.9, 169.2, 169.9, 170.3, 170.8; ESI-MS (*m*/*z*) 455 [M + Na]⁺; Anal. Calcd. for C₁₉H₂₈O₁₁ (%): C, 52.77; H, 6.53. Found: C, 52.90; H, 6.44.

1-*O*-*Pivaloyl*-2,3,4,6-*tetra*-*O*-*acetyl*-β-D-*glucopyranose* (**32**). White solid, m.p. 131–132 °C; $[\alpha]_D^{20} = +187$ (*c* = 0.5, DCM); ¹H-NMR: δ = 1.19 (s, 9H), 2.00 (s, 6H), 2.02 (s, 3H), 2.08 (s, 3H), 3.81–3.85 (m, 1H), 4.10 (dd, *J* = 2.4, 12.8 Hz, 1H), 4.29 (dd, *J* = 4.4, 12.0 Hz, 1H), 5.11–5.19 (m, 2H), 5.25 (t, *J* = 9.2 Hz, 1H), 5.66 (d, *J* = 8.8 Hz, 1H); ¹³C-NMR: δ = 20.3, 20.47, 20.48, 20.6, 26.6, 38.7, 61.4, 67.9, 70.0, 72.5, 72.6, 91.7, 169.0, 169.3, 170.0, 170.5, 176.4; ESI-MS (*m*/*z*) 455 [M + Na]⁺; Anal. Calcd. for C₁₉H₂₈O₁₁ (%): C, 52.77; H, 6.53. Found: C, 52.89; H, 6.45.

1-O-Dodecanoyl-2,3,4,6-tetra-O-acetyl-β-D-glucopyranose (**34**). White solid, m.p. 53–54 °C; $[\alpha]_D^{20} = +102$ (*c* = 0.5, DCM); ¹H-NMR: δ = 0.88 (t, *J* = 9.2 Hz, 3H), 1.25–1.30 (m, 16H), 1.57–1.62 (m, 2H), 2.01 (s, 3H), 2.02 (s, 3H), 2.03 (s, 3H), 2.09 (s, 3H), 2.34–2.38 (m, 2H), 3.82–3.87 (m, 1H), 4.11 (dd, *J* = 2.0, 12.0 Hz, 1H), 4.30 (dd, *J* = 4.4, 12.0 Hz, 1H), 5.11–5.16 (m, 2H), 5.26 (t, *J* = 9.2 Hz, 1H), 5.73 (d, *J* = 8.4 Hz, 1H); ¹³C-NMR: δ = 14.0, 20.42, 20.46, 20.58, 20.59, 22.6, 24.5, 28.8, 29.1, 29.2, 29.3, 29.5, 31.8, 33.9, 61.4, 67.8, 70.2, 72.6, 72.7, 91.5, 169.1, 169.4, 170.0, 170.5, 171.7; ESI-MS (*m*/*z*) 553 [M + Na]⁺; Anal. Calcd. for C₂₆H₄₂O₁₁ (%): C, 58.85; H, 7.98. Found: C, 58.98; H, 7.88.

1-O-((*E*)-2-*Methylpent*-2-*enoyl*)-2,3,4,6-*tetra*-O-*acetyl*-β-D-*glucopyranose* (**36**). Syrup; $[\alpha]_D^{20} = +39.5$ (*c* = 0.5, DCM); ¹H-NMR: δ = 1.05 (t, *J* = 8.0 Hz, 3H), 1.82 (s, 3H), 2.01 (s, 3H), 2.03 (s, 3H), 2.04 (s, 3H), 2.09 (s, 3H), 2.17–2.24 (m, 2H), 3.86–3.91 (m, 1H), 4.12 (dd, *J* = 2.0, 12.4 Hz, 1H), 4.31 (dd, *J* = 4.4, 12.4 Hz, 1H), 5.15 (t, *J* = 9.2 Hz, 1H), 5.21–5.32 (m, 2H), 5.75 (d, *J* = 8.0 Hz, 1H), 6.85 (dt, *J* = 1.2, 7.6 Hz, 1H); ¹³C-NMR: δ = 11.9, 12.7, 20.43, 20.47, 20.48, 20.6, 22.1, 61.4, 67.9, 70.1, 72.5, 72.6, 91.9, 125.7, 147.2, 165.7, 169.1, 169.3, 170.0, 170.5; ESI-MS (*m*/*z*) 467 [M + Na]⁺, HRMS calcd for C₂₀H₂₈O₁₁ 444.1614, found 444.1618; Anal. Calcd. for C₂₀H₂₈O₁₁ (%): C, 54.05; H, 6.35. Found: C, 53.95; H, 6.40.

1-O-((*E*)-Oct-2-enoyl)-2,3,4,6-tetra-O-acetyl-β-D-glucopyranose (**38**). Syrup; $[\alpha]_D^{20} = +124$ (*c* = 0.5, DCM); ¹H-NMR: δ = 0.86 (t, *J* = 7.2 Hz, 3H), 1.22–1.28 (m, 4H), 1.39–1.47 (m, 2H), 1.98 (s, 3H), 1.99 (s, 3H), 2.00 (s, 3H), 2.05 (s, 3H), 2.16–2.21 (m, 2H), 3.83–3.87 (m, 1H), 4.08 (dd, *J* = 2.0, 12.4 Hz, 1H), 4.27 (dd, *J* = 4.4, 12.4 Hz, 1H), 5.10–5.18 (m, 2H), 5.25 (t, *J* = 9.2 Hz, 1H), 5.75 (d, *J* = 7.6 Hz, 1H), 5.76–5.80 (m, 1H), 7.01–7.09 (m, 1H); ¹³C-NMR: δ = 13.8, 20.44, 20.48, 20.5, 20.6, 22.3, 27.4, 31.2, 32.3, 61.4, 67.8, 70.2, 72.6, 72.7, 91.6, 119.5, 153.1, 164.2, 169.2, 169.4, 170.0, 170.6; ESI-MS (*m*/*z*) 495 [M + Na]⁺; Anal. Calcd. for C₂₂H₃₂O₁₁ (%): C, 55.92; H, 6.83. Found: C, 55.85; H, 6.90.

1-*O*-((2*E*,6*Z*)-Nona-2,6-dienoyl)-2,3,4,6-tetra-*O*-acetyl-β-D-glucopyranose (**40**). Syrup; $[\alpha]_D^{20} = +86.3$ (*c* = 0.5, DCM); ¹H-NMR: δ = 0.96 (t, *J* = 8.0 Hz, 3H), 2.01 (s, 3H), 2.02 (s, 3H), 2.02–2.05 (m, 2H), 2.04 (s, 3H), 2.08 (s, 3H), 2.19–2.23 (m, 2H), 2.25–2.29 (m, 2H), 3.85–3.89 (m, 1H), 4.11 (dd, *J* = 2.0, 12.4 Hz, 1H), 4.30 (dd, *J* = 4.4, 12.4 Hz, 1H), 5.12–5.21 (m, 2H), 5.27 (t, *J* = 9.2 Hz, 1H), 5.27–5.32 (m, 1H), 5.78 (d, *J* = 8.0 Hz, 1H), 5.80–5.86 (m, 1H), 7.04–7.11 (m, 1H); ¹³C-NMR: δ = 14.1, 20.4, 20.5, 20.6, 25.3, 32.4, 61.4, 67.8,70.2, 1H).

72.5, 72.7, 91.6, 120.0, 126.8, 133.0, 152.1, 164.0, 169.2, 169.3, 170.0, 170.5; ESI-MS (*m*/*z*) 507 [M + Na]⁺; Anal. Calcd. for C₂₃H₃₂O₁₁ (%): C, 57.02; H, 6.66. Found: C, 57.12; H, 6.63.

1-O-(*Cyclopropanecarbonyl*)-2,3,4,6-*tetra*-O-*acetyl*- β -D-*glucopyranose* (**42**). White solid, m.p. 121–122 °C; $[\alpha]_D^{20} = +170.8 \ (c = 0.5, \text{DCM}); {}^1\text{H-NMR:} \delta = 0.94-0.97 \ (m, 2\text{H}), 1.03-1.10 \ (m, 2\text{H}), 1.63-1.67 \ (m, 1\text{H}), 2.02 \ (s, 3\text{H}), 2.03 \ (s, 3\text{H}), 2.04 \ (s, 3\text{H}), 2.09 \ (s, 3\text{H}), 3.82-3.86 \ (m, 1\text{H}), 4.11 \ (dd, J = 2.0, 12.0 \ \text{Hz}, 1\text{H}), 4.30 \ (dd, J = 4.4, 12.4 \ \text{Hz}, 1\text{H}), 5.11-5.17 \ (m, 2\text{H}), 5.26 \ (t, J = 9.6 \ \text{Hz}, 1\text{H}), 5.72 \ (d, J = 8.0 \ \text{Hz}, 1\text{H}); {}^{13}\text{C-NMR:} \delta = 9.3, 12.7, 20.4, 20.6, 61.4, 67.7, 70.2, 72.5, 72.6, 91.5, 169.1, 169.3, 169.9, 170.4, 172.8; ESI-MS \ (m/z) \ 439 \ [M + \text{Na}]^+; \text{Anal. Calcd. for } C_{18}\text{H}_{24}O_{11} \ (\%): C, 51.92; \text{H}, 5.81. Found: C, 51.99; \text{H}, 5.75.$

1-O-(*Cyclohexanecarbonyl*)-2,3,4,6-tetra-O-acetyl-β-D-glucopyranose (44). White solid, m.p. 111–112 °C; $[\alpha]_D^{20} = +96$ (c = 0.5, DCM); ¹H-NMR: $\delta = 1.20$ –1.49 (m, 6H), 1.62–1.65 (m, 1H), 1.68–1.77 (m, 1H), 1.85–1.90 (m, 2H), 2.02 (s, 6H), 2.04 (s, 3H), 2.09 (s, 3H), 2.33–2.39 (m, 1H), 3.83–3.87 (m, 1H), 4.11 (dd, J = 2.0, 12.0 Hz, 1H), 4.30 (dd, J = 4.4, 12.4 Hz, 1H), 5.11–5.18 (m, 2H), 5.26 (t, J = 9.6 Hz, 1H), 5.72 (d, J = 8.4 Hz, 1H); ¹³C-NMR: $\delta = 20.3, 20.4, 20.6, 24.9, 25.3, 25.5, 28.1, 28.7, 42.5, 61.4, 67.8, 70.1, 72.5, 72.6,$ 91.4, 169.1, 169.3, 170.0, 170.5, 173.8; ESI-MS (<math>m/z) 481 [M + Na]⁺; Anal. Calcd. for C₂₁H₃₀O₁₁ (%): C, 55.02; H, 6.60. Found: C, 55.16; H, 6.52.

4. Conclusions

The formation of 1-O-acyl glucosyl esters by condensation of acids with glucosyl bromide was developed on a large scale in DCM without water. A diverse array of 1-O-acyl glucosyl esters were prepared in good yields, which seems to indicate that our reaction conditions could be applied to a broad substrate scope. In addition, scaled-up preparations were also successfully attempted.

Supplementary Materials: Supplementary materials can be accessed online.

Acknowledgments: We thank for the cooperation from the colleagues of the Analytical Department.

Author Contributions: Yu Chen and Xianhua Pan designed the experiments and wrote the paper. The experimental work was conducted by Huan Lu, Yanyu Chen and Wansheng Yu under the supervision of Xianhua Pan who is the corresponding author. Hui Dai contributed part of the data analysis.

Conflicts of Interest: The authors declare no conflict of interest.

References and Notes

- Nishikawa, Y.; Yoshimoto, K.; Kurono, G.; Michishita, K. Chemical and Biochemical Studies on Carbohydrate Esters. I. Preparation and Properties of 1-O-Acyl-β-D-glucopyranose Tetraacetates. *Chem. Pharm. Bull.* 1975, 23, 597–603. [CrossRef]
- 2. Tschesche, R.; Kammerer, F.J.; Wulff, G. Über Die Antibiotisch Wirksamen Substanzen der Tulpe (Tulipa Gesneriana). *Tetrahedron Lett.* **1968**, *9*, 701–706. [CrossRef]
- Nishikawa, Y.; Okabe, M.; Yoshimoto, K.; Kurono, G.; Fukuoka, F. Chemical and Biochemical Studies on Carbohydrate Esters. II. Antitumor Activity of Saturated Fatty Acids and Their Ester Derivatives against Ehrlich Ascites Carcinoma. *Chem. Pharm. Bull.* 1976, 24, 387–393. [CrossRef] [PubMed]
- Cui, Y.; Xu, M.; Yao, W.; Mao, J. Room-temperature Ionic Liquids Enhanced Green Synthesis of β-glycosyl 1-ester. *Carbohydr. Res.* 2015, 407, 51–54. [CrossRef] [PubMed]
- 5. Li, Z.J.; Xiao, G.Q.; Cai, M.S. Studies on Carbohydrates XII. An Improved Koenigs Knorr Method for Highly Stereoselectives Synthesis of 1-O-Acyl-β-D-Galactopyranose Tetraacetates. *Chin. Chem. Lett.* **1992**, *3*, 711–712.
- 6. Kunz, H.; Wernig, P. New 1-O-Alkenoic Acid Ester(s) of Carbohydrate(s)—Used as Glycosyl Donors in Synthesis of Glycoside(s) and Saccharide(s). Patent D.E. 4009634, 26 March 1990.
- Greimel, P.; Lapeyre, M.; Nagatsuka, Y.; Hirabayashi, Y.; Ito, Y. Syntheses of Phosphatidyl-β-D-glucoside Analogues to Probe Antigen Selectivity of Monoclonal Antibody 'DIM21'. *Bioorg. Med. Chem.* 2008, 16, 7210–7217. [CrossRef] [PubMed]
- Honma, K.; Hamada, A. Studies on Glycosylation. III. A Novel, Stereospecific Synthesis of 1-O-Acyland 1-Aryl-β-D-glucopyranose Tetraacetates via the 1, 2-t-Butyl-orthoacetate. *Chem. Pharm. Bull* 1976, 24, 1165–1168. [CrossRef]

- 9. Kobayashi, M.; Shimadate, T. Synthesis of Glycosyl Trifluoroacetates and Their Reactions with Carboxylic Acids. *Chem. Pharm. Bull.* **1986**, *34*, 4069–4074. [CrossRef]
- Yu, C.; Li, Z.; Cai, M. Studies on Carbohydrates IV. A Novel Highly Stereoselective Synthesis of 1-O-Acylβ-D-Glucopyranose Tetraacetates via the Glucosyl Trifluoroacetate. *Synth. Commun.* **1990**, 20, 943–948. [CrossRef]
- Jansson, K.; Ahlfors, S.; Frejd, T.; Kihlberg, J.; Magnusson, G. 2-(Trimethylsilyl)ethyl Glycosides. Synthesis, Anomeric Deblocking, and Transformation into 1,2-Trans 1-O-Acyl Sugars. J. Org. Chem. 1988, 53, 5629–5647. [CrossRef]
- 12. Sim, M.M.; Kondo, H.; Wong, C. Synthesis and Use of Glycosyl Phosphites: An Effective Route to Glycosyl Phosphates, Sugar Nucleotides, and Glycosides. *J. Am. Chem. Soc.* **1993**, *115*, 2260–2267. [CrossRef]
- 13. Van, T.N.; Claessens, S.; Habonimana, P.; Tehrani, K.A.; Puyvelde, L.V.; Kimpe, N.D. Synthesis of Harounoside, A Naturally Occurring Pentalongin Hydroquinone Bisglucoside. *Synlett* **2006**, *17*, 2469–2471.
- 14. Shimizu, M.; Togo, H.; Yokoyama, M. Chemistry of Glycosyl Fluorides. Synthesis 1998, 30, 799–822. [CrossRef]
- Oyama, K.; Kondo, T. Highly Efficient β-Glucosylation of the Acidic Hydroxyl Groups, Phenol and Carboxylic Acid, with an Peracetylated Glucosyl Fluoride Using a Combination of BF₃·Et₂O and DTBMP as a Promoter. *Synlett* 1999, *10*, 1627–1629. [CrossRef]
- 16. Pakulski, Z.A.; Cmoch, P.; Oklestkova, L.; Strnad, M. Saccharide Lupane Derivatives, Their Use and Pharmaceutical Compositions Containing These Derivatives. Patent W.O. 2009094958, 6 August 2009.
- 17. Smith, A.B.; Halc, K.J.; Rivero, R.A. An Efficient Synthesis of Glycosyl Esters Exploiting the Mitsunobu Reaction. *Tetrahedron Lett.* **1986**, *27*, 5813–5816. [CrossRef]
- Watanabe, Y.; Ishimaru, M.; Ozaki, S. Proximately Assisted and Chemoselectively Cleavable Protecting Groups for Alcohols, 2-[2-(Arylmethyloxy)ethyl]benzoic Esters. *Chem. Lett.* 1994, 23, 2163–2166. [CrossRef]
- Sangmam, C.; Winum, J.; Lucas, M.; Montero, J.; Chavis, C. A Simple, General and Efficient Method for *O* and *N*-retinoylation. Application to the Synthesis of 2-Retinoyl-lecithin. *Synth. Commun.* 1998, *28*, 2945–2958.
 [CrossRef]
- Binkowski, C.; Lequart, V.; Hapiot, F.; Tilloy, S.; Cecchelli, R.; Monflier, E.; Martin, P. Adamantoylated Monosaccharides: New Compounds for Modification of the Properties of Cyclodextrin-containing Materials. *Carbohydr. Res.* 2005, 340, 1461–1468. [CrossRef] [PubMed]
- Zhang, Q.; Sun, J.; Zhu, Y.; Zhang, F.; Yu, B. An Efficient Approach to the Synthesis of Nucleosides: Gold(I)-Catalyzed N-Glycosylation of Pyrimidines and Purines with Glycosyl *ortho*-Alkynyl Benzoates. *Angew. Chem. Int. Ed.* 2011, 50, 4933–4936. [CrossRef] [PubMed]
- 22. Bliard, C.; Massiot, G.; Nazabadioko, S. Glycosylation of Acids under Phase Transfer Conditions. Partial Synthesis of Saponins. *Tetrahedron Lett.* **1994**, *35*, 6107–6108. [CrossRef]
- 23. Krishnamurty, H.G.; Dabholkar, K.; Maheshwari, N. Polymer Supported Synthesis of 2,3,4,6-Tetra-O-Acetylβ-D-Glucopyranosyl Esters of Aromatic Carboxylic Acids. *Synth. Commun.* **1987**, *17*, 1323–1329. [CrossRef]
- 24. Please see NMR data of compound **3** in Supplementary Materials.
- 25. Please see 2D-NMR data of compound 8 in Supplementary Materials.
- 26. Drillaud, N.; Banaszak-Léonard, E.; Pezron, I.; Len, C. Synthesis and Evaluation of a Photochromic Surfactant for Organic Reactions in Aqueous Media. *J. Org. Chem.* **2012**, *77*, 9553–9561. [CrossRef] [PubMed]
- 27. Anomeric H shift for β -configuration is located at δ = 5.93 and anomeric H shift for α -configuration is located at δ = 6.57 according to known data.
- 28. Anomeric C shift for β -configuration is located at δ = 92.3 according to known data.

Sample Availability: Samples of the compounds are available from the authors.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).