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Abstract: 4-Sulfoalkanoic acids are a class of important dianionic-headed surfactants. Various
4-sulfoalkanoic acids with straight C8, C10, C12, C14, C16, and C18 chains were synthesized
expeditiously through the radical addition of methyl 2-((ethoxycarbonothioyl)thio)acetate to linear
terminal olefins and subsequent oxidation with peroxyformic acid. This is a useful and convenient
strategy for the synthesis of dianionic-headed surfactants with a carboxylic acid and sulfonic acid
functionalities in the head group region.

Keywords: alkanoic acid; double head; oxidation; radical reaction; surfactant; xanthate

1. Introduction

Surfactants have been widely applied in almost every fields, including personal care and
industry [1]. Numerous gemini surfactants have been prepared and investigated during the last
several decades [2,3]. Recently, much attention has been paid to the preparation and properties
of double-headed and double-tailed surfactants [4–7]. Only a few double-tailed surfactants have
been prepared, and their surfactant activity has not been evaluated until now [4,5]. Double-headed
surfactants have been utilized in the industry as wetting agents and dispersants (Figure 1) [6,7]. They
have been generally prepared from maleic anhydride and maleate-monoester/diesters [8,9]. There is
considerable and still increasing interest in the synthesis of new double-headed surfactants with two
different dianionic heads, because dianionic-headed surfactants with two hydrophilic head groups
and one hydrophobic tail with a head to tail ratio of 2:1 generally show good wetting and low foam
properties alongside mild surface activity. They may find applications in the textile industry [7]
and colloidal drug delivery system [10]. Zard’s xanthate radical addition chemistry promotes us to
develop a new strategy to synthesize a series of novel dianionic-headed surfactants with a carboxylic
acid and sulfonic acid functionalities in the head group region [11–15]. Herein, we present an
expeditious synthesis of dianionic-headed surfactant 4-sulfoalkanoic acids through the radical addition
of methyl 2-((ethoxycarbonothioyl)thio)acetate to linear terminal olefins and subsequent oxidation
with peroxyformic acid (Scheme 1).
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Scheme 1. Synthesis of dianionic-headed 4-sulfoalkanoic acid surfactants. 

2. Results and Discussion 
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and methyl chloroacetate [16]. Reactions of methyl 2-((ethoxycarbonothioyl)thio)acetate 1 and linear 

terminal olefins 2, including 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, and 1-
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gave rise to a series of xanthates, methyl 2-((ethoxycarbonothioyl)thio)alkanoates 3 in good to 
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Scheme 2. Synthesis of xanthates 3. 

Table 1. Radical addition of methyl 2-((ethoxycarbonothioyl)thio)acetate 1 with olefins 2. 
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1 nBu 3a 79 

2 nHex 3b 86 

3 nOct 3c 88 

4 nDecyl 3d 86 
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Figure 1. Some reported dianionic-headed surfactants.
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Scheme 1. Synthesis of dianionic-headed 4-sulfoalkanoic acid surfactants.

2. Results and Discussion

Methyl 2-((ethoxycarbonothioyl)thio)acetate 1 was prepared from potassium O-ethylxanthate
and methyl chloroacetate [16]. Reactions of methyl 2-((ethoxycarbonothioyl)thio)acetate 1 and linear
terminal olefins 2, including 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, and 1-hexadecene,
under radical initiator dilauroyl peroxide (DLP) in 1,2-dichloroethane (DCE) as a solvent gave rise
to a series of xanthates, methyl 2-((ethoxycarbonothioyl)thio)alkanoates 3 in good to excellent yields
(Scheme 2 and Table 1) (Supplementary materials) [17].
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Table 1. Radical addition of methyl 2-((ethoxycarbonothioyl)thio)acetate 1 with olefins 2.

Entry Olefin 2/R Xanthate 3 Yield (%)

1 nBu 3a 79
2 nHex 3b 86
3 nOct 3c 88
4 nDecyl 3d 86
5 nDodecyl 3e 80
6 nTetradecyl 3f 87
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Through the previously mentioned oxidation procedure with peroxyformic acid [18–20],
all xanthates 3 were converted into the corresponding 4-sulfoalkanoic acids 4 in almost quantitative
yields. Under the current acidic oxidation conditions, the xanthate group was oxidized into sulfonic
acid and the methyl-carboxylate group in xanthates 3 was hydrolyzed into the carboxylic acid group
(Supplementary materials) (Table 2 and Scheme 3).

Table 2. Synthesis of 4-Sulfoalkanoic acids 4.

Entry Xanthate 3 R Acid 4 Yield (%)

1 3a nBu 4a 99
2 3b nHex 4b 98
3 3c nOct 4c 99
4 3d nDecyl 4d 99
5 3e nDodecy 4e 98
6 3f nTetradecyl 4f 99
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The designed synthetic strategy shows excellent efficiency with the following advantages; simple
and inexpensive starting materials, a two-step synthetic route, good to excellent yields, and easy
purification in the last step.

We previously prepared taurine and homotaurine derivatives by oxidation of thioacetates [21–25]
and xanthates [18–20]. Douglass and his coworkers reported that xanthates (ROCS2R’) were chlorinated
into alkoxydichloromethanesulfenyl chlorides (ROCCl2SCl) and alkylsulfur trichlorides (R’SCl3) with
chlorine under anhydrous conditions [26,27]. On the basis of above results and our recent results of
the oxidative chlorination [28], the mechanism of the oxidation of xanthates 3 into 4-sulfoalkanoic
acids 4 with peroxyformic acid was proposed, as shown in Scheme 4. Initially, the sulfur atom in
the thioxo group of xanthates 3 is oxidized with peroxyformic acid, generating intermediates A.
Intermediates A are attacked by water in the reaction system to generate intermediates B, of which
the sulfur atom in their thioether part is further oxidized by another molecule of peroxyformic acid to
produce intermediates C. Unstable intermediates C decompose into ethoxycarbonylsulfenic acid (5)
and 1-(3-methoxy-3-oxopropyl)alkanesulfenic acids 6 under acidic conditions.

Both ethoxycarbonylsulfenic acid 5 and 1-(3-methoxy-3-oxopropyl)alkanesulfenic acids 6 are
further oxidized into the corresponding sulfonic acids 9 and 10, respectively, with peroxyformic acid
following the same mechanism.

Unstable ethoxycarbonylsulfonic acid 9 tautomerizes into intermediate D, in which its carbonyl
group is protonated by dissociated sulfonic acid. Intermediate D is attacked by water, giving rise to
intermediate E, which is more unstable and finally decomposes into ethanol, CO2, SO3, and proton.
1-(3-Methoxy-3-oxopropyl)alkanesulfonic acids 9 are further hydrolyzed into 4-sulfoalkanoic acids 4
under acidic conditions (Scheme 4).
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3. Materials and Methods

3.1. Materials and Instruments

Melting points were measured on a Yanaco MP-500 melting point apparatus (Yanaco Ltd.,
Osaka, Japan) and are uncorrected. 1H-NMR and 13C-NMR spectra were recorded with a Bruker
400 spectrometer (Bruker Company, Billerica, MA, USA) in CDCl3 with tetramethylsilane (TMS) as
an internal standard, or in D2O with DOH as an internal standard in 1H-NMR, or with HCO2H
(166.3 ppm) as an internal standard in 13C-NMR. IR spectra were obtained on a Nicolet AVATAR 330
FTIR spectrometer (Thermo Nicolet Corporation, Madison, WI, USA). HRMS spectra were recorded
with a Liquid Chromatography/Mass Spectrometry/Data and Time-of-Flight (LC/MSD TOF) mass
spectrometer (Agilent, Santa Clara, CA, USA). TLC analysis was performed on glass pre-coated silica
gel YT257-85 (10-40 µm) plate (Qingdao Ocean Chemical Industry, Qingdao, China). Spots were
visualized with UV light or iodine. Column chromatography was performed on silica gel zcx II
(200-300 mesh) (Qingdao Ocean Chemical Industry, Qingdao, China) with petroleum-ether (PE) and
ethyl-acetate (EA) (Beijing Chemical Reagent Company, Beijing, China) as the eluent.

3.2. Synthesis of Methyl 2-((Ethoxycarbonothioyl)thio)acetate (1) [16,17]

To a solution of methyl-chloroacetate (4.175 g, 25 mmol) in acetone (40 mL) precooled at 0 ◦C,
potassium-O-ethyl-dithiocarbonate (4.232 g, 27 mmol) was added portionwise while stirring at 0 ◦C.
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After the addition, the mixture was allowed to warm to room temperature under continuous stirring.
After the removal of acetone, the residue was dissolved in water (50 mL) and the mixture was extracted
with CH2Cl2 (3×50 mL). The combined organic phase was dried over MgSO4. After the removal
of solvents, the residue was purified on a silica gel column with petroleum ether and ethyl acetate
(15:1, v/v) as the eluent to afford the desired xanthate 1, 4.032 g (83% yield). Its analytic data are
identical to the reported ones.

3.3. General Procedure for the Synthesis of Methyl-2-((ethoxycarbonothioyl)thio)alkanoates 3

A stirred solution of olefin 2 (8 mmol) and methyl 2-((ethoxycarbonothioyl)thio)acetate (1) (1.554 g,
8 mmol) in 1,2-dichloroethane (12 mL) was heated at reflux for 15 min. dilauroyl peroxide (DLP)
(168 mg, 5 mol %) was added and additional DLP (168 mg, 5 mol %) was added each hour until the
methyl 2-((ethoxycarbonothioyl)thio)acetate (1) was consumed completely (generally 3 h). The mixture
was allowed to cool to room temperature. After the solvent was evaporated under reduced pressure,
the residue was purified by flash chromatography on silica gel with a mixture of petroleum-ether and
ethyl-acetate (40:1, v/v) as the eluent to afford the desired product 3.

3.3.1. Methyl 2-((ethoxycarbonothioyl)thio)octanoate (3a)

Yellow oil; yield: 1.756 g (79%). 1H-NMR (400 MHz, CDCl3): δ = 0.90 (t, J = 7.2 Hz, 3H, CH3),
1.25−1.40 (m, 4H, 2CH2), 1.42 (t, J = 7.1 Hz, 3H, CH3), 1.66 (q, J = 7.3 Hz, 2H, CH2), 1.86−1.96 (m, 1H
in CH2), 2.06−2.15 (m, 1H in CH2), 2.47 (dt, J = 1.4, 7.4 Hz, 2H, CH2), 3.68 (s, 3H, CH3), 3.76 (quint,
J = 6.8 Hz, 1H, CH), 4.64 (q, J = 7.2 Hz, 2H, CH2). 13C-NMRNMR (101 MHz, CDCl3): δ = 13.8, 13.9, 22.5,
28.9, 29.5, 31.4, 34.0, 50.7, 51.7, 69.8, 173.5, 214.4. IR (KBr): 2955.3, 2929.3, 2857.9, 1739.9, 1436.8, 1212.5,
1111.4, 1050.1. cm-1 HRMS (ESI): m/z calcd for C12H23O3S2

+: 279.1083 [M + H]+; found: 279.1080.

3.3.2. Methyl-2-((ethoxycarbonothioyl)thio)decanoate (3b)

Yellow oil; yield: 2.105 g (86%). 1H-NMR (400 MHz, CDCl3): δ = 0.88 (t, J = 7.0 Hz, 3H, CH3),
1.25−1.35 (m, 7H, 3CH2 & 1H in CH2), 1.42 (t, J = 7.1 Hz, 3H, CH3), 1.36−1.48 (m, 1H in CH2), 1.66
(q, J = 7.1 Hz, 2H, CH2), 1.86−1.96 (m, 1H in CH2), 2.05−2.15 (m, 1H in CH2), 2.48 (dt, J = 1.4, 7.0 Hz,
2H, CH2), 3.68 (s, 3H, CH3), 3.76 (quint, J = 6.8, 1H, CH), 4.64 (q, J = 7.2 Hz, 2H, CH2). 13C-NMRNMR
(101 MHz, CDCl3): δ = 13.8, 14.0, 22.6, 26.7, 29.1, 29.5, 31.4, 31.6, 34.3, 50.8, 51.7, 69.8, 173.5, 214.4. IR
(KBr): 2953.6, 2927.2, 2855.8, 1740.2, 1436.5, 1365.8, 1212.8, 1111.3, 1050.6 cm−1. HRMS (ESI): m/z calcd
for C14H27O3S2

+: 307.1396 [M + H]+; found: 307.1391.

3.3.3. Methyl-2-((ethoxycarbonothioyl)thio)dodecanoate (3c)

Yellow oil; yield: 2.348 g (88%). 1H-NMR (400 MHz, CDCl3): δ = 0.88 (t, J = 7.0 Hz, 3H, CH3),
1.23−1.30 (m, 11H, 5CH2 & 1H in CH2), 1.42 (t, J = 7.1 Hz, 3H, CH3), 1.35−1.45(m, 1H in CH2), 1.67 (q,
J = 7.1 Hz, 2H, CH2), 1.86−1.96 (m, 1H in CH2), 2.06−2.14 (m, 1H in CH2), 2.40−2.53 (m, 2H, CH2),
3.67 (s, 3H, CH3), 3.75 (quint, J = 6.8 Hz, 1H, CH), 4.64 (q, J = 7.1 Hz, 2H, CH2). 13C-NMRNMR (101
MHz, CDCl3): δ = 13.8, 14.1, 22.6, 26.8, 29.2, 29.4(2C), 29.5, 31.3, 31.8, 34.3, 50.8, 51.6, 69.8, 173.5, 214.4.
IR (KBr): 2951.9, 2925.6, 2854.4, 1740.6, 1436.5, 1365.6, 1212.6, 1111.4, 1051.3 cm−1. HRMS (ESI): m/z
calcd for C16H31O3S2

+: 335.1709 [M + H]+; found: 335.1702.

3.3.4. Methyl-2-((ethoxycarbonothioyl)thio)tetradecanoate (3d)

Yellow oil; yield: 2.491 g (86%). 1H-NMR (400 MHz, CDCl3): δ = 0.88 (t, J = 7.0 Hz, 3H, CH3),
1.23−1.28 (m, 15H, 7CH2& 1H in CH2), 1.42 (t, J = 7.1 Hz, 3H, CH3), 1.39−1.44 (m, 1H in CH2), 1.65
(q, J = 7.0 Hz, 2H, CH2), 1.86−1.96 (m, 1H in CH2), 2.06−2.14 (m, 1H in CH2), 2.40−2.53 (m, 2H, CH2),
3.67 (s, 3H, CH3), 3.72−3.79 (m, 1H, CH), 4.64 (q, J = 7.1 Hz, 2H, CH2). 13C-NMR (101 MHz, CDCl3):
δ = 13.7, 14.1, 22.6, 26.8, 29.27, 29.37, 29.41, 29.45, 29.52, 29.54, 31.3, 31.9, 34.2, 50.8, 51.6, 69.8, 173.5,
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214.4. IR (KBr): 2924.2, 2853.9, 1740.5, 1436.7, 1365.5, 1212.5, 1111.4, 1051.6 cm−1. HRMS (ESI): m/z
calcd for C18H35O3S2

+: 363.2022 [M + H]+; found: 363.2016.

3.3.5. Methyl-2-((ethoxycarbonothioyl)thio)hexadecanoate (3e)

Yellow oil; yield: 2.498 g (80%). 1H-NMR (400 MHz, CDCl3): δ = 0.88 (t, J = 7.0 Hz, 3H, CH3),
1.23−1.28 (m, 19H, 9CH2 & 1H in CH2), 1.42 (t, J = 7.1 Hz, 3H, CH3), 1.39−1.44 (m, 1H in CH2), 1.65
(q, J = 6.9 Hz, 2H, CH2), 1.86−1.96 (m, 1H in CH2), 2.06−2.14 (m, 1H in CH2), 2.40−2.53 (m, 2H, CH2),
3.67 (s, 3H, CH3), 3.72−3.79 (m, 1H, CH), 4.64 (q, J = 7.1 Hz, 2H, CH2). 13C-NMRNMR (101 MHz,
CDCl3): δ = 13.8, 14.1, 22.7, 26.8, 29.32, 29.38, 29.42, 29.45, 29.53, 29.59, 29.60, 29.62, 31.3, 31.9, 34.3,
50.8, 51.6, 69.8, 173.4, 214.4. IR (KBr): 2923.5, 2852.9, 1739.9, 1436.1, 1365.9, 1211.9, 1111.3, 1050.3 cm−1.
HRMS (ESI): m/z calcd for C20H39O3S2

+: 391.2335 [M + H]+; found: 391.2330.

3.3.6. Methyl-2-((ethoxycarbonothioyl)thio)octadecanoate (3f)

Yellow oil; yield: 2.917 g (87%). 1H-NMR (400 MHz, CDCl3): δ = 0.89 (t, J = 6.9 Hz, 3H, CH3),
1.24−1.35 (m, 23H, 11CH2 & 1H in CH2), 1.43 (t, J = 7.0 Hz, 3H, CH3), 1.41−1.47(m, 1H in CH2), 1.67
(q, J = 7.3 Hz, 2H, CH2), 1.88−1.97 (m, 1H in CH2), 2.07−2.16 (m, 1H in CH2), 2.42−2.54 (m, 2H, CH2),
3.69 (s, 3H, CH3), 3.77 (quint, J = 6.7, 1H, CH), 4.64 (q, J = 7.0 Hz, 2H, CH2). 13C-NMRNMR (101 MHz,
CDCl3): δ = 13.8, 14.1, 22.7, 26.8, 29.36, 29.42, 29.45, 29.46, 29.49, 29.57, 29.63, 29.66, 29.68, 29.69, 31.4,
31.9, 34.3, 50.8, 51.6, 69.8, 173.4, 214.4. IR (KBr): 2924.0, 2853.1, 1741.1, 1436.5, 1366.0, 1211.8, 1111.4,
1051.4 cm−1. HRMS (ESI): m/z calcd for C22H43O3S2

+: 419.2648 [M + H]+; found: 419.2641.

3.4. General procedure for the synthesis of 4-sulfonylalkanoic acids 4

To a stirred and mixed solution of 98% formic acid (15 mL) and 30% H2O2 (10 mL), xanthate 3
(3 mmol) was added dropwise. The reaction mixture was stirred at room temperature for 2 h and then
at 65 ◦C overnight. The removal of solvents in a vacuum afforded 4-sulfoalkanoic acid 4.

3.4.1. 4-Sulfooctanoic acid (4a)

Yellow oil; yield: 666 mg (99%). 1H-NMR (400 MHz, D2O): δ = 0.53 (t, J = 7.2 Hz, 3H, CH3),
0.91−1.03 (m, 2H, CH2), 1.03−1.13 (m, 2H, CH2), 1.13−1.25 (m, 1H in CH2), 1.41−1.56 (m, 1H in CH2),
1.56−1.70 (m, 1H in CH2), 1.70−1.75 (m, 1H in CH2), 2.21−2.30 (m, 2H, CH2), 2.45−2.50 (m, 1H, CH).
13C-NMR (101 MHz, D2O): δ = 13.8, 21.6, 25.2, 29.0, 29.5, 31.9, 59.7, 178.5. IR (KBr): 2925.9, 2855.2,
1738.9, 1228.2, 1168.4, 1077.7, 1053.6 cm−1. HRMS (ESI): m/z calcd for C8H15O5S−: 223.0646 [M − H]−;
found: 223.0643.

3.4.2. 4-Sulfodecanoic acid (4b)

Colorless oil; yield: 742 mg (98%). 1H-NMR (400 MHz, D2O): δ = 0.45 (t, J = 6.4 Hz, 3H, CH3),
0.80−0.95 (m, 6H, 3CH2), 0.96−1.07 (m, 2H, CH2), 1.08−1.22 (m, 1H in CH2), 1.41−1.50 (m, 1H in
CH2), 1.51−1.60 (m, 1H in CH2), 1.60−1.70 (m, 1H in CH2), 2.13−2.23 (m, 2H, CH2), 2.34−2.45 (m,
1H, CH). 13C-NMR (101 MHz, D2O): δ = 14.3, 22.8, 25.2, 27.1, 29.3, 29.9, 31.8, 31.9, 59.7, 178.2. IR (KBr):
2927.5, 2856.9, 1712.2, 1230.1, 1169.1, 1078.4, 1054.2 cm−1. HRMS (ESI): m/z calcd for C10H19O5S−:
251.0959 [M − H]−; found: 251.0954.

3.4.3. 4-Sulfododecanoic acid (4c)

Colorless oil; yield: 832 mg (99%). 1H-NMR (400 MHz, D2O): δ = 0.40 (t, J = 6.4 Hz, 3H, CH3),
0.75−0.98 (m, 12H, 6CH2), 1.00−1.11 (m, 1H in CH2), 1.35−1.51 (m, 2H, CH2), 1.51−1.60 (m, 1H
in CH2), 2.04−2.20 (m, 2H, CH2), 2.25−2.37 (m, 1H, CH). 13C-NMR (101 MHz, D2O): δ = 14.5, 23.2,
25.2, 27.6, 29.9, 30.0, 30.1. 30.3, 31.0, 32.5, 59.8, 177.8. IR (KBr): 2926.0, 2855.8, 1709.8, 1230.5, 1169.4,
1053.9 cm−1. HRMS (ESI): m/z calcd for C12H23O5S−: 279.1272 [M − H]−; found: 279.1270.
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3.4.4. 4-Sulfotetradecanoic acid (4d)

Colorless oil; yield: 916 mg (99%). 1H-NMR (400 MHz, D2O): δ = 0.44 (t, J = 6.5 Hz, 3H, CH3),
0.83−1.05 (m, 16H, 8CH2), 1.14−1.20 (m, 1H in CH2), 1.39−1.55 (m, 2H, CH2), 1.55−1.65 (m, 1H
in CH2), 2.10−2.21 (m, 2H, CH2), 2.33−2.44 (m, 1H, CH). 13C-NMR (101 MHz, D2O): δ = 14.5, 23.3,
25.2, 27.7, 30.16, 30.19, 30.4. 30.5, 30.66, 30.70, 31.0, 31.8, 59.8, 177.7. IR (KBr): 2924.5, 2854.1, 1710.9,
1231.5, 1170.0, 1077.8, 1054.2 cm−1. HRMS (ESI): m/z calcd for C14H27O5S−: 307.1585 [M − H]−;
found: 307.1581.

3.4.5. 4-Sulfohexadecanoic acid (4e)

Colorless oil; yield: 989 mg (98%). 1H-NMR (400 MHz, D2O): δ = 0.58 (t, J = 6.4 Hz, 3H, CH3),
0.90−1.07 (m, 20H, 10CH2), 1.16−1.28 (m, 1H in CH2), 1.50−1.71 (m, 2H, CH2), 1.71−1.76 (m, 1H
in CH2), 2.20−2.35 (m, 2H, CH2), 2.43−2.53 (m, 1H, CH). 13C-NMR (101 MHz, D2O): δ = 14.5, 23.3,
25.2, 27.8, 29.4, 29.6, 29.7, 29.8. 29.9, 30.2, 30.4, 30.5, 30.6, 30.7, 31.1, 31.9, 59.8, 177.7. IR (KBr): 2924.6,
2853.9, 1710.5, 1288.0, 1069.2, 1011.8 cm−1. HRMS (ESI): m/z calcd for C16H31O5S−: 335.1898 [M − H]−;
found: 335.1892.

3.4.6. 4-Sulfooctadecanoic acid (4f)

Colorless oil; yield: 1.083 g (99%). 1H-NMR (400 MHz, D2O): δ = 0.75 (t, J = 7.2 Hz, 3H, CH3),
1.07−1.27 (m, 24H, 12CH2), 1.43−1.49 (m, 1H in CH2), 1.66−1.81 (m, 2H, CH2), 1.81−1.96 (m, 1H in
CH2), 2.40−2.50 (m, 2H, CH2), 2.53−2.67 (m, 1H, CH). 13C-NMR (101 MHz, D2O): δ = 14.6, 23.4, 24.5,
27.0, 29.4, 29.6, 29.74, 29.76. 29.79, 30.4, 30.5, 30.6, 30.7, 30.8, 31.1, 31.9, 59.8, 177.7. IR (KBr): 2924.3,
2854.2, 1710.2, 1288.3, 1069.0, 1011.6 cm−1. HRMS (ESI): m/z calcd for C18H35O5S−: 363.2211 [M −
H]−; found: 363.2205.

4. Conclusions

A series of 4-sulfoalkanoic acids with straight C8, C10, C12, C14, C16, and C18 chains was
prepared effectively from simple and inexpensive starting materials through the radical addition
of methyl 2-((ethoxycarbonothioyl)thio)acetate to linear terminal olefins and subsequent oxidation
with peroxyformic acid. The current strategy is a useful and convenient route for the synthesis of
dianionic-headed surfactants with a carboxylic acid and sulfonic acid functionalities in the head
group region.

Supplementary Materials: Supplmentary materials are available online. Copies of 1H-NMR and 13C-NMR
spectra of unknown compounds 3 and 4 are included in the Supporting Information.
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