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Abstract: The β3 adrenergic receptor is raising as an important drug target for the treatment of
pathologies such as diabetes, obesity, depression, and cardiac diseases among others. Several
attempts to obtain selective and high affinity ligands have been made. Currently, Mirabegron
is the only available drug on the market that targets this receptor approved for the treatment of
overactive bladder. However, the FDA (Food and Drug Administration) in USA and the MHRA
(Medicines and Healthcare products Regulatory Agency) in UK have made reports of potentially
life-threatening side effects associated with the administration of Mirabegron, casting doubts on the
continuity of this compound. Therefore, it is of utmost importance to gather information for the
rational design and synthesis of new β3 adrenergic ligands. Herein, we present the first combined
2D-QSAR (two-dimensional Quantitative Structure-Activity Relationship) and 3D-QSAR/CoMSIA
(three-dimensional Quantitative Structure-Activity Relationship/Comparative Molecular Similarity
Index Analysis) study on a series of potent β3 adrenergic agonists of indole-alkylamine structure.
We found a series of changes that can be made in the steric, hydrogen-bond donor and acceptor,
lipophilicity and molar refractivity properties of the compounds to generate new promising molecules.
Finally, based on our analysis, a summary and a regiospecific description of the requirements for
improving β3 adrenergic activity is given.
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1. Introduction

Until 1967, only two classes of β-adrenergic receptors (β-ARs) were known, namely β1- and
β2-AR [1–3]. However, by the 1980s a new class of β-AR [4] was found in several species, including
bovine, rats and mice. Later, its presence was confirmed in humans and it was called β3-AR [5].
The three β-AR subtypes belong to the G-protein coupled receptors superfamily (GPCRs). The β1- and
β2-ARs are located mainly in heart and lungs, respectively. The discovery of selective molecules that
could specifically target one receptor subtype has prompted the modern treatment of hypertension and
asthma. On the other hand, β3-AR has a wide tissue distribution, being present in adipose tissue [6],
heart [7], detrusor muscle [8], bladder [9], prostate [10], gut [11], uterus [12], pancreas [13], and
brain [14]. Accordingly, β3-AR ligands constitute potential drugs useful to treat several diseases [15].
For example, β3-AR agonists produce weight loss in obese animals without decreasing food intake [16].
They also seem to exert potent anti-diabetic effects in rodent models of type 2 diabetes [17], and
chronic treatment with β3-AR agonists reduces hyperglycemia, hyperinsulinemia and hyperlipidemia
in animal models [18]. In the rodent brain, the β3-AR agonist SR 58611A (Amibegron) displays
an antidepressant profile [19], without side effects such as tachycardia or alteration of locomotor
activity [20]. In failing hearts, the overall effect depends on the stage of the disease [21]. β3-AR
agonists should serve in early stages because stimulation of β3-AR inhibits cardiac contractility, which
counteracts the high plasma levels of catecholamines. In the late phase, however, highly selective
antagonists/inverse agonists should be useful to improve the reduced cardiac contractility [22].

Many synthetic efforts have been carried out in order to obtain pharmacologically active agonists
or antagonists. β3-AR agonists include phenylethanolamine molecules such as BRL 37344, GW-427353
(Solabegron), SR-58611A (Amibegron) [23], and YM-178 (Mirabegron) [24] (Figure 1), while antagonists
include aryloxypropanolamines such as SR 59230A, L-748337 and CGP-20712A. Despite recent efforts
for obtaining new derivatives with β3-AR affinity [25,26], Mirabegron has been the only drug approved
by the FDA for the treatment of overactive bladder (OAB). However, in August 2015, the FDA raised
concerns due to reported cases of life-threatening upper airway angioedema, which resulted from
even first administration of Mirabegron. Likewise, in October 2015, the Medicines and Healthcare
products regulatory agency (MHRA) of UK alerted the risk of severe hypertension and associated
cerebrovascular and cardiac events. This has raised doubts on the future continuity of Mirabegron
on the market. A potentially promising new molecule was reported by Merck earlier this year
(Vibegron, 2016) [27] (Figure 1). Therefore, we must prioritize the formulation of structure–activity
relationship models that can provide useful information for designing new compounds with improved
affinity and selectivity for the β3-AR, as well as less side effects.
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Figure 1. Structure of selected β3-adrenergic agonists and compound 9, the most potent of the
analyzed series.

Until now, the human β3 receptor has not been crystallized and the design of compounds reported
in literature is based on the random exploration of new fragments at the right-hand side (RHS) or
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left-hand side (LHS) of an ethanolamine core. In this context, the 3D-QSAR techniques become useful
as tools to rationally design and direct the synthesis of potentially active derivatives. Few QSAR
studies on this receptor have been reported in the literature [28–30]. Some of the limitations presented
by these works include low predictability of the test set compounds [28], poor data distribution along
the line y = x, a narrow range of studied biological activity [29], and the low potency of compounds
used in the formulation of the model. Other studies do not demonstrate that the combination of the
considered descriptors is optimal, which can lead to explanations of the structure–activity correlation
based on nonsignificant information [30].

Our research group has been interested in the synthesis and QSAR studies of indoles and
benzimidazoles with activity on GPCRs [31–33]. In this paper, we present a combined 2D- and
3D-QSAR study on a series of agonists of indolealkylamine structure with potent β3 adrenergic activity.
A study was conducted using the CoMSIA technique [34], which allows us to explore the steric,
electrostatic, hydrophobic, hydrogen-bond donor and hydrogen-bond acceptor field contributions of
a series of compounds on their biological activity. Additionally, a Hansch analysis was carried out
on the series, providing complementary information to the CoMSIA results. The information herein
reported is summarized in a useful structure–activity relationship scheme for the design and synthesis
of new indole type β3 adrenergic agonists. The best models were subjected to internal and external
validation, obtaining good statistical parameters.

2. Results and Discussion

We carried out a step by step calculation of 31 models assaying all possible field combination
with the aim to find the strongest models that contained the best set of descriptors. (Table 1).
The best models were selected based on the highest q2 values (0.639 and 0.626 for models 15 and 30,
respectively). According to these models, the major contribution to biological activity is given by steric,
hydrogen-bond donor and hydrogen-bond acceptor properties.

Table 1. Sequential search for the generation of the best 3D-QSAR. Models a.

Model
No. Model q2 N SEP SEE r2 F

Field Contributions

S E H D A

1 CoMSIA-S 0.393 1 0.668 0.432 0.746 47.005 1
2 CoMSIA-E 0.414 9 0.928 0.004 1.000 75,589.127 1
3 CoMSIA-H 0.493 9 0.863 0.007 1.000 26,900.499 1
4 CoMSIA-D 0.251 8 0.989 0.02 1.000 3582.73 1
5 CoMSIA-A 0.493 3 0.652 0.288 0.901 42.56 1
6 CoMSIA-SE 0.443 7 0.809 0.004 1.000 83,581.585 0.335 0.665
7 CoMSIA-SEH 0.439 2 0..663 0.203 0.948 135.576 0.193 0.432 0.375
8 CoMSIA-SEHD 0.437 10 0.973 0.000 1.000 5.92 × 106 0.143 0.308 0.251 0.298
9 CoMSIA-SEHA 0.530 2 0.607 0.190 0.954 155.022 0.135 0.285 0.258 0.322
10 CoMSIA-SED 0.448 4 0.707 0.037 0.998 2115.698 0.193 0.412 0.394
11 CoMSIA-SEA 0.552 2 0.593 0.209 0.944 126.755 0.185 0.38 0.434
12 CoMSIA-SEDA 0.581 7 0.702 0.007 1.000 33,768.991 0.129 0.28 0.296 0.294
13 CoMSIA-SH 0.504 5 0.697 0.067 0.995 523.658 0.349 0.651
14 CoMSIA-SD 0.356 10 1.04 0.005 1.000 56,928.168 0.342 0.658
15 CoMSIA-SA 0.639 7 0.732 0.014 0.989 6334.553 0.387 0.613
16 CoMSIA-SHD 0.434 5 0.745 0.056 0.997 755.261 0.211 0.378 0.411
17 CoMSIA-SHA 0.579 7 0.703 0.021 1.000 3754.265 0.217 0.385 0.398
18 CoMSIA-SDA 0.599 10 0.821 0.001 1.000 823,177.397 0.185 0.397 0.418
19 CoMSIA-SHDA 0.594 6 0.659 0.021 1.000 4613.236 0.137 0.251 0.3 0.312
20 CoMSIA-EH 0.421 2 0.674 0.216 0.941 118.677 0.533 0.467
21 CoMSIA-ED 0.404 4 0.734 0.072 0.994 556.137 0.516 0.484
22 CoMSIA-EA 0.517 2 0.615 0.24 0.926 94.322 0.46 0.54
23 CoMSIA-EHD 0.424 2 0.672 0.198 0.950 143.245 0.352 0.307 0.341
24 CoMSIA-EHA 0.512 2 0.619 0.205 0.947 132.798 0.328 0.299 0.373
25 CoMSIA-EDA 0.586 7 0.698 0.011 1.000 13,051.808 0.321 0.339 0.34
26 CoMSIA-EHDA 0.557 9 0.807 0.001 1.000 1.71 × 106 0.248 0.214 0.272 0.266
27 CoMSIA-HD 0.408 2 0.681 0.248 0.921 87.997 0.487 0.513
28 CoMSIA-HA 0.514 2 0.618 0.239 0.927 95.784 0.45 0.55
29 CoMSIA-HDA 0.596 5 0.63 0.051 0.997 907.891 0.289 0.35 0.361
30 CoMSIA-DA 0.626 8 0.813 0.003 1.000 154,958.201 0.492 0.508
31 CoMSIA-ALL 0.557 8 0.761 0.001 1.000 1.44 × 106 0.103 0.225 0.192 0.242 0.239

a q2 = the square of the LOO cross-validation (CV) coefficient; N = the optimum number of components;
SEP = standard error of prediction; SEE is the standard error of estimation of non CV analysis; r2 is the square of the
non CV coefficient; F is the F-test value. S, E, H, D and A are the steric, electrostatic, hydrophobic, hydrogen-bond
donor and hydrogen-bond acceptor contributions, respectively.
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The predicted pEC50 for each compound and the residual values were calculated for the best
models and for the 2D-QSAR equation (Table 2).

Table 2. Experimental and predicted biological activity by the best CoMSIA models (Models 15 and 30)
and the 2D-QSAR model.

Mol.
Actual

pEC50 (M)

CoMSIA-SA CoMSIA-DA 2D-QSAR

Predicted
pE50 (M) Residual Predicted

pE50 (M) Residual Predicted
pE50 (M) Residual

1 t 8.260 7.890 0.37 7.607 0.65 8.229 0.03
2 6.650 6.637 0.01 6.664 0.01 6.453 0.20

3 t 7.670 7.229 0.44 7.686 −0.02 7.798 −0.13
4 9.051 9.061 −0.01 9.041 −0.01 9.232 −0.18
5 9.252 9.241 0.01 9.254 0.00 9.141 0.11
6 9.108 9.107 0.00 9.117 0.01 9.068 0.04
7 8.879 8.887 −0.01 8.885 0.01 9.114 −0.23
8 8.759 8.757 0.00 8.773 0.01 8.567 0.19
9 9.678 9.668 0.00 9.673 0.00 9.385 0.29

10 9.222 9.225 −0.01 9.207 −0.01 8.951 0.27
11 t 9.553 9.519 0.03 9.286 0.26 9.535 0.01
12 9.292 9.296 −0.01 9.296 0.01 9.064 0.23
13 9.060 9.058 0.00 9.065 0.01 8.973 0.09
14 9.585 9.568 0.01 9.593 0.01 9.499 0.08

15 t 9.187 9.198 −0.01 9.101 0.09 9.023 0.17
16 8.921 8.917 0.00 8.913 −0.01 9.077 −0.16

17 t 9.319 9.080 0.24 9.013 0.31 9.613 −0.29
18 t 9.260 8.830 0.43 9.101 0.16 9.527 −0.27
19 6.790 6.790 0.00 6.790 0.00 7.173 −0.38
20 8.921 8.899 0.02 8.931 0.01 8.842 0.08
21 7.440 7.900 −0.46 7.603 −0.16 7.740 −0.30
22 8.000 8.019 −0.02 7.975 −0.03 7.455 0.54
23 8.530 8.532 0.00 8.532 0.00 8.295 0.23
24 8.350 8.356 −0.01 8.341 −0.01 8.666 −0.32
25 9.000 9.010 −0.01 8.989 −0.01 9.026 −0.03

t test set compounds.

The compounds were divided into a training set (19 compounds, 76%) and a test set
(six compounds, 24%). The three models present a good linear fit and an adequate predictive power.
The plot of actual versus predicted activities is depicted in Figure 2 for the CoMSIA models.Molecules 2017, 22, 404  5 of 14 
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Unlike 2D-QSAR, the results of a CoMSIA study can be seen as contour maps around the surface
of the studied compounds. This allows for an easier and more straightforward interpretation of the
results. The steric, hydrogen-bond acceptor, and hydrogen-bond donor contour maps as well as the
structure–activity relationships obtained from this analysis are presented below.

2.1. CoMSIA-SA (Model No.15)

The steric contour map shows a green polyhedron in the LHS thiophene-sulfonamide group
(Figure 3A). However, the thiophene ring is out the green polyhedron, so the use of short and bulky
substituents would be appropriate in this position. To evaluate the importance of the thiophene ring,
it would be interesting to explore the synthesis of derivatives only with the sulfonamide group but
without the thiophene ring. Regarding the yellow contours, two yellow polyhedra are shown near
positions 2 and 5 of the LHS benzene ring, suggesting that small or no substituents would be preferable
on these sites. Similarly, the yellow polyhedra on the asymmetric carbon indicates that the insertion of
bulky groups in this position is detrimental for activity. Finally, a yellow polyhedron on position 7 of
the indole ring suggests that linkers smaller than a sulfonyl group could be used.
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Figure 3. CoMSIA-SA model around compound 9, the most potent of the series. (A) Steric contour
map. Green contours indicate regions where bulky groups improve activity, whereas yellow contours
indicate regions were bulky groups decreases activity. (B) Hydrogen-bond acceptor contour map.
Magenta contours indicate regions where hydrogen-bond acceptor groups increase activity, whereas
red contours indicate regions where hydrogen-bond acceptor groups decrease activity.

The hydrogen-bond acceptor contour map (Figure 3B) shows a big, restrictive, red polyhedron that
is projected from position 2 of the LHS benzene ring. Therefore, the use of hydrogen-bond acceptors
in that position is not favorable. Using halogens such as Cl, Br and I but not F would be favorable.
The magenta polyhedron near the sulfate group of the indole ring indicates that another hydrogen-bond
acceptor group could be used instead. For example, an ionizable group at physiological pH could be
suitable since it is known that the presence of acids groups in the RHS is favorable for activity.

On the other hand, the spatial orientation of the sulfate group puts the methyl group inside a
red polyhedron, which indicates the use of hydrogen-bond acceptors in that zone is not favorable.
Additionally, the rotational freedom of the sulfate group seems to be restricted by a hydrogen bond
between the oxygen atom of sulfate group and the proton of the indole ring, fixing it in a preferred
orientation. Finally, the red polyhedron on the amine of the ethanolamine chain can be explained by the
protonation state of this system inside cellular medium, which supports the need of a hydrogen-bond
donor. The other magenta polyhedron near the oxygen atom of the LHS sulfonamide seems to indicate
that this group could act as a hydrogen-bond acceptor and not only as a linker atom.
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2.2. CoMSIA-DA (Model N◦30)

The donor contour map (Figure 4A) displays a cyan polyhedron on position 3 of the thiophene
ring. Therefore, the insertion of a hydrogen-bond donor such as NH2, OH and CONH2, would
be favorable in this position. Likewise, in position 5 of the LHS benzene ring a big cyan contour
indicates that addition of a hydrogen-bond donor is favorable for activity. On the other hand, a purple
polyhedron on the methylene bridge connected to the indole ring restricts the use of hydrogen-bond
donors in that position.
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Figure 4. CoMSIA DA model around compound 9, the most potent of the series. (A) Donor contour
map. Cyan contours indicate regions where hydrogen-bond donors increase activity, whereas purple
contours indicate regions where hydrogen-bond donors decrease activity. (B) Acceptor contour map.
Colors have the same meaning as explained in Figure 3B.

In general, the acceptor contour map (Figure 4B) is in agreement with the CoMSIA-SA
model. A red polyhedron on the protonable nitrogen atom of the ethanolamine chain supports
the hydrogen-bond donor required in that position. As for the sulfate group of the indole ring,
the red and magenta polyhedra show the same disposition seen in the above model, highlighting that
the presence of the oxygen atom in the sulfate group of the indole ring is favorable.

2.3. 2D-QSAR Model

A Hansch analysis was carried out in order to expand the SAR information for this class of
compounds. After testing a wide number of descriptors and combinations between them, the best
equation found was the following Equation (1):

− log EC50 = 0.057(±0.013)CMR2 − 1.65(±0.38)CMR + 2.37(±0.25)S+
0.072(±0.049)π2

x + 0.098(±0.024)π2
y + 18.56

(1)

n = 21, r2 = 0.9072, F = 29.32, p < 10−6, s = 0.321, q2 = 0.607,
SEP = 0.524, NLOO = 5, r2

pred = 0.9379

where CMR is the calculated molar refractivity, and S is a Free-Wilson parameter that describes the
presence or absence of the LHS sulfonamide group independent of the cycle to which it is attached. πx
is the lipophilicity of the substituent connected to position 7 of the indole ring, πy is the lipophilicity of
the substituent connected to the LHS benzene ring with regardless of the position. From this equation
it can be seen that the presence of a sulfonyl group is highly favorable for activity, as well as high
lipophilicity of the substituents in the indole ring and LHS benzene ring. On the other hand, the
biological activity decreases drastically with increasing molar refractivity, and therefore, the insertion
of halogens such as bromine or iodine should be explored with caution. The plot of actual versus
predicted activities is depicted in Figure 5 for the 2D-QSAR model. Figure 6 summarizes the principal
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structure-activity relationships found in this study that can serve as a basis for the development of
new promising compounds.
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3. Materials and Methods

3.1. Data Set Selection and β3 Adrenergic Activity

The CoMSIA and 2D-QSAR studies were performed on a set of 25 diverse molecules obtained
from literature [35–39] with the general structure 2-alkylaminoindole (Table 3). The biological activity
of the compounds was measured under the same laboratory and experimental conditions and was
expressed as EC50. β-ARs agonistic activity was assessed by measuring cAMP accumulation in CHO
cells expressing β3 receptors. The compounds displayed a high selectivity for the β3 receptor in the
functional assays. The biological activity was converted to pEC50 (=−logEC50, in molar concentration).
The compounds were randomly divided into training and test sets, ensuring that both sets contained
structurally diverse compounds with high, medium and low activity, and a uniform distribution to
avoid possible problems during the external validation. The first generation β3-AR agonist BRL-37344
was included in the test set (compound 3).
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Table 3. Structure, biological activity and selectivity index of the studied compounds.

Entry Structure EC50 (nM) β1 (β1/β3) β2
(β2/β3) β3

pEC50 β3 (M)

1
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3.2. Parameter Calculations and Statistical Analysis

For the 2D-QSAR study, the molar refractivity (CMR) and lipophilicity (CLogP) parameters
were calculated using the ChemBioDraw software (15.1.0, PerkinElmer, Waltham, MA, USA).
The multilinear regression analysis was performed with the Statistica Software (8.0, StatSoft, Tulsa, OK,
USA). All the combinations among the independent variables were evaluated. The best model herein
presented contains the fewest number of independent variables to avoid overfitting [40] and chance
correlation [41] and to obtain the highest correlation coefficient. Internal validation of the model was
carried out using the Leave-one-out method (LOO) which generated the crossvalidation regression
coefficient (q2). The predictive power of the models was assessed by the calculation of r2

pred [42] as
described below.

3.3. Selection of Conformers and Molecular Alignment

CoMSIA studies were performed with Sybyl-X software (1.2, Tripos International, St. Louis,
MS, USA) [43] installed in a Windows 7 environment on a PC with an Intel core i7 CPU. In order
to acquire the best conformers for each molecule, every compound was subjected to a preliminary
geometry optimization of 1000 iterations using the Tripos force field implemented in Sybyl [44]. The
convergence criterion of the energy gradient was set to 0.005 kcal/molÅ, and Gasteiger-Hückel charges
were assigned to each atom [45], after which 10 cycles of simulated annealing dynamics were run
heating the molecules to 1000 K for 1000 fs followed by the annealing of the compounds at 50 K for
1000 fs. From this analysis, the conformers with minimal total energy for each compound were chosen
for the definitive CoMSIA studies. The minimized structures were superimposed by the atom fit
method choosing the phenylethanolamine nucleus as the common scaffold for alignment.

3.4. CoMSIA Field Calculation

To derive the CoMSIA descriptor fields, the aligned training set molecules were placed in a 3D
cubic lattice with grid spacing of 2 Å in x, y, and z directions such that the entire set was included in
it. For CoMSIA analysis, the standard settings (probe with charge +1.0, radius 1 Å, hydrophobicity
+1.0, hydrogen-bond donating +1.0, and hydrogen bond accepting +1.0) [34] were used to calculate
five different fields: steric, electrostatic, hydrophobic, acceptor and donor. Gaussian-type distance
dependence was used to measure the relative attenuation of the field position of each atom in the
lattice. The default value of 0.3 was set for attenuation factor α.
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3.5. Internal Validation and Partial Least Squares (PLS) Analysis

PLS analysis was used to construct a linear correlation between the CoMSIA descriptors
(independent variables) and the activity values (dependent variables) [46]. To select the best model, the
cross-validation analysis was performed by using the LOO method (and SAMPLS), which generates
the square of the cross-validation coefficient (q2) and the optimum number of components (N).
The non-cross-validation was performed with a column filter value of 2.0 in order to speed up
the analysis and reduce the noise. The q2, which is a measure of the internal quality of the models,
was obtained according to the following Equation (2):

q2 = 1−
∑
(

yi − ypred

)2

∑(yi − y)2 (2)

where yi, y, and ypred are observed, mean, and predicted activity in the training, respectively.

3.6. External Validation of the CoMSIA Model

The predictive power of the models was assessed by calculation of the predictive r2 (r2
pred) [42,47].

r2
pred measures the predictive performance of a PLS model and is defined according to Equation (3):

r2
pred =

SD− PRESS
SD

(3)

where SD is the sum of the squared deviations between the biological activities of the test set
compounds and mean activity of the training set compounds, and PRESS is the sum of squared
deviations between observed and predicted activities of the test set compounds.

The plot of the predicted pEC50 values versus the experimental ones for CoMSIA analyses is also
shown in Figure 2, in which most points are well distributed along the line y = x suggesting that the
quality of the 3D-QSAR models is good.

To further ensure the external predictive power of our model we have implemented the validation
criterion of Tropsha [48]:

q2 > 0.5 (4)

r2 > 0.6 (5)(
r2 − r2

0
)

r2 < 0.1 or
(
r2 − r′20

)
r2 < 0.1 (6)

0.85 ≤ k ≤ 1.15 or 0.85 ≤ k′ ≤ 1.15 (7)

where q2 is the cross-validated correlation coefficient from LOO; r2 is the correlation coefficient for
experimental (y) vs. predicted (y*) activities for the test set molecules; r0

2 and r'0
2 are the correlation

coefficients for the regression through origin for y vs. y* and y* vs. y, respectively; and k and k' are
the slopes for regression through origin for yr0 = ky* and y*r0 = k'y. All of the models reported herein
accomplish these criteria.

4. Conclusions

We have performed a CoMSIA study and a 2D-QSAR analysis from which valuable information
can be obtained to direct the rational design and the synthesis of new β3-AR derivatives. The properties
of the compounds found to correlate with the biological activity were: steric, hydrogen-bond donor
and acceptor as well as lipophilicity and molar refractivity. The best models obtained presented good
regression coefficients in internal and external validation. Finally, a proposed series of molecules is
shown in Table 4 with their predicted biological activity.
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Table 4. The proposed structures of new molecules and their predicted pEC50 using the best model.
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