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Abstract: The structural resemblance between the fused imidazopyridine heterocyclic ring system
and purines has prompted biological investigations to assess their potential therapeutic significance.
They are known to play a crucial role in numerous disease conditions. The discovery of
their first bioactivity as GABAA receptor positive allosteric modulators divulged their medicinal
potential. Proton pump inhibitors, aromatase inhibitors, and NSAIDs were also found in this
chemical group. Imidazopyridines have the ability to influence many cellular pathways necessary
for the proper functioning of cancerous cells, pathogens, components of the immune system,
enzymes involved in carbohydrate metabolism, etc. The collective results of biochemical and
biophysical properties foregrounded their medicinal significance in central nervous system, digestive
system, cancer, inflammation, etc. In recent years, new preparative methods for the synthesis of
imidazopyridines using various catalysts have been described. The present manuscript to the
best of our knowledge is the complete compilation on the synthesis and medicinal aspects of
imidazo[4,5-b]pyridines and imidazo[4,5-c]pyridines reported from the year 2000 to date, including
structure–activity relationships.
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1. Introduction

The imidazopyridines comprised an imidazole ring fused with a pyridine moiety. The group
contains compounds with different biological activity. In general, they are GABAA receptor agonists [1],
however, recently proton pump inhibitors [2], aromatase inhibitors [3], NSAIDs [4] and other classes of
drugs in this class have been developed as well. Imidazopyridines consist of various isomeric forms like
imidazo[4,5-b]pyridines, imidazo[4,5-c]pyridines, imidazo[1,5-a]pyridines and imidazo[1,2-a]pyridines.
Among the latter group, one can find the most examples of drugs, such as ambien, miroprofen, and
zolimidine (Figure 1).
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contains compounds with different biological activity. In general, they are GABAA receptor agonists [1], 
however, recently proton pump inhibitors [2], aromatase inhibitors [3], NSAIDs [4] and other classes 
of drugs in this class have been developed as well. Imidazopyridines consist of various isomeric 
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Figure 1. Examples of bioactive agents possessing imidazo[1,2-a]pyridine core. Figure 1. Examples of bioactive agents possessing imidazo[1,2-a]pyridine core.

However, the other two groups seem to also be very potent. In particular, some compounds of
the imidazo[4,5-b]pyridine and imidazo[4,5-c]pyridine core are substances with confirmed activity,
and some are at various stages of clinical trials. Bamaluzole with the imidazo[4,5-c]pyridine system is
a GABAA receptor agonist patented as an anticonvulsant by Merck, but never marketed (Figure 2) [5].
They also discovered telcagepant (MK-0974), a calcitonin gene related peptide receptor antagonist
with an imidazo[4,5-b]pyridine moiety, which was in clinical trials as a remedy for migraines but
its development was terminated in 2009 [6]. Mitsubishi Tanabe Pharma invented tenatoprazole
(TU-199) that blocked the gastric proton pump leading to a decline of gastric acid production.
This imidazo[4,5-b]pyridine is actually under active development by SIDEM (France) [7]. There is
also the imidazo[4,5-c]pyridine core in the structure of 3-deazaneplanocin A (DZNep) acting as a
S-adenosyl-L-homocysteine synthesis inhibitor and a histone methyltransferase EZH2 inhibitor, so it
can be potentially applied in various types of cancer and Ebola virus disease [8].
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Aurora A, B and C kinases belong to the serine/threonine kinases family. Aurora A kinase 
(AURKA) is responsible for the proper conduct of mitosis, formation of the mitotic spindle, 
chromosome segregation and cytokinesis. Scientific research has revealed the overexpression of 
AURAK in the different types of cancer. There is a probability of connection of AURAK with the 
carcinogenesis process, therefore, the Aurora A kinase has become a promising molecular target for 
cancer therapy. Application of imidazo[4,5-b]pyridine derivatives 1–3 (Figure 3) as inhibitors of 
AURAKA have been extensively described in the literature [19–21]. 
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The above facts prompted us to take a look at imidazo[4,5-b]pyridines and imidazo[4,5-c]pyridines
as well as their oxygen and sulfur analogues and compare their potency as bioactive agents. The present
manuscript to the best of our knowledge is a complete review, including the medicinal aspects,
synthetic strategies and structure activity relationship of these heterocyclic groups that is covered from
the year 2000 to present.
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2. Biological Properties of Imidazo[4,5-b]pyridines and Imidazo[4,5-c]pyridines

2.1. Antitumor Activity

In connection with the population growth and an increase in the duration of life we can also
observe an escalation of the incidence of non-communicable diseases. Among them cancer is one
of the most common causes of death. Imidazopyridines have the ability to influence many cellular
pathways necessary for the proper functioning of cancerous cells. The inhibited proteins include, inter
alia, matrix metalloproteinase-2, RNA-dependent RNA polymerase, hepatocyte growth factor receptor
(c-MET), serine/threonine-protein kinase or cell division cycle 25 phosphatases [9–18].

Aurora A, B and C kinases belong to the serine/threonine kinases family. Aurora A kinase
(AURKA) is responsible for the proper conduct of mitosis, formation of the mitotic spindle,
chromosome segregation and cytokinesis. Scientific research has revealed the overexpression of
AURAK in the different types of cancer. There is a probability of connection of AURAK with the
carcinogenesis process, therefore, the Aurora A kinase has become a promising molecular target
for cancer therapy. Application of imidazo[4,5-b]pyridine derivatives 1–3 (Figure 3) as inhibitors of
AURAKA have been extensively described in the literature [19–21].Molecules 2017, 22, 399 3 of 24 
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application of only temozolomide [30]. 

Figure 3. Inhibitors of serine/threonine kinases.

There are also other serine/threonine kinases such as Tank binding kinase 1 (TBK1) and inhibitor
of nuclear factor kappa-B kinase subunit epsilon (IKK-ε) which are used in the search for antitumor
drugs. IKK-ε and TBK1 activate nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-kappaB) through the process of phosphorylation. NF-kappaB is the transcription factor exhibiting
antiapoptoic effects. This results in defective cell survival and tumor development [22,23]. Scientists
are trying to develop a new class of drugs that will be exhibit an inhibitory effect on both of the
mentioned enzymes. Imidazopyridine derivatives were tested by Wang. Several of the obtained
compounds (4, 5, Figure 3) demonstrated inhibitory potency in the range of 0.004–0.046 µM and good
selectivity towards cyclin-dependent kinase 2 (CDK2) and Aurora B enzymes [24]. Johanne et al.
optimized the structure of compound 4. Comprehensive modification of the substituent at the C6
position of the imidazopyridine ring has led to obtaining a derivative 6 characterized by higher potency
to inhibit both kinases [25]. NF-κB could also be activated by mitogen and stress activated protein
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kinase 1 (MSK1) protein. Among the MSK1 inhibitors, imidazopyridine (7) (Figure 4) with a nanomolar
value of IC50 (3 nM) has been found [26]. Imidazopyridine derivatives indicated inhibitory impact on
inhibitors of apoptosis proteins (IAPs) family and myeloid cell leukemia 1 (Mcl-1) protein [27,28].Molecules 2017, 22, 399 4 of 24 
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Imidazopyridine derivatives have been examined by Puskullu for cytotoxic activity on the human
breast adenocarcinoma cell line MCF-7. Compound 8 (Figure 4) with the N-hydroxy- carboximidamide
group at the phenyl ring demonstrated the highest cytotoxic activity (IC50 0.082 µM). Substitution
of the hydroxycarboximidamide group nitrogen atom by an alkyl chain significantly reduced the
activity [29]. In the treatment of breast cancer poly(ADP-ribose) polymerase (PARP) inhibitors were
also examined. Zhu et al. obtained the series of imidazo[4,5-c]pyridines with moderate to good PARP
inhibitory activity. PARP inhibitors increase the sensitivity of tumor cells to chemotherapy. The best
potency was demonstrated by compound 9 with an IC50 value of 8.6 nM. The obtained compound
was also tested in the combination with temozolomide on three human tumor cell lines MDA-MB-468,
SW-620 and A549. Research revealed an appreciable increase in the potency of growth inhibition of
tumor cells in comparison with the application of only temozolomide [30].

Angiogenesis is the formation process of a blood network necessary for the proper functioning
of the body. In healthy subjects, this process is regulated by a plurality of inhibitors and stimulants.
Excessive angiogenesis, which is essential for further growth of tumor cells, is observed in the late
stages of cancer. The JAK/STAT-3 signaling pathway is involved in the angiogenesis process. Vasbinder
attempted to synthesize a selective inhibitor of Januse kinase 1 (JAK-1). Research selected compound
10 with good potency towards JAK-1 (IC50 0.022 µM) and without significant impact on the other
isoforms [31]. One of the assignments of the MET pathway in cancer development is the formation of
new vessels. Inhibitors of c-MET kinases with an imidazopyridine core may be useful for stopping
carcinogenesis [32].

2.2. Antimicrobial Activity

In the past few years a large number of bacterial strains resistant to previously used
chemotherapeutics agents have emerged. Methicillin resistant Staphylococcus aureus (MRSA) and
vancomycin-resistant Enterococcus faecalis (VRE) cause a serious problems during hospitalization [33,34].
Also, in the case of tuberculosis, an increase in the prevalence of MDR-TB and XDR-TB was observed.
Merely 50% of patients with MDR-TB and 26% of patients with XDR-TB completed treatment
successfully [35]. The crisis of microbial resistance is a serious public health issue around the world.
Obtaining new drugs with new mechanisms of actions is necessary.
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Arridos et al. combined 2,6-diarylpiperidin-4-one core to the imidazo[4,5-b]pyridine ring.
Both structures have been widely described in the literature as antimicrobial agents. They observed
an increase in activity against Gram positive (Staphylococcus aureus and Bacillus subtilis) and Gram
negative (Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumonia) bacteria in the presence
of the chlorine atom at the para position of the phenyl groups of compound 11 and 12 (Figure 5).
The presence of the methyl group at the C5 position enhanced activity against the tested bacteria
strains. The introduction of another methyl group at the C3 position results in a further increment
in activity [36].
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Glucosamine-6-phosphate synthase could be a potential molecular target for new
imidazo[4,5-c]pyridine derivatives in the treatment of fungal infections. This enzyme is responsible for
the synthesis of fungal cell walls and regulation of sugar metabolism. The final product of catalysis
is uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) which is liable for synthesis of cell wall
components [37,38]. Compounds 13–17 (Figure 6) exhibited good antimicrobial activity in comparison
with the reference drugs streptomycin and fluconazole. The molecular docking studies showed that
derivatives containing halogen atoms possess good docking energy, oral absorption, skin penetration
and membrane permeability [39]. 3-Deazapurines with good tuberculostatic activity were disclosed by
Khoje. Compounds 18 and 19 (Figure 7) exhibited activity against Mycobacterium tuberculosis with the
value of MIC below 1 µM [40].
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Certain imidazo[4,5-b]pyridine derivatives demonstrated activity inhibiting the growth of
Trypanosoma brucei. T brucei causes in humans the fatal disease African trypanosomiasis [41].
Methionyl-tRNA synthetase of T. brucei is an extensively used molecular target in the process of
antitrypanosomal drugs development. This enzyme fulfills an essential role in the proper creation of
the peptide chain due to the influence on translation [42,43]. Imidazopyridine 20 (Figure 7) exhibited a
good inhibitory effect on methionyl-tRNA synthase (IC50 < 50 nM, EC50 39 nM).

The pharmacokinetic parameters have been also examined. Although compound 20 demonstrated
remarkable pharmacokinetic parameters after oral administration at 50 mg/kg (Cmax 37.6 µM,
and AUC 6223 min·µmol/L) it poorly penetrates into the brain. The brain’s permeability to
drugs is extremely important due to the ability of T. brucei to cerebrospinal fluid penetration.
Structural modifications have led to obtaining derivative 21 with improved brain permeability in
mice and inhibition potency (IC50 < 50 nM, EC50 22 nM) and moderate pharmacokinetic properties
(Cmax 9.7 mM, AUC 952 min·mmol/L) [44].

2.3. Anti-Inflammatory

Inflammation is a defensive reaction of the body caused by chemical, physical or biological
agents. The inflammatory response begins with the activation of the immune system and production
of inflammatory mediators. Chronic inflammation can lead to harmful effects on the body and
the development of other diseases such as cancer and neuropathy. Retinal ischemia is caused by
insufficient blood supply in the retina. Sustained ischemia leads to the activation of inflammatory
mediators, further degeneration of the retina and impaired vision. Tumor necrosis factor-α (TNF-α),
interleukin-6 (IL-6), and adhesion molecules ICAM-1 and VCAM-1 were observed in patients with
retinal ischemia [45,46]. Compound 22 (Figure 8) with the imidazo[4,5-b]pyridine structure has also
been extensively studied as an anti-inflammatory compound in the treatment of retinal ischemia.
It has the ability to diminish the tert-butyl hydroperoxide-induced inflammatory response in ARPE-19
cells (human retinal pigment epithelial) [47]. Li et al. tested the capability of compound 22 to inhibit
the inflammatory reactions associated with obesity. The tested compound affected the activation of
transcription factors Nrf2 and NF-κB responsible for regulation of oxidative stress causing arterial
injury in the course of obesity [48,49].
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Nitric oxide synthase (NOS) is the enzyme that produces nitric oxide(II) which performs many
biological functions in human body. One of the inducible NOS isoforms is involved in the immune
response. iNOS is activated by proinflamatory factors. However, overexpression of iNOS may lead to
adverse reactions such as stroke. The main issue is to achieve a compound which selectively inhibits
only iNOS [50,51]. Compound 23 (Figure 8) was characterized by selectivity for iNOS with a pIC50

value of 7.09 (nNOS pIC50 4.86; eNOS pIC50 3.95) and good pharmacological parameters. The method
of binding compound 23 with L-arginine of isoform iNOS was determined by X-ray crystallography.
The methoxy group is essential for selectivity. The 4-methoxy group is nested in a hydrophobic pocket
formed by Val346 and Phe363 (murine iNOS numbering) [52].

Cyclooxygenase (COX) is the protein engaged in the formation of prostaglandins, thromboxane
and prostacyclin. Cyclooxygenase is part of the inflammatory response. The majority of nonsteroidal
anti-inflammatory drugs inhibit the activity of both isoforms COX-1 and COX-2. Numerous
side effects are related to the inhibition of COX-1, therefore selective inhibitors of COX-2 are
eligible [53,54]. Kirwen et al. investigated the selective COX-2 inhibitors with imidazopyridine
moiety. The imidazopyridines obtained contain diaryl pharmacophore which is a key building element
of many chemical molecules with anti-inflammatory activity The highest activity and selectivity was
demonstrated by compound 24 (COX-1 IC50 21,8 µmol/L; COX-2 IC50 9,2 µmol/L) (Figure 8) [55].

2.4. Antiviral Activity

Viruses have the ability to attack all living organisms, plants, animals and humans. An extremely
dangerous phenomenon is their high mutation rate. For this reason, researchers around the world are
looking for new antiviral drugs among pyridine derivatives. Human immunodeficiency virus (HIV) is
one of the most serious and deadly communicable diseases. Li performed a series of in vitro anti-HIV
assays on MT-4 cell culture infected by the HIV-1 IIIB strain, the HIV-1 mutant strain RES056, and
the HIV-2 strain ROD. Synthesized compounds demonstrated moderate to good activity. The assays
revealed that amide (compound 25, Figure 9) and sulfamide (compound 26) groups are preferable
in the para position of the anilide moiety. The presence of electron-withdrawing group in the ortho
position of the anilide moiety is likewise relevant for anti-HIV activity. Derivatives 25 and 26 were
characterized by higher potency than the reference drugs nevirapine and delaviridine [56].
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Puerstinger et al. developed the series of imidazo[4,5-c]pyridines and tested them against the
Bovine Viral Diarrhea Virus (BVDV). As a result of extensive modification, highly active and selective
against BVDV molecule 27 (Figure 9) was obtained. A decrease of activity in the presence of a fluorine
atom on the phenyl ring located in the 2-position was observed. The presence of large substituents on
the benzyl group was associated with the reduction of activity. The received compound interacted
with viral RNA-dependent RNA polymerase. The derivatives did not demonstrate activity against
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the Hepatitis C Virus (HCV) which has a similar organizational structure to BVDV. As a second step,
compounds selective against HCV were searched. Only a couple of the tested compounds (28, 29)
showed selectivity (SI > 595) and high activity (EC50 0.10–0.20 µM) [57,58].

A plurality of modifications in the benzyl group have led to obtaining compound 30 (Figure 9)
which is highly potent (EC50 0.004 µM) and selective against HCV. The action mechanism of these
compounds is the inhibition of replication of a genotype 2a cell culture infectious HCVcc [59].

2.5. Autoimmune Disorders

Cathepsin S (CTSS) belong to the family of cysteine proteases. Cathepsin S is produced by immune
cells presenting antigen, which are activated by inflammatory mediators. The distinctive properties
of this protein from other cathepsins are the stability beyond the lysosome and the catalytic activity
at neutral pH [60,61]. Inhibition of this enzyme can be effective in the treatment of immune related
diseases such as rheumatism or psoriasis. Cai et al. obtained 9H-purine-6-carbonitrile 31 (Figure 10)
as a good CTSS inhibitor and pyridine-2-carbonitrile 32 which was characterized by the selectivity
towards CTSS but with less potency.
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Subsequently, they obtained 1H-imidazo[4,5-c]pyridine-4-carbonitrile hybrids of these
two compounds in order to improve their properties. Among the obtained derivatives compound 33
possessing the ethoxy group showed the highest activity (CTSS IC50 25 nM) while maintaining good
selectivity (CTSK IC50 8310 nM). The longer chain or moiety without the oxygen atom indicated a
lower activity [62].

2.6. Antidiabetic Activity

Diabetes is one of the most frequently occurring non-communicable diseases. The World Health
Organization created the program for the years 2013–2030 which aims to reduces morbidity from
diabetes and improvement of pharmacotherapies [63]. Hypoglycemic treatment in the early stages is
relatively simple. It requires lifestyle changes and the introduction of monotherapy. Unfortunately,
diabetes is a progressive disease and over time it requires the implementation of combination
therapy. The most commonly used drugs include sulfonylureas, GLP-1 receptor agonists, PPAR-α
agonists, DPP-IV inhibitors and the recently introduced glinides [64,65]. Novel glycogen synthase
kinase 3 (GSK-3) inhibitors have been developed. 7-Hydroxybenzimidazole initially obtained by
Lee showed good inhibitory activity to the enzyme GSK-3. Physicochemical properties including
polar surface area (PSA) have been insufficient. Compounds having the phenol scaffold are
metabolized by glucuronidation to ether O-glucuronides [66]. Accordingly, the author exchanged
the 7-hydroxybenzimidazole moiety for an imidazopyridine which can also be metabolized by
glucuronidation. The results revealed that the newly synthesized derivatives have a stronger inhibitory
effect on GSK-3 (IC50 1–12 nM) than their 7-hydroxybenzimidazole analogues. X-ray crystallography
demonstrated that the imidazopyridine interacted with a carbonyl and an amino group of Val135 as a
hydrogen-bonding donor and as a hydrogen-bonding acceptor. In contrast, 7-hydroxybenzimidazoles
interacted with Asp133 and Pro136. Microsomal mouse stability studies were performed for received
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compounds. Compound 34 (Figure 11) was characterized by good stability (70%), high potency
(IC50 8 nM) but also good physicochemical properties such as cLogP (2.73) and a PSA (83.56 Ĺ2) [67].
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2.7. Miscellaneous Activities

Sharma et al. reported the series of imidazopyridine derivatives like 35 as angiotensin II receptor
antagonists (Figure 12). ARBs act by inhibiting the angiotensin type I receptor thereby preventing the
action of angiotensin II and consequently reduce blood pressure [68].Molecules 2017, 22, 399 9 of 24 
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The Maillard reaction is a common reaction occurring between amino acids and reducing sugars.
The reaction leads to Amadori products which may accumulate in the human body and cause
chronic diseases [69,70]. Following the merger of imidazopyridine and benzohydrazide, compounds
with antiglycation and antioxidative potential were obtained. The tendency to an increase in both
activities with the increasing number of the hydroxyl group was observed. It is related to high
redox potential and the ability to donate electrons. Compound 36 is characterized by the highest
antioxidant (EC50 26.12 µM) and an antiglycation (IC50 140.16 µM) activity even higher than for
references compounds gallic acid and rutin [71,72].

Frohn reported the synthesis of compound 37 with excellent inhibitory activity towards prolyl
hydroxylase domain-2 (PHD2) with the value of IC50 0.003 µM. PHD2 is critical for the regulation
of hypoxia-inducible factor (HIF), whereas the hypoxia-inducible factor is engaged in the process of
erythropoiesis [73,74].

3. Synthetic Routes to Imidazo[4,5-b]pyridines and Imidazo[4,5-c]pyridines

While many strategies are available for imidazo[4,5-b]pyridine and imidazo[4,5-c]pyridine
synthesis, the most popular approaches involve both condensation–dehydration reactions of
pyridine-2,3-diamine or pyridine-3,4-diamine with carboxylic acids (or their equivalents) and
condensation with aldehydes under oxidative conditions. Carboxylic acids or their equivalents
(nitriles, amidates, and orthoesters) are usually reacted under strongly acidic or harsh dehydrating
conditions that often require high temperatures or the use of reagents such as phosphorus anhydride.
The reaction can also be performed stepwise via intermediate amides. In the case of aldehydes, the
reaction proceeds through an imidazolidine-pyridine, and this requires an oxidative step for conversion
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to the corresponding imidazopyridine. Recently, a number of modifications of known methods were
described that may significantly accelerate the reactions and increase their yields.

According to the classical method of benzimidazole synthesis, Dymińska et al. proposed the
synthesis of imidazo[4,5-b]pyridine 38 from 2,3-diaminopyridine and formic acid (Scheme 1) [75].
The first successful lithium bromide mediated solvent free condensation of arylenediamine
and esters to obtain 2-substituted imidazopyridines (e.g., 39) in good to excellent yields
at 110–115 ◦C was described by Dekhane et al. [76]. Mladenova performed the reaction
of methyl 4-((benzyloxy)methyl)tetrahydrofuran-2-carbimidate hydrochloride–cis or trans with
2,3-diaminopyridine in MeOH resulting in the corresponding 1H-imidazo[4,5-b]pyridine 40, cis or
trans in a yield of 40% [77].
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Scheme 1. Synthesis of imidazo[4,5-b]pyridines from 2,3-diaminopyridine and carboxylic acids or their
functional derivatives.

Dymińska also obtained 7-methyl-3H-imidazo[4,5-c]pyridine from 5-methyl-3,4-diamino-pyridine
in 100% formic acid (Scheme 2). The reaction mixture was boiled under reflux for 6 h and was
recommended as a method for the preparation of derivatives substituted with a methyl group at
various positions of the pyridine ring [78].
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rather good yielded (~75%), particularly when microwave irradiation is used [79].
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Rene et al. reported an efficient one-step route to fluoroalkyl-azabenzimidazoles via the
condensation of fluorinated carboxylic acids and pyridinediamines (Scheme 5). This method is
high-yielding (54%–99%) with a broad scope and is operationally simple with potential application to
parallel synthesis [82].
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A facile synthesis of imidazo[4,5-b]pyridines was described by Rosenberg et al. using
a Pd-catalyzed amide coupling reaction. 3-Alkyl and 3-arylamino-2-chloropyridines reacted
with simple primary amides in good yields (51%–99%) when refluxing in t-butanol in the
presence of tris(dibenzylideneacetone)dipalladium(0)-chloroform adduct, di-tert-butyl(2′,4′,6′-
triisopropyl-3,6-dimethoxy-[1,1′-biphenyl]-2-yl)phosphine as a ligand and potassium phosphate
(Scheme 8). That reaction provided quick access to products with substitution at N1 and C2 [85].
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Al-duaij et al. [86] described an interesting method of imidazo[4,5-b]pyridine synthesis using
malononitrile. First, heating diaminomaleonitrile 41 with triethyl orthoformate in dioxane afforded
ethyl [2-amino-1,2-dicyanovinyl]imidoformate 42. Treatment of 42 with the appropriate amines,
namely 4-methoxybenzylamine and 4-methylbenzylamine catalyzed by aniline hydrochloride, formed
(substituted benzyl)-N-(2-amino-1,2-dicyanovinyl)formimidine 43 which underwent intramolecular
cyclization in the presence of 1,8-diazabicyclo(5.4.0)undec-7-ene (DBU) to form 5-amino-1-(substituted
benzyl)-4-cyanoformimidoyl imidazole derivative 44 (Scheme 9).Molecules 2017, 22, 399 12 of 24 
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Scheme 9. Synthesis of 5-amino-1-(substituted benzyl)-4-cyanoformimidoyl imidazole derivative as an
interediate for imidazole[4,5-b]pyridines.

Next 1-aryl-5-amino-4-(cyanoformimidoyl)imidazoles 44 were reacted with malononitrile under
mild experimental conditions and led to 3-aryl-5,7-diamino-6-cyano-3H-imidazo[4,5-b]pyridines 45,
when the reaction was carried out in the presence of DBU, or to 3-aryl-5-amino-6,7-dicyano-3H-
imidazo[4,5-b]pyridines 46, in its absence. Both reactions evolved from the adduct formed by a
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nucleophilic attack of the malononitrile anion to the carbon of the cyanoformimidoyl substituent
(Scheme 10) [86,87].

Molecules 2017, 22, 399 12 of 24 

 

 
Scheme 9. Synthesis of 5-amino-1-(substituted benzyl)-4-cyanoformimidoyl imidazole derivative as 
an interediate for imidazole[4,5-b]pyridines. 

Next 1-aryl-5-amino-4-(cyanoformimidoyl)imidazoles 44 were reacted with malononitrile 
under mild experimental conditions and led to 3-aryl-5,7-diamino-6-cyano-3H-imidazo[4,5-b] 
pyridines 45, when the reaction was carried out in the presence of DBU, or to 
3-aryl-5-amino-6,7-dicyano-3H-imidazo[4,5-b]pyridines 46, in its absence. Both reactions evolved 
from the adduct formed by a nucleophilic attack of the malononitrile anion to the carbon of the 
cyanoformimidoyl substituent (Scheme 10) [86,87]. 

 
Scheme 10. Synthesis of functionalized imidazo[4,5-b]pyridines from 
1-aryl-5-amino-4-(cyanoformimidoyl)imidazoles. 

A new environmentally-benign, convenient, and facile methodology for the synthesis of 
2-substituted-1H-imidazo[4,5-b]pyridine was elaborated by Kale et al. [88]. The reaction of 
2,3-diaminopyridine with substituted aryl aldehydes in water under thermal conditions without the 
use of any oxidative reagent has been studied. The reaction has yielded 1H-imidazo[4,5-b]pyridine 
derivatives (Scheme 11) by an air oxidative cyclocondensation reaction in one step in an excellent 
yield (83%–87%). Ivanova et al. described similar preparation of substituted 
2-(1,2,4-triazol-3-yl)imidazopyridines from diaminopyridines and triazole aldehydes. In that case 
also, good yields were obtained 37%–71% [89]. 

 
Scheme 11. Classical synthesis from 2,3-diaminopyridine and aldehydes. 

A set of 3H-imidazo[4,5-b]pyridines was also readily prepared from (hetero)aromatic 
ortho-diamines and aldehydes using chlorotrimethylsilane in DMF as a promoter and water-acceptor 
agent, followed by oxidation with air oxygen (Scheme 12). The authors obtained products with very 
good yields 79%–80% [90]. 

 
Scheme 12. Modification with chlorotrimethylsilane as apromoter and water-acceptor. 

Scheme 10. Synthesis of functionalized imidazo[4,5-b]pyridines from 1-aryl-5-amino-4-
(cyanoformimidoyl)imidazoles.

A new environmentally-benign, convenient, and facile methodology for the synthesis of
2-substituted-1H-imidazo[4,5-b]pyridine was elaborated by Kale et al. [88]. The reaction of
2,3-diaminopyridine with substituted aryl aldehydes in water under thermal conditions without
the use of any oxidative reagent has been studied. The reaction has yielded 1H-imidazo[4,5-b]pyridine
derivatives (Scheme 11) by an air oxidative cyclocondensation reaction in one step in an excellent
yield (83%–87%). Ivanova et al. described similar preparation of substituted 2-(1,2,4-triazol-3-
yl)imidazopyridines from diaminopyridines and triazole aldehydes. In that case also, good yields
were obtained 37%–71% [89].
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Scheme 11. Classical synthesis from 2,3-diaminopyridine and aldehydes.

A set of 3H-imidazo[4,5-b]pyridines was also readily prepared from (hetero)aromatic
ortho-diamines and aldehydes using chlorotrimethylsilane in DMF as a promoter and water-acceptor
agent, followed by oxidation with air oxygen (Scheme 12). The authors obtained products with very
good yields 79%–80% [90].
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Reduction of 6-methoxy-3-nitropyridin-2-amine 47 was achieved catalytically (using Pd/C as a
catalyst under hydrogen gas) to give the compound 6-methoxypyridine-2,3-diamine (48). This diamino
analog was instable and immediately used in the next step reaction without further purification
(Scheme 13). Subsequent imidazole ring compound 49 was formed from compound 48 by treating
with CS2 and KOH in 63% yield [91].
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Enhancing the reactivity of the catalytic system by using a palladium catalyst with sterically
demanding and electron rich ligands attached to it has often been shown as an appropriate way of
performing the copper-free Sonogashira reaction. Sajith et al. [92] reported PdCl2(PCy3)2 (Scheme 14)
as an efficient catalyst for the copper and amine-free Sonogashira cross coupling reactions of
2-halo-3-alkyl imidazo[4,5-b]pyridines (I, Br, Cl) using tetrabutyl ammonium acetate as an activator in
N-methylpyrrolidone (NMP) under microwave enhanced conditions (yields 70%–95%).
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The same authors described the synthesis of imidazo[4,5-b]pyridines in the reaction with
1,1′-carbonyldiimidazole (CDI) and then with phosphoryl chloride or with formic acid followed
by halogenation with carbon tetrabromide or N-iodosuccinimide (NIS) (Scheme 15) [93].
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They also proposed a modified approach for the synthesis of 3-substituted 2-aryl/heteroaryl
imidazo[4,5-b]pyridines with excellent yields. The method utilizing palladium catalysed cross-coupling
reactions under microwave enhanced conditions. Utilization of (A-taphos)2PdCl2-catalysed
Suzuki-Miyayura cross-coupling reactions enables rapid derivatization of this imidazo[4,5-b]pyridine
pharmaceutically relevant core (Scheme 16). This catalytic system is compatible with a broad
spectrum of arylboronic acids electron rich, electron poor, and heteroarylboronic acids [92]. In another
paper the same authors reported the regioisomeric synthesis of fully decorated imidazopyridines
employing a C-H activation protocol with a wide range of aryl/heteroaryl/alkyl boronic acids in
aqueous DMF. The use of a copper catalyst and bathophenanthroline as a ligand were found to be
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instrumental in driving these reactions to completion. The optimized protocol was further extended to
alkyl/aryl/heteroaryl potassium organotrifluoroborates [94].
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Baladi et al. described the first C-2 direct alkenylation of the valuable 3H-imidazo[4,5-b]pyridine
promoted by microwave-assisted Pd/Cu co-catalysis. By using Pd(OAc)2, CuI, phenanthroline, and
tBuOLi in dioxane under microwave irradiation conditions at 120 ◦C for 30 min, both electron-rich and
electron-deficient β-bromostyrenes reacted at the C-2 position of imidazo[4,5-b]pyridine in moderate
to good yields (Scheme 17). A variety of functional groups including halides, acetals, ethers and cyano
moieties were well tolerated under the reaction conditions; and more importantly, such groups can be
used for further chemical transformations [95].
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Scheme 17. Synthesis of 2-styrene-imidazo[4,5-b]pyridines.

A rapid and facile access to C2-substituted imidazo[4,5-b]pyridine analogues utilizing palladium
mediated Buchwald–Hartwig cross-coupling reactions has been reported by Khader et al. [96].
The use of enolizable heterocycles as cross-coupling partners resulted in a wide range of
imidazo[4,5-b]pyridine analogues which are prone to have medicinal relevance. XantPhos
(4,5-bis(diphenylphosphino)-9,9-dimethylxanthene) and Pd(OAc)2 were found to be more effective
for the coupling of 2-halo imidazo[4,5-b]pyridines with pyridone nucleophiles (Scheme 18).
A regioselective approach for the synthesis of 2-substituted 3H-imidazo[4,5-b]pyridine and
1H-imidazo[4,5-b]pyridine has been also reported. The authors obtained products with yields from
medium to excellent (49%–95%). The overall efficiency of a cross-coupling process is significantly
affected by the structure of the ligand (BINAP, XantPhos) and the catalyst. Therefore, the use of a
ligand with appropriate steric and electronic properties is very crucial in dealing with problematic and
specific substrates in this area.
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with XantPhos and Pd(OAc)2.

A facile rearrangement of N-(hetero)aryl 2-imidazolines into diversely substituted
imidazo[4,5-b]pyridines, under Bechamp reduction conditions has been discovered by
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Mujumdar et al. [97]. Combined with the earlier reported protocol for Pd-catalyzed (hetero)arylation
of 2-imidazolines, it provides a simple two-step access to a range of compounds based on this core.
The method uses the Pd(OAc)2/BINAP catalytic system in the first step to the imidazoline structure
50, which when subjected to the modified Bechamp reduction conditions (Fe/NH4Cl in aqueous
EtOH), converted to a more polar imidazopyridine 51 (Scheme 19).
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amides using Pd-coupling reactions (Scheme 21). Despite the poor nucleophilic character of amides, 
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A practical strategy for the preparation of imidazopyridine derivatives from
ortho-haloaminopyridines utilizing a two-step C-N coupling/cyclization reaction sequence has been
developed by Li et al. [98]. Their procedure provides rapid and efficient access to many medicinally
interesting imidazopyridine compounds and related imidazopyrazine/purine heterocycles.
They began the investigation by screening conditions for C-N coupling of 4-amino-3-bromopyridine
with benzylamine (Scheme 20). The best catalyst and base were BrettPhos and LiHMDS (82% yield).
Alternative catalysts (such as tBuXPhos, XPhos, RuPhos or XantPhos) did not afford the desired
product in useful yield. Surprisingly, the BrettPhos G1 precatalyst outperformed the BrettPhos G3
precatalyst (45% yield) and Pd(OAc)2/BrettPhos (12% yield). The choice of LiHMDS as a base was
found to be critical for achieving high yield while none of the other bases (NaHMDS, KHMDS,
NaOtBu, LiOtBu, Cs2CO3) examined gave more than a 35% yield. Additional variables including
solvent, concentration, catalyst loading, equivalents of base, and temperatures were also examined.
They concluded the following reaction conditions as optimal for the C-N coupling: BrettPhos G1
precatalyst (6 mol%), LiHMDS (2.5 equiv), THF (0.4 M), 40 ◦C. In addition, we also examined
4-amino-3-iodopyridine and 4-amino-3-chloropyridine as the halide coupling partner and found that
the former showed comparable reactivity (85% yield) while the chloride had inferior performance
(47% yield).
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Salome et al. has presented a very straightforward method for preparing differently substituted
imidazo[4,5-b]pyridines. The target compounds mainly result from direct amidation of the highly
electrophilic 2-chloro-3-nitropyridine with various amides including primary, secondary and cyclic
amides using Pd-coupling reactions (Scheme 21). Despite the poor nucleophilic character of amides,
when reacted with aryl halides, the reaction could be extended to sulfonamides, carbamates and ureas
by means of XanthPhos as a ligand and Cs2CO3 as the base in dioxane in the presence of Pd(OAc)2 or
Pd2(dba)3. The nitro intermediates 52 were quantitatively reduced by means of iron in the presence
of ammonium chloride in a mixture of ethanol and water. The resulting crude amino intermediate
53 was further submitted to cyclization using SiCl4 as an efficient Lewis catalyst. The reaction can be
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performed 10 min after exposure to microwave irradiation at 180 ◦C. The overall yields (reduction and
cyclization) were satisfactory to excellent (55%–90%) [99].
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The two-step procedure using Fe and acetic acid in ethanol to reduce 3-nitropyridin-4-amine
55 (Scheme 22) followed by Ytterbium triflate catalyzed condensation with triethyl orthoformate to
imidazo[4,5-c]pyridine 57 by 3,4-diaminopyridine 56 was reported by Wang et al. [100]. The optimum
stoichiometry of each component is highlighted and the broad utility was demonstrated with high
compatibility to numerous functional groups. The use of the optimal conditions resulted in obtaining
the desired products in yields of 32%–99%.
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Harer et al. discovered a one-step synthesis of 3H-imidazo[4,5-b]pyridines from aldehydes
and 2-nitro-3-aminopyridine through reductive cyclization using Na2S2O4 [101]. Aqueous paste of
Na2S2O4 was prepared as 1M in H2O and added in 3 equivalent proportions to the reaction mixture
(Scheme 23).
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The second reaction for one-step synthesis of 1H-imidazo[4,5-b]pyridines was obtained from
ketones and 2-nitro-3-aminopyridine through reductive cyclization using SnCl2×2H2O as a reductive
catalyst. Imidazopyridine scaffolds were visited after treatment of the substituted acetophenones and
2-nitro-3-aminopyridine with the addition of SnCl2×H2O in the presence of formic acid (Scheme 24).
It is presumably formed through formylation of the aniline nitrogen, nitro reduction and cyclization.
Formylation of the aniline nitrogen is believed to assist nitro reduction [101].
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A series of imidazopyridine derivatives has been synthesized efficiently via intramolecular
cyclization in excellent yields using Al3+-exchanged on K10 montmorillonite clay (Al3+-K10 clay)
as a reusable heterogeneous catalyst by Suresh et al. [102]. The authors report was the first to
utilize Al3+-K10 as a catalyst for imidazopyridine synthesis (Scheme 25). Many functional groups
were tolerated during the synthesis of targeted compounds and the yields obtained were excellent
(80%–93%). The catalyst was reused at least five times with a slight decrease in the yield. This catalyst
was environmentally benign, cost-effective, and also provided other advantages such as nontoxicity,
operational/experimental simplicity, and mild reaction conditions.
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A one-step versatile method for the synthesis of 1H-imidazo[4,5-b]pyridines (Scheme 26) from
quinoxalinones and their aza-analogues has been developed on the basis of the novel ring contractions
of 3-aroyl-quinoxalinones and their aza-analogues with 1,2-arylenediamines in boiling acetic acid
solution with rather good yields of 41%–84% [103].
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The reactions between N-aryl amidines 58 and 4-phenylsulfonyl tetrafluoropyridine 59 were
reported by Poorfreidoni et al. [104]. Reactants were stirred at room temperature in the presence of
NaHCO3 in acetonitrile and corresponding polyfunctional heteroaromatic imidazopyridine systems 60
via an intramolecular nucleophilic aromatic substitution process (Scheme 27). The products’ structure
was the result of substitution at the 2-position of the pyridine ring by the amidine secondary nitrogen,
followed by intramolecular ring closure at the geometrically accessible 3-position of the pyridine ring
by the amidine primary nitrogen.
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Scheme 27. Synthesis of 5,6-difluoro-imidazo[4,5-b]pyridines from N-aryl amidines and
4-phenylsulfonyl tetrafluoropyridine.

Recently, methods for the use of solid-phase to obtain imidazopyridines have been described.
A novel route for the solid-phase synthesis of 1,2,5-substituted 7-azabenzimidazole derivatives has
been developed by Farrant et al. (Scheme 28) [105]. In this method primary amines are attached to an
aldehyde resin then coupled to 6-chloro-5-nitro-nicotinyl chloride. Subsequent alkylation with amines,
reduction of the nitro group and cyclization with aldehydes gives 1,2,5-substituted 7-azabenzimidazole
derivatives with yields of 50%–94%.

Molecules 2017, 22, 399 18 of 24 

 

amines, reduction of the nitro group and cyclization with aldehydes gives 1,2,5-substituted 
7-azabenzimidazole derivatives with yields of 50%–94%. 

 
Scheme 28. The solid-phase synthesis of 1,2,5-substituted 7-azabenzimidazole derivatives. 

4. Conclusions 
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4. Conclusions

Numerous compounds derived from the imidazopyridine nucleus are used in the clinic for
the treatment of many diseases. Most of them are imidazo[1,2-a]pyridine derivatives. However,
imidazo[4,5-b]pyridines and imidazo[4,5-c]pyridines, despite the similar activity, exhaustive and target
based research on development of many compounds as antitumor, antimicrobial, anti-inflammatory,
antiviral, immunomodulatory, antidiabetic modulators have not made their way to the market and
clinic. This is probably due to lack of a comprehensive compilation of various research reports in each
activity capable of providing insights into the SAR of the compounds. The present review covering
more than 100 the most recent references on activity and chemical synthesis is expected to provide a
closer look at the imidazo[4,5-b]pyridine and imidazo[4,5-c]pyridine-derived compounds for a versatile
and target oriented information to develop clinically viable molecules.
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