Supplementary Material: Synthesis, X-ray Single Crystal Structure, Molecular Docking and DFT Computations on *N*-[(1*E*)-1-(2*H*-1,3-benzodioxol-5yl)-3-(1*H*-imidazol-1-yl)propylidene]hydroxylamine: a New Potential Antifungal Agent Precursor

Reem I. Al-Wabli, Alwah R. Al-Ghamdi, Hazem A. Ghabbour, Mohamed H. Al-Agamy, J. Clemy Monickaand, I. Hubert Joe and Mohamed I. Attia*

Figure S1: Various conformers of the compound 4 (in solution phase) and with their relative optimum energy

Figure S2: Linear curve fitting plots of calculated and experimental bond lengths and bond angles parameters for compound **4** in the gas phase (a,b) and solution phase (c,d).

Figure S3: Correlation graphs between the calculated and observed NMR chemical shift values for ${}^{13}C$ (left) and ${}^{1}H$ (right) of the title oxime 4.

No	Symbol	Туре	Definition
Stretching	J.		
1-6	Ri	C-C (ring)	C1-C2, C2-C3, C3-C4, C4-C5, C5-C6, C6-C1
7-12	ri	C-H (ring)	C4-H21, C6-H22, C3-H20, C14-H29, C15-H30, C17-H31
13	Ri	C-C	C5-C10
14-15	r _i	СО	C ₂ -O ₉ , C ₁ -O ₇
16-17	ri	СО	C8-O9, C8-O7
18-19	Ri	CC	C11-C10, C11-C12
20-25	ri	C-H (methylene)	C8-H24, C8-H23, C11-H25, C11-H26, C12-H28, C12-H27
26	ri	CN	C12-N13
27-30	ri	NC	C14-N13,N13-C17,C17-N16,N16-C15
31	Ri	CC	C ₁₄ -C ₁₅
32	ri	CN	C10-N18
33	Pi	NO	N18-O19
34	Pi	ОН	O19-H32
Bending			
			H20-C3-C2, H20-C3-C4, H21-C4-C3, H21-C4-C5, H22-C6-C1, H22-
35-46	β_i	H-C-C (ring)	C6-C5, H29-C14-N13, H29-C14-C15, H30-C15-C14, H30-C15-N16,
			H ₃₁ -C ₁₇ -N ₁₆ , H ₃₁ -C ₁₇ -N ₁₃
47-48	β_i	C-C-C (ring)	C10-C5-C6, C10-C5-C4
49-54	δ_i	C-C-C (ring)	C6-C1-C2, C1-C2-C3, C2-C3-C4, C3-C4-C5, C4-C5-C6, C5-C6-C1
55	α_i	H-C-H (methylene)	H ₂₄ -C ₈ -H ₂₃
56	γi	O-C-O (methylene)	O9-C8-O7
57-60	βi	H-C-O (methylene)	H24-C8-O7, H23-C8-O7, H24-C8-O9, H23-C8-O9
61	α_i	H-C-H (methylene)	H ₂₅ -C ₁₁ -H ₂₆
62	γ_i	C-C-C (methylene)	C ₁₀ -C ₁₁ -C ₁₂
63-66	βi	H-C-C (methylene)	H25-C11-C12, H26-C11-C12, H25-C11-C10, H26-C11-C10
67	αi	H-C-H (methylene)	H28-C12-H27
68	γ_i	O-C-O (methylene)	C ₁₁ -C ₁₂ -N ₁₃
69-72	β_i	H-C-N (methylene)	H28-C12-N13, H27-C12-N13, H28-C12-C11, H27-C12-C11
73-77	δ_{i}	C-C-O (ring)	C2-C1-O7, C1-O7-C8, O9-C2-C1, O7-C8-O9, C8-O9-C2
78-79	β_i	C-N-C	C_{12} - N_{13} - C_{14} , C_{12} - N_{13} - C_{17}
80-81	β_i	C-C	O9-C2-C1-C6, O7-C1-C2-C3
02.06	δ_{i}	C-C-N (ring)	C17-N13-C14, N13-C14-C15, N16-C17-N13, C14-C15-N16, C15-N16-
82-80			C17
87	αi	С-О-С	C5-C10-C11
88-89	βi	N-O-C	N ₁₈ -C ₁₀ -C ₁₁ , N ₁₈ -C ₁₀ -C ₅
90	αi	N-O-H	N18-O19-H32

 Table S1: Definition of internal valence coordinates of the title oxime 4.

91	αi	C-N-O	C10-N18-O19
Wagging			
92-97	ωi	H-C-C	H20-C3-C2-C4, H21-C4-C3-C5, H22-C6-C1-C5, H29-C14-N13-C15, H30-C15-C14-N16, H31-C17-N16-N13
98-100	ωi	C-C-C	C10-C5-C6-C4, C5-C10-C11-N18, C12-N13-C14-C17
101	ωi	N-C-C	N ₁₈ -C ₁₀ -C ₅ -C ₁₁
Torsion			
102-107	$ au_{ m i}$	C-C-C (ring)	C6-C1-C2-C3, C1-C2-C3-C4, C2-C3-C4-C5, C3-C4-C5-C6, C4-C5- C6-C1, C5-C6-C1-C2
108-117	$ au_{\mathrm{i}}$	C-C-C (ring)	C2-C1-O7-C8, C1-O7-C8-O9, O7-C8-O9-C2, C8-O9-C2-C1, O9- C2-C1-O7, C17-N13-C14-C15, N13-C14-C15-N16, C14-C15-N16-C17, C15-N16-C17-N13, N16-C17-N13-C14
118-121	$ au_{\mathrm{i}}$	C-C	C4-C5-C10-N18, C4-C5-C10-C11, C6-C5-C10-N18, C6-C5-C10-C11
122-123	$ au_{ m i}$	C-N	C5-C10-N18-O19, C11-C10-N18-O19
124	$ au_{ m i}$	N-O	C10-N18-O19-H32
125-126	$ au_{i}$	0-C	C1-O7-C8-H23, C1-O7-C8-H24
127-128	$ au_{ m i}$	0-C	C2-O9-C8-H23, C2-O9-C8-H24
129-134	$ au_{ m i}$	C-C	C5-C10-C11-C12, N18-C10-C11-C12, C5-C10-C11-H25, C5-C10-C11-H26, N18-C10-C11-H25, N18-C10-C11-H26
135-143	Ti	C-C	C10-C11-C12-N13, H25-C11-C12-N13, H26-C11-C12-N13, C10-C11-C12-H27, H25-C11-C12-H27, H26-C11-C12-H27, C10-C11-C12-H28, H25-C11-C12-H28, H26-C11-C12-H28
144-149	τi	C-N	C11-C12-N13-C17, C11-C12-N13-C14, H27-C12-N13-C17, H27-C12-N13-C14, H28-C12-N13-C17, H28-C12-N13-C14

Table S2: Definition of local symmetry coordinates and the corresponding force constants(mdyne/Å) with the used scale factors of the title oxime 4.

No	Symbol	Definition	Scale factors
1-6	ν (CC)	R1, R2, R3, R4, R5, R6	0.88747
7-12	ν (CH)	r 7, r 8, r 9, r 10, r 11, r 12, r 13	0.88747
13	v (CC)	R ₁₄	0.88747
14-15	v (CO)	I 15, I 16	0.88747
16-17	v (CO)	r 17, r 18	0.88747
18-19	v (CC)	R19, R20	0.88747
20-21	v (CN)	R9, R10	0.88747
22	vs (CH2)	$(r_{21}+r_{22})/\sqrt{2}$	0.88747

23	vas (CH2)	(r ₂₁ -r ₂₂)/√2	0.88747
24	v _s (CH ₂)	$(r_{23}+r_{24})/\sqrt{2}$	0.88747
25	vas (CH2)	(r ₂₃ -r ₂₄)/√2	0.88747
26	vs (CH2)	$(r_{25}+r_{26})/\sqrt{2}$	0.88747
27	vas (CH ₂)	$(r_{25}-r_{26})/\sqrt{2}$	0.88747
28	v (CN)	r 27	0.91875
29-32	v (NC)	r ₂₈ , r ₂₉ , r ₃₀ , r ₃₁	0.91875
33	v (CC)	R31	0.88747
34	v (CN)	r ₃₂	0.96675
35	v (NO)	P33	0.91875
36	ν (OH)	P34	0.99931
Bending	5		
37-39	β (CH)	$(\beta_{35}-\beta_{36})/\sqrt{2}, (\beta_{37}-\beta_{38})/\sqrt{2}, (\beta_{39}-\beta_{40})/\sqrt{2}$	1.03060
40	β (CC)	$(\beta_{47}-\beta_{48})/\sqrt{2}$	1.03060
41	δ (Ring-I)	$(\delta_{49}-\delta_{50}+\delta_{51}-\delta_{52}+\delta_{53}-\delta_{54})/\sqrt{6}$	1.03060
42	γ(Ring- I)	$(2\delta_{49}-\delta_{50}-\delta_{51}+2\delta_{52}-\delta_{53}-\delta_{54})/\sqrt{6}$	1.03060
43	τ _a (Ring-I)	$(\delta_{50}-\delta_{51}+\delta_{53}-\delta_{54})/2$	1.03060
44	Sci (CH ₂)	$(5\alpha_{55}+\gamma_{56})/\sqrt{26}$	0.94031
45	Sci (CC)	$(\alpha_{55}+5\gamma_{56})/\sqrt{26}$	0.94031
46	ρ (CH ₂)	$(\beta_{57}-\beta_{58}+\beta_{59}-\beta_{60})/2$	0.94031
47	ω (CH ₂)	$(\beta_{57}+\beta_{58}-\beta_{59}-\beta_{60})/2$	0.94031
48	Twi (CH ₂)	$(\beta_{57}-\beta_{58}-\beta_{59}+\beta_{60})/2$	0.94031
49	Sci (CH ₂)	$(5\alpha_{61}+\gamma_{62})/\sqrt{26}$	0.94031
50	Sci (CC)	$(\alpha_{61}+5\gamma_{62})/\sqrt{26}$	0.94031
51	ρ (CH ₂)	$(\beta_{63}-\beta_{64}+\beta_{65}-\beta_{66})/2$	0.94031
52	ω (CH ₂)	$(\beta_{63}+\beta_{64}-\beta_{65}-\beta_{66})/2$	0.94031
53	Twi (CH ₂)	$(\beta_{63}-\beta_{64}-\beta_{65}+\beta_{66})/2$	0.94031
54	Sci (CH ₂)	$(5\alpha_{67}+\gamma_{68})/\sqrt{26}$	0.94031
55	Sci (CC)	$(\alpha_{67}+5\gamma_{68})/\sqrt{26}$	0.94031
56	ρ (CH ₂)	$(\beta_{69}-\beta_{70}+\beta_{71}-\beta_{72})/2$	0.94031
57	ω (CH ₂)	$(\beta_{69}+\beta_{70}-\beta_{71}-\beta_{72})/2$	0.94031
58	Twi (CH ₂)	(β69-β70-β71+β72)/2	0.94031
59	τ (Ring-I)	$(\delta_{73}-0.809(\delta_{74}+\delta_{77})+0.309(\delta_{75}+\delta_{76}))$ / $\sqrt{2.5}$	1.02718
60	δ (Ring-I)	(-1.118(δ74-δ77)+1.809(δ 75-δ76)) /√4.809	1.02718
61-63	β (CH)	$(\beta_{41}-\beta_{42})/\sqrt{2}, (\beta_{43}-\beta_{44})/\sqrt{2}, (\beta_{45}-\beta_{46})/\sqrt{2}$	1.02718
64	β (CN)	(β78-β79)/√2	1.02718
65	butt	$(\beta_{80}-\beta_{81})/\sqrt{2}$	1.02718
66	τ (Ring-II)	$(\delta_{82}-0.809(\delta_{83}+\delta_{86})+0.309(\delta_{84}+\delta_{85}))$	0 77357

		/\\2.5	
67	δ(Ring-II)	$(-1.118(\delta_{83}-\delta_{86})+1.809(\delta_{84}-\delta_{85}))$ / $\sqrt{4.809}$	0.77357
68	δ(COC)	$(2\alpha_{87}-\alpha_{88}-\alpha_{89})/\sqrt{6}$	0.77357
59	β (NOH)	Qt90	0.77357
70	β (CNO)	α91	0.77357
Waggin	g		
71-73	ω (CH)	ω92, ω93, ω94	0.93936
74-75	ω (OC)	ω98, ω99	0.93936
76	ω (NC)	ω101	0.93936
77-79	ω (CH)	ω95, ω96, ω97	0.93936
80	ω (CC)	ω100	0.93936
Torsion	l		
81	puc (Ring-I)	$(\tau_{102} - \tau_{103} + \tau_{104} - \tau_{105} + \tau_{106} - \tau_{107})/\sqrt{6}$	0.88191
82	τ (Ring-I)	$(\tau_{102} - \tau_{104} + \tau_{105} - \tau_{107})/2$	0.88191
33	τ_a (Ring-I)	$(-\tau_{102}+2\tau_{103}-\tau_{104}-\tau_{105}+2\tau_{106}-\tau_{107})/\sqrt{12}$	0.88191
34	τ (Ring-II)	$\begin{array}{l} (0.309(\tau_{108} + \tau_{112}) & - \\ 0.809(\tau_{109} + \tau_{111}) + \tau_{110})/\sqrt{2.5} \end{array}$	0.88191
85	τ _a (Ring-II)	$(-1.118(\tau_{111}-\tau_{109})+1.809(\tau_{112}-\tau_{108}))$ / $\sqrt{4.809}$	0.88191
86	τ (Ring-II)	$\begin{array}{l} (0.309(\tau_{113}+\tau_{117}) & - \\ 0.809(\tau_{114}+\tau_{116})+\tau_{115})/\sqrt{2.5}) \end{array}$	0.88191
87	τ_a (Ring-II)	$(-1.118(\tau_{116}-\tau_{114})+1.809(\tau_{117}-\tau_{113}))$ / $\sqrt{4.809}$	0.88191
88	τ (CC)	$(\tau_{118}+\tau_{119}+\tau_{120}+\tau_{121})/2.5$	0.92067
89	τ (CN)	$(\tau_{122}+\tau_{123})/\sqrt{2}$	0.92067
90	τ (NO)	T 124	0.92067
91	τ (OC)	$(\tau_{125}+\tau_{126})/\sqrt{2}$	0.92067
92	τ (CC)	$(\tau_{127}+\tau_{128})/\sqrt{2}$	0.92067
93	τ (CC)	$(\tau_{129}+\tau_{130}+\tau_{131}+\tau_{132}+\tau_{133}+\tau_{134})/$ 0.166667	0.92067
94	τ (CC)	$(\tau_{135}+\tau_{136}+\tau_{137}+\tau_{138}+\tau_{139}+\tau_{140}+\tau_{141}+\tau_{142}+\tau_{143})/3$	0.92067
95	τ (CN)	$(\tau_{144}+\tau_{145}+\tau_{146}+\tau_{147}+\tau_{148}+\tau_{149})/0.5$	0.92067