# Glutathione Peroxidase-Like Activity of Amino-Substituted Water-Soluble Cyclic Selenides: A Shift of the Major Catalytic Cycle in Methanol

Kenta Arai\*, Ayako Tashiro, Yuui Osaka, and Michio Iwaoka\*

Department of Chemistry, School of Science, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa 259-1292, Japan.

\* Authors to whom correspondence should be addressed; E-Mail: k-arai4470@tokai-u.jp (KA), miwaoka@tokai.ac.jp (MI)

Tel.: +81-463-58-1211; Fax: +81-463-50-2094.

# **Supporting Information**

## **Contents**

1. Synthesis of mesylates 12a and 12b

#### 2. NMR spectra

- **2.1:** 3-(*tert*-Butoxycarbonylamino)selenetane (**13a**) (<sup>1</sup>H, <sup>13</sup>C, and <sup>77</sup>Se NMR)
- **2.2:** (*S*)-3-(*tert*-Butoxycarbonylamino)tetrahydroselenopyran (**13b**) (<sup>1</sup>H, <sup>13</sup>C, and <sup>77</sup>Se NMR)
- **2.3:** 3-Aminoselenetane Hydrochloride (**5**) (<sup>1</sup>H, <sup>13</sup>C, and <sup>77</sup>Se NMR)
- **2.4:** (*S*)-3-Aminotetrahydroselenopyran Hydrochloride (**6**) (<sup>1</sup>H, <sup>13</sup>C, and <sup>77</sup>Se NMR)

#### 3. Supplemental Figures

- **Figure S1:** <sup>77</sup>Se NMR spectral changes during acidification and neutralization of the selenoxide derived from selenide **6** in D<sub>2</sub>O.
- **Figure S2:** <sup>77</sup>Se NMR spectral changes during redox reactions of **5** in  $D_2O$  at 298 K.
- **Figure S3:** <sup>77</sup>Se NMR spectral changes during redox reactions of **7** in  $D_2O$  at 298 K.
- **Figure S4:** <sup>77</sup>Se NMR spectral changes during acidification and neutralization of the selenoxide derived from selenide **7** in D<sub>2</sub>O.
- **Figure S5:** <sup>77</sup>Se NMR spectral changes during redox reactions of **9** in  $D_2O$  at 298 K.
- **Figure S6:** <sup>77</sup>Se NMR spectral changes during acidification and neutralization of the selenoxide corresponding to selenide **9** in D<sub>2</sub>O at 298 K.
- Figure S7: LC-MS (ESI+) spectrum of the sample solution obtained when the selenoxide derived from selenide **6** was over-oxidized with 4 equivalents of  $H_2O_2$  in water at 25 °C in the presence of HCl.
- Figure S8: LC-MS (APCI+ and ESI+) spectral changes during over-oxidation of the selenoxide derived from selenide 7 in H<sub>2</sub>O
- **Figure S9:**<sup>77</sup>Se NMR spectral changes during acidification and neutralization of the selenoxide derived from selenide **7** in CD<sub>3</sub>OD
- Figure S10 LC-MS (APCI+) spectra changes during oxidation of the selenoxide derived from selenide 7 in MeOH at 25  $\,^{\circ}$ C
- Figure S11: Spectroscopic analyses during redox reactions of monoamino selenide 6 in methanol. (A) <sup>77</sup>Se NMR in CD<sub>3</sub>OD and (B) LC-MS analysis in MeOH.
- **Figure S12:** Spectroscopic analyses during redox reactions of selenide **9** in methanol. (A) <sup>77</sup>Se NMR in CD<sub>3</sub>OD and (B) LC-MS analysis in MeOH.

# 4. Quantum chemical calculations of the selenoxide corresponding 6 and 71. Synthesis of mesylates 12a and 12b

The synthetic route for **12a** and **12b** are shown below (Scheme S1).



Scheme 1. Synthesis of **12a** and **12b**.

#### Diethyl L-glutamate hydrochloride (11')

EtOH (42 mL) was placed in a round-bottomed flask and cooled to 0  $^{\circ}$ C in an ice bath. Acetyl chloride (3.6 mL, 50.0 mmol) was then slowly added to the EtOH with keeping the temperature and magnetically string. After the reaction solution was starred at 0  $^{\circ}$ C for 30 min, *L*-glutamic acid (3.68 g, 25.0 mmol) was added to the mixture solution. The reaction solution was stirred under a reflux condition for 4 h. The resulting solution was evaluated under vacuum to obtain a colorless oil of **11'**. Yield: 6.00 g, quant; *R*<sub>f</sub>: 0.49 (EtOH/EtOAc 1:1);<sup>1</sup>H NMR (500 MHz, CD<sub>3</sub>OD):  $\delta = 1.28$  (t, *J*=7.2 Hz, 3H), 1.35 (t, *J*=7.2 Hz, 3H), 2.15–2.29 (m, 2H), 2.54–2.66 (m, 2H), 4.14 (t, *J*=6.7 Hz, 1H), 4.16–4.10 (m, 2 H), 4.30–4.35 ppm (m, 2H); <sup>13</sup>C NMR (125.8 MHz, CD<sub>3</sub>OD):  $\delta = 13.0$ , 13.1, 25.2, 29.0, 51.9, 60.6, 62.4, 168.7, 172.2 ppm.

Diethyl 2-((tert-butoxycarbonyl)amino)malonate (14a)

Et<sub>3</sub>N (2.90 mL, 20.8 mmol) was added to a solution of diethyl 2-aminomalonate hydrochloride (**10**) (4.00 g, 18.9 mmol) in 1,4-dioxane:H<sub>2</sub>O (5:2, 17 mL), and the solution was magnetically stirred on ice. A solution of Boc<sub>2</sub>O (4.74 g, 21.7 mmol) in the same solvent (4 mL) was slowly added via a syringe, and the mixture solution was stirred at 0  $\degree$  for 15 min, and then at 55  $\degree$  for 15 h. The resulting yellow solution was concentrated to 10 mL under vacuum. The solution was added with water (40 mL), and the aqueous solution was extracted with Et<sub>2</sub>O (30 mL × 3). The combined organic layers were washed with saturated aqueous solution of NaHCO<sub>3</sub> (40 mL × 2), water (40 mL × 2), and brine (40 mL × 1), dried over MgSO<sub>4</sub>, and concentrated under vacuum to obtain a colorless oil of **14a**. Yield: 5.02 g, 96%; *R*r: 0.71 (EtOAc/*n*-hexane 1:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  = 1.25 (t, *J*=7.2 Hz, 6H) 1.41 (s, 9H), 4.16–4.16 (m, 4H), 4.9 (d, *J*=10.0 Hz, 1H), 5.60 ppm (br d, J=5.0 Hz, 1H); <sup>13</sup>C NMR (125.8 MHz, CDCl<sub>3</sub>):  $\delta$  = 13.9, 28.2, 62.4, 67.0, 80.5, 154.8, 166.6 ppm.

#### *Diethyl (tert-butoxycarbonyl)-L-glutamate* (14b)

A similar protocol to the synthesis of **14a** was applied. **11'** (5.92 g, 24.7 mmol) was used as the starting material. Et<sub>3</sub>N (3.79 mL, 27.2 mmol) and Boc<sub>2</sub>O (6.20 g, 27.2 mmol) were used as the reagents. **14b** was obtained as colorless oil. Yield: 6.75 g, 90%; *R*<sub>f</sub>: 0.63 (Et<sub>2</sub>O/*n*-hexane 1:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 1.25$  (t, *J*=7.1 Hz, 3H), 1.28 (t, *J*=7.1 Hz, 3H), 1.43 (s, 9H), 1.90–1.98 (m, 1H), 2.14–2.21 (m, 2H), 2.33–2.45 (m, 2H), 4.13 (q, *J*=7.1, 2 H), 4.19 (q, *J*=7.1, 2H), 4.25–4.35 (m, 1H),5.16 ppm (br d, 1H); <sup>13</sup>C NMR (125.8 MHz, CDCl<sub>3</sub>):  $\delta = 14.1$ , 14.2, 27.8, 28.3, 30.4, 53.0, 60.6, 61.5, 79.9, 155.4, 172.3, 172.8 ppm.

#### tert-Butyl (1,3-dihydroxypropan-2-yl)carbamate (15a)

90% sodium borohydride (4.21 g, 100.2 mmol) was slowly added to the solution of **14a** (2.77 g, 10.0 mmol) in dry EtOH (40 mL) on ice, the solution was magnetically stirred for 30 min at

0 °C and then under reflux condition for 1 h. The resulting white cake was pulverized by using a spatula and added with in brine (50 mL), and the mixture solution was vigorously stirred for 10 min at room temperature. After removing a suspended white material by filtration under reduced pressure, the obtained filtrate was concentrated in vacuo to 40 mL. The remaining aqueous solution was extracted with Et<sub>2</sub>O (30 mL × 4). The combined organic layers were washed with brine (60 mL × 1), dried over MgSO<sub>4</sub>, and concentrated under vacuum to obtain a white solid of **15a**. Yield: 1.65 g, 86%; *R*<sub>f</sub>: 0.74 (EtOAc/*n*-hexane 5:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 1.46$  (s, 9H), 2.86 (br s, 2H), 3.68–3.80 (m, 5H), 5.43 ppm (br d, *J*=6.3 Hz, 1H); <sup>13</sup>C NMR (125.8 MHz, CDCl<sub>3</sub>):  $\delta = 28.4$ , 53.1, 62.8, 80.0, 156.5 ppm.

#### *tert-Butyl* (*S*)-(1,5-*dihydroxypentan*-2-*yl*)*carbamate* (**15b**)

A similar protocol to the synthesis of **15a** was applied. **14b** (3.03 g, 10.0 mmol) was used as the starting material. 90% sodium borohydride (4.20 g, 100.0 mmol) was used as the reagents. **15b** was obtained as colorless oil. Yield: 2.01 g, 92%;  $R_{\rm f}$ : 0.71 (EtOAc/n-hexane 2:1); <sup>1</sup>H NMR (500 MHz, CD<sub>3</sub>OD):  $\delta = 1.46$  (s, 9H), 1.55–1.70 (m, 4H), 3.47–3.52 (m, 3H), 3.58 (t, J=6.5 Hz, 2H), 5.31 (br s, 1H) ppm; <sup>13</sup>C NMR (125.8 MHz, CD<sub>3</sub>OD):  $\delta = 14.1$ , 27.4, 28.7, 51.2, 61.4, 64.1, 78.5, 157.0 ppm.

#### 2-(tert-Butoxycarbonylamino)-propane-1,3-diyl dimethanesulfonate (12a)

Et<sub>3</sub>N (1.15 mL, 8.22 mmol) was added to a solution of **15a** (1.34 mg, 7.00 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (40 mL) and the solution was stirred for 10 min and then cooled to 0 °C. Methanesulfonyl chloride (2.17 mL, 28.0 mmol) was added over a period of 5 min, and the solution stirred at 0 °C for 30 min and then at room temperature for 16 h. Water was added, and the aqueous phase was extracted with CH<sub>2</sub>Cl<sub>2</sub> (40 mL × 3). The combined organic phases were washed with saturated aqueous solution of NaHCO<sub>3</sub> (60 mL × 2), NH<sub>4</sub>Cl (60 mL × 2), and brine (60 mL × 2), and dried over MgSO<sub>4</sub> and the concentrated under vacuum to give a yellow solid.

The obtained crude product was purified by silica gel column chromatography (EtOAc/CH<sub>2</sub>CH<sub>2</sub> 1:4) to give a white solid of **12a**. Yield: 1.73, 71%; *R*<sub>f</sub>: 0.63 (EtOAc/CH<sub>2</sub>Cl<sub>2</sub> 1:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  = 1.47 (s, 9H), 3.15 (s, 6H), 4.25–4.28 (m, 1H), 4.31–4.41 (m, 4H), 5.04 (br s, J=10.0 Hz, 1H) ppm; <sup>13</sup>C NMR (125.8 MHz, CDCl<sub>3</sub>):  $\delta$  = 28.3, 37.5, 48.4, 66.8, 80.9, 155.0 ppm.

#### (S)-2-(tert-Butoxycarbonylamino)-pentane-1,5-diyl dimethanesulfonate (12b)

A similar protocol to the synthesis of **12a** was applied. **15b** (2.00 g, 9.12 mmol) was used as the starting material. Et<sub>3</sub>N (4.5 mL, 31.9 mmol) and methanesulfonyl chloride (1.8 mL, 22.8 mmol) were used as the reagents. **12b** was obtained as a white solid. Yield: 2.65 g, 78%;  $R_{\rm f}$ : 0.60 (EtOAc/CH<sub>2</sub>Cl<sub>2</sub> 1:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 1.46$  (s, 9H), 1.57–1.98 (m, 4H), 3.04 (s, 3H), 3.06 (s, 3H), 3.91–3.93 (m, 1H), 4.21–4.30 (m, 4H), 4.74 ppm (br s, 1H); <sup>13</sup>C NMR (125.8 MHz, CDCl<sub>3</sub>):  $\delta = 25.7$ , 27.5, 28.3, 37.4, 49.1, 69.2, 71.0, 80.1, 154.8 ppm.

## 2. NMR spectra

**2.1:** 3-(*tert*-Butoxycarbonylamino)selenetane (**13a**) <sup>1</sup>H NMR in CDCl<sub>3</sub>







## 2.3: 3-Aminoselenetane Hydrochloride (5)





#### **3. Supplemental Figures**



**Figure S1:** <sup>77</sup>Se NMR spectral changes during redox reactions of **6** and acidification and neutralization of the selenoxide derived from selenide **6** in D<sub>2</sub>O at 298 K. Reaction conditions: **a**, Selenide **6** (0.024 mmol) in D<sub>2</sub>O (500  $\mu$ L). **b**, To **a** was added H<sub>2</sub>O<sub>2</sub> (0.024 mmol). **c**, To **b** was added H<sub>2</sub>O<sub>2</sub> (0.096 mmol). **d**, To **c** was added HCl (0.096 mmol). **e**, To **b** was added HCl (0.096 mmol). **f**, To **e** was added NaOH (0.96 mmol).



**Figure S2:** <sup>77</sup>Se NMR spectral changes during the redox reactions of **5** in D<sub>2</sub>O at 298 K. Reaction conditions: **a**, Selenide **5** (0.024 mmol) in D<sub>2</sub>O (500  $\mu$ L). **b**, To **a** was added H<sub>2</sub>O<sub>2</sub> (0.024 mmol). **c**, To **b** was added H<sub>2</sub>O<sub>2</sub> (0.096 mmol). **d**, To **c** was added HCl (0.096 mmol). **e**, To **d** was added DTT<sup>red</sup> (0.12 mmol).



**Figure S3:** <sup>77</sup>Se NMR spectral changes during the redox reactions of **7** in D<sub>2</sub>O at 298 K. Reaction conditions: **a**, Selenide **7** (0.024 mmol) in D<sub>2</sub>O (500  $\mu$ L). **b**, To **a** was added H<sub>2</sub>O<sub>2</sub> (0.024 mmol). **c**, To **b** was added H<sub>2</sub>O<sub>2</sub> (0.096 mmol). **d**, To **c** was added HCl (0.096 mmol). **e**, To **d** was added DTT<sup>red</sup> (0.072 mmol).



**Figure S4:** <sup>77</sup>Se NMR spectral changes during acidification and neutralization of the selenoxide derived from selenide **7** in D<sub>2</sub>O at 298 K. Reaction conditions: **a**, Selenide **7** (0.024 mmol) and H<sub>2</sub>O<sub>2</sub> (0.024 mmol) were mixed in D<sub>2</sub>O (500  $\mu$ L). **b**, To **a** was added HCl (0.024 mmol). **c**, To **b** was added NaOH (0.024 mmol).



**Figure S5:** <sup>77</sup>Se NMR spectral changes during redox reaction of **9** in D<sub>2</sub>O at 298 K. Reaction conditions: **a**, Selenide **9** (0.024 mmol) in D<sub>2</sub>O (500  $\mu$ L). **b**, To **a** was added H<sub>2</sub>O<sub>2</sub> (0.024 mmol). **c**, To **b** was added H<sub>2</sub>O<sub>2</sub> (0.096 mmol). **d**, To **c** was added HCl (0.096 mmol).



**Figure S6:** <sup>77</sup>Se NMR spectral changes during acidification and neutralization of the selenoxide derived from selenide **9** in D<sub>2</sub>O at 298 K. Reaction conditions: **a**, Selenide **9** (0.024 mmol) and H<sub>2</sub>O<sub>2</sub> (0.024 mmol) were mixed in D<sub>2</sub>O (500  $\mu$ L). **b**, To **a** was added HCl (0.096 mmol). **c**, To **b** was added NaOH (0.096 mmol).



**Figure S7:** LC-MS (ESI+) spectrum of the sample solution obtained when the selenoxide derived from selenide **6** was over-oxidized with excess amounts of H<sub>2</sub>O<sub>2</sub> in water at 25  $^{\circ}$ C in the presence of HCl. Selenide **6** (0.024 mmol) and H<sub>2</sub>O<sub>2</sub> (0.12 mmol) was mixed in water (500 µL), and the resulting solution was incubated 18 h at 25  $^{\circ}$ C and added with HCl (0.096 mmol). The sample solution was directly injected into an ESI(+)-MS chamber from a syringe pump under a continuous flow at 30 µL/min.



**Figure S8:** LC-MS (APCI+ and ESI+) spectra changes during oxidation of the selenoxide derived from selenide **7** in H<sub>2</sub>O at 25 °C. For **a**–**d**, H<sub>2</sub>O (100%) was used as an eluent for the LC under a continuous flow at 0.3 mL/min, and 3  $\mu$ L of the sample solution was injected into the LC and analyzed by APCI+ mode. For (**e**), the sample solution was directly injected into an ESI(+)-MS chamber from a syringe pump under a continuous flow at 30  $\mu$ L/min. Reaction

conditions: **a**, Selenide **7** (0.038 mmol) in H<sub>2</sub>O (800  $\mu$ L). **b**, To **a** was added H<sub>2</sub>O<sub>2</sub> (0.038 mmol). **c**, To **b** was added H<sub>2</sub>O<sub>2</sub> (0.19 mmol). **d** and **e**, To **c** was added HCl (0.015 mmol)



**Figure S9:** <sup>77</sup>Se NMR spectral changes during redox reactions of **7** and acidification and neutralization of the selenoxide derived from selenide **7** in CD<sub>3</sub>OD at 298 K. Reaction conditions: **a**, Selenide **7** (0.024 mmol) in CD<sub>3</sub>OD (500  $\mu$ L). **b**, To **a** was added H<sub>2</sub>O<sub>2</sub> (0.024 mmol). **c**, To **b** was added H<sub>2</sub>O<sub>2</sub> (0.096 mmol). **d**, To **c** was added HCl (0.096 mmol). **e**, To **b** was added HCl (0.096 mmol). **f**, To **e** was added NaOH (0.096 mmol).



**Figure S10:** LC-MS (APCI+) spectra changes during oxidation of selenide **7** in MeOH at 25  $^{\circ}$ C. MeOH (100%) was used as an eluent for the LC. Reaction conditions: (A) Selenide **7** (0.038 mmol) in MeOH was reacted with H<sub>2</sub>O<sub>2</sub> (0.19 mmol) for 30 min. (B) Selenide **7** (0.038 mmol) in MeOH was reacted with H<sub>2</sub>O<sub>2</sub> (0.19 mmol) in the presence of HCl (0.15 mmol) for 30 min.



**Figure S11:** Spectroscopic analyses during redox reactions of monoamino selenide **6** in methanol. (A) <sup>77</sup>Se NMR spectral changes in CD<sub>3</sub>OD at 297 K. Reaction conditions: **a**, Selenide **6** (0.024 mmol) in CD<sub>3</sub>OD (500  $\mu$ L). (**b**) To **a** was added H<sub>2</sub>O<sub>2</sub> (0.024 mmol). (**c**) To **b** was added H<sub>2</sub>O<sub>2</sub> (0.096 mmol). (**d**) To **c** was added HCl (0.096 mmol). (B) LC-MS spectra (APCI+) changes in MeOH at 25 °C. MeOH (100%) was used as an eluent for the LC. Reaction conditions: **a**, Selenide **7** (0.038 mmol) in MeOH (800  $\mu$ L). **b**, To **a** was added H<sub>2</sub>O<sub>2</sub> (0.038 mmol). **c**, To **b** was added H<sub>2</sub>O<sub>2</sub> (0.15 mmol). **d**, To **c** was added HCl (0.15 mmol)



**Figure S12:** Spectroscopic analysis among the redox reactions of selenide **9** in methanol. (A) <sup>77</sup>Se NMR spectral changes in CD<sub>3</sub>OD at 297 K. Reaction conditions: **a**, Selenide **9** (0.024 mmol) in CD<sub>3</sub>OD (500  $\mu$ L). (**b**) To **a** was added H<sub>2</sub>O<sub>2</sub> (0.012 mmol). (**c**) To **b** was added HCl (0.096 mmol). (B) LC-MS (APCI–) analysis of hydroxy perhydroxy selenane **4** derived from **9**. The sample was prepared by mixing **9** (0.038 mmol) and H<sub>2</sub>O<sub>2</sub> (0.152 mmol) in MeOH in the presence of HCl (0.152 mmol).

## 4. Quantum chemical calculations of the selenoxide corresponding 6 and 7

The selenodixe of **6** obtained in water with geometry optimization.



## Calculation level: RB3LYP/PCM(water)/6-31+G(d,p)

E(RB3LYP): -2727.00248851 a.u.

Minimum frequency: 134.1 cm<sup>-1</sup>

| Center Atomic Atomic Coordin |        |      | inates (Angstroms) |           |           |
|------------------------------|--------|------|--------------------|-----------|-----------|
| Number                       | Number | Туре | Х                  | Ŷ         | Ź         |
| 1                            | 6      | 0    | -1.905409          | 0.957024  | 0.256940  |
| 2                            | 6      | 0    | -0.861152          | 1.671249  | -0.618041 |
| 3                            | 6      | 0    | 0.541392           | 1.693074  | -0.019373 |
| 4                            | 6      | 0    | -0.281317          | -0.769823 | 1.271746  |
| 5                            | 6      | 0    | -1.623384          | -0.519410 | 0.577970  |
| 6                            | 1      | 0    | 1.262058           | 2.205971  | -0.659596 |
| 7                            | 1      | 0    | -0.816731          | 1.224635  | -1.617490 |
| 8                            | 1      | 0    | -1.182277          | 2.708666  | -0.762006 |
| 9                            | 1      | 0    | -1.992947          | 1.472540  | 1.220064  |
| 10                           | 1      | 0    | -2.889612          | 1.027768  | -0.218322 |
| 11                           | 1      | 0    | -0.101666          | -1.829561 | 1.466700  |
| 12                           | 1      | 0    | -0.230036          | -0.226613 | 2.218322  |
| 13                           | 1      | 0    | -2.423028          | -0.895219 | 1.221708  |
| 14                           | 1      | 0    | 0.580725           | 2.128447  | 0.984386  |
| 15                           | 34     | 0    | 1.244651           | -0.149297 | 0.171293  |
| 16                           | 1      | 0    | -1.753908          | -2.352113 | -0.470201 |
| 17                           | 1      | 0    | -2.430539          | -1.102806 | -1.299234 |
| 18                           | 1      | 0    | -0.711389          | -1.219838 | -1.191070 |
| 19                           | 7      | 0    | -1.651818          | -1.358362 | -0.688080 |
| 20                           | 8      | 0    | 0.839146           | -0.843741 | -1.339516 |

The selenodixe of  $\mathbf{6}$  obtained in methanol with geometry optimization.



## Calculation level: RB3LYP/PCM(methanol)/6-31+G(d,p)

E(RB3LYP): -2727.00063127 a.u.

Minimum frequency: 136.0 cm<sup>-1</sup>

| Center | Atomic | Atomic | Coordinates (Angstroms) |           |           |
|--------|--------|--------|-------------------------|-----------|-----------|
| Number | Number | Туре   | Х                       | Ŷ         | Z         |
| 1      | 6      | 0      | -1.905611               | 0.956686  | 0.256279  |
| 2      | 6      | 0      | -0.861036               | 1.670654  | -0.618585 |
| 3      | 6      | 0      | 0.541072                | 1.693290  | -0.018818 |
| 4      | 6      | 0      | -0.281069               | -0.768544 | 1.272723  |
| 5      | 6      | 0      | -1.623182               | -0.519524 | 0.578246  |
| 6      | 1      | 0      | 1.261538                | 2.206845  | -0.658733 |
| 7      | 1      | 0      | -0.815229               | 1.223109  | -1.617530 |
| 8      | 1      | 0      | -1.182538               | 2.707751  | -0.763770 |
| 9      | 1      | 0      | -1.993613               | 1.472962  | 1.218979  |
| 10     | 1      | 0      | -2.889827               | 1.027201  | -0.219009 |
| 11     | 1      | 0      | -0.101030               | -1.827863 | 1.469879  |
| 12     | 1      | 0      | -0.230534               | -0.223478 | 2.218293  |
| 13     | 1      | 0      | -2.423002               | -0.895443 | 1.221788  |
| 14     | 1      | 0      | 0.579628                | 2.128164  | 0.985249  |
| 15     | 34     | 0      | 1.244627                | -0.149256 | 0.170838  |
| 16     | 1      | 0      | -1.752606               | -2.352647 | -0.469273 |
| 17     | 1      | 0      | -2.427175               | -1.103227 | -1.300470 |
| 18     | 1      | 0      | -0.707282               | -1.220054 | -1.188857 |
| 19     | 7      | 0      | -1.649931               | -1.359084 | -0.687560 |
| 20     | 8      | 0      | 0.836604                | -0.843799 | -1.338901 |

The selenodixe of **7** obtained in water with geometry optimization.



# $Calculation \ level: RB3LYP/PCM(water)/6-31+G(d,p)$

E(RB3LYP): -2687.67971351 a.u.

Minimum frequency: 119.1 cm<sup>-1</sup>

| Center | Atomic | Atomic | Coordinates (Angstroms) |           |           |
|--------|--------|--------|-------------------------|-----------|-----------|
| Number | Number | Туре   | Х                       | Ŷ         | Z         |
| 1      | 6      | 0      | 0.009990                | 1.413491  | -0.782626 |
| 2      | 6      | 0      | 0.421832                | -0.258613 | 1.381426  |
| 3      | 6      | 0      | 1.645299                | -0.040607 | 0.492746  |
| 4      | 6      | 0      | 1.448690                | 1.293642  | -0.239991 |
| 5      | 1      | 0      | -0.092000               | 1.129039  | -1.831935 |
| 6      | 1      | 0      | -0.426098               | 2.401162  | -0.627046 |
| 7      | 1      | 0      | 0.385897                | 0.477236  | 2.187624  |
| 8      | 1      | 0      | 0.315292                | -1.263601 | 1.793233  |
| 9      | 1      | 0      | 2.180693                | 1.421996  | -1.043410 |
| 10     | 1      | 0      | 1.635758                | 2.083611  | 0.491810  |
| 11     | 8      | 0      | -0.909140               | -1.264506 | -0.893956 |
| 12     | 34     | 0      | -1.108666               | 0.066359  | 0.164995  |
| 13     | 1      | 0      | 2.571707                | -0.039906 | 1.070264  |
| 14     | 1      | 0      | 2.374656                | -0.997561 | -1.256030 |
| 15     | 1      | 0      | 2.052300                | -2.049008 | -0.031999 |
| 16     | 1      | 0      | 0.740974                | -1.379675 | -0.876703 |
| 17     | 7      | 0      | 1.724817                | -1.195849 | -0.491901 |

The selenodixe of **7** obtained in methanol with geometry optimization.



## Calculation level: RB3LYP/PCM(methanol)/6-31+G(d,p)

E(RB3LYP): -2687.67776083 a.u.

Minimum frequency: 125.5 cm<sup>-1</sup>

| Center | Atomic | Atomic | Coordinates (Angstroms) |           |           |
|--------|--------|--------|-------------------------|-----------|-----------|
| Number | Number | Туре   | Х                       | Ŷ         | Z         |
| 1      | 6      | 0      | 0.010340                | 1.414438  | -0.781630 |
| 2      | 6      | 0      | 0.421438                | -0.257920 | 1.382277  |
| 3      | 6      | 0      | 1.644823                | -0.041169 | 0.492892  |
| 4      | 6      | 0      | 1.449351                | 1.293068  | -0.240306 |
| 5      | 1      | 0      | -0.092562               | 1.130717  | -1.831065 |
| 6      | 1      | 0      | -0.425061               | 2.402376  | -0.625460 |
| 7      | 1      | 0      | 0.385662                | 0.477760  | 2.188667  |
| 8      | 1      | 0      | 0.314559                | -1.262997 | 1.793894  |
| 9      | 1      | 0      | 2.180587                | 1.419757  | -1.044729 |
| 10     | 1      | 0      | 1.639087                | 2.083367  | 0.490472  |
| 11     | 8      | 0      | -0.905134               | -1.264097 | -0.893913 |
| 12     | 34     | 0      | -1.108487               | 0.066334  | 0.164597  |
| 13     | 1      | 0      | 2.571663                | -0.041218 | 1.069894  |
| 14     | 1      | 0      | 2.371420                | -1.000117 | -1.256112 |
| 15     | 1      | 0      | 2.045738                | -2.050725 | -0.031792 |
| 16     | 1      | 0      | 0.734035                | -1.377043 | -0.875953 |
| 17     | 7      | 0      | 1.721254                | -1.196424 | -0.491747 |