Glutathione Peroxidase-Like Activity of Amino-Substituted Water-Soluble Cyclic Selenides: A Shift of the Major Catalytic Cycle in Methanol

Kenta Arai*, Ayako Tashiro, Yuui Osaka, and Michio Iwaoka*

Department of Chemistry, School of Science, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa 259-1292, Japan.

* Authors to whom correspondence should be addressed; E-Mail: k-arai4470@tokai-u.jp (KA), miwaoka@tokai.ac.jp (MI)

Tel.: +81-463-58-1211; Fax: +81-463-50-2094.

Supporting Information

Contents

1. Synthesis of mesylates 12a and 12b

2. NMR spectra

2.1: 3-(tert-Butoxycarbonylamino)selenetane (13a) (${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{77} \mathrm{Se}$ NMR)
2.2: (S)-3-(tert-Butoxycarbonylamino)tetrahydroselenopyran (13b) $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right.$, and ${ }^{77} \mathrm{Se}$ NMR)
2.3: 3-Aminoselenetane Hydrochloride (5) (${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{77} \mathrm{Se}$ NMR)
2.4: (S)-3-Aminotetrahydroselenopyran Hydrochloride (6) (${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{77} \mathrm{Se}$ NMR)

3. Supplemental Figures

Figure S1: ${ }^{77}$ Se NMR spectral changes during acidification and neutralization of the selenoxide derived from selenide 6 in $\mathrm{D}_{2} \mathrm{O}$.
Figure S2: ${ }^{77}$ Se NMR spectral changes during redox reactions of 5 in $\mathrm{D}_{2} \mathrm{O}$ at 298 K .
Figure S3: ${ }^{77}$ Se NMR spectral changes during redox reactions of 7 in $\mathrm{D}_{2} \mathrm{O}$ at 298 K .
Figure S4: ${ }^{77}$ Se NMR spectral changes during acidification and neutralization of the selenoxide derived from selenide 7 in $\mathrm{D}_{2} \mathrm{O}$.
Figure S5: ${ }^{77}$ Se NMR spectral changes during redox reactions of $\mathbf{9}$ in $\mathrm{D}_{2} \mathrm{O}$ at 298 K .
Figure S6: ${ }^{77}$ Se NMR spectral changes during acidification and neutralization of the selenoxide corresponding to selenide 9 in $\mathrm{D}_{2} \mathrm{O}$ at 298 K .
Figure S7: LC-MS (ESI+) spectrum of the sample solution obtained when the selenoxide derived from selenide 6 was over-oxidized with 4 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ in water at $25{ }^{\circ} \mathrm{C}$ in the presence of HCl .
Figure S8: LC-MS (APCI+ and ESI+) spectral changes during over-oxidation of the selenoxide derived from selenide 7 in $\mathrm{H}_{2} \mathrm{O}$
Figure S9: ${ }^{77}$ Se NMR spectral changes during acidification and neutralization of the selenoxide derived from selenide 7 in $\mathrm{CD}_{3} \mathrm{OD}$
Figure S10 LC-MS (APCI+) spectra changes during oxidation of the selenoxide derived from selenide 7 in MeOH at $25^{\circ} \mathrm{C}$
Figure S11: Spectroscopic analyses during redox reactions of monoamino selenide 6 in methanol. (A) ${ }^{77} \mathrm{Se}$ NMR in $\mathrm{CD}_{3} \mathrm{OD}$ and (B) LC-MS analysis in MeOH .

Figure S12: Spectroscopic analyses during redox reactions of selenide 9 in methanol. (A) ${ }^{77} \mathrm{Se}$ NMR in $\mathrm{CD}_{3} \mathrm{OD}$ and (B) LC-MS analysis in MeOH .

4. Quantum chemical calculations of the selenoxide corresponding 6 and 7

1. Synthesis of mesylates 12a and 12b

The synthetic route for 12a and 12b are shown below (Scheme S1).

Scheme 1. Synthesis of 12a and 12b.

Diethyl L-glutamate hydrochloride (11')

$\mathrm{EtOH}(42 \mathrm{~mL})$ was placed in a round-bottomed flask and cooled to $0^{\circ} \mathrm{C}$ in an ice bath. Acetyl chloride ($3.6 \mathrm{~mL}, 50.0 \mathrm{mmol}$) was then slowly added to the EtOH with keeping the temperature and magnetically string. After the reaction solution was starred at $0^{\circ} \mathrm{C}$ for 30 min , L-glutamic acid ($3.68 \mathrm{~g}, 25.0 \mathrm{mmol}$) was added to the mixture solution. The reaction solution was stirred under a reflux condition for 4 h . The resulting solution was evaluated under vacuum to obtain a colorless oil of 11'. Yield: 6.00 g , quant; $R_{\mathrm{f}}: 0.49(\mathrm{EtOH} / E t O A c \quad 1: 1) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.35(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.15-2.29(\mathrm{~m}$, $2 \mathrm{H}), 2.54-2.66(\mathrm{~m}, 2 \mathrm{H}), 4.14(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.16-4.10(\mathrm{~m}, 2 \mathrm{H}), 4.30-4.35 \mathrm{ppm}(\mathrm{m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (125.8 MHz, $\mathrm{CD}_{3} \mathrm{OD}$): $\delta=13.0,13.1,25.2,29.0,51.9,60.6,62.4,168.7,172.2$ ppm.
$\mathrm{Et}_{3} \mathrm{~N}(2.90 \mathrm{~mL}, 20.8 \mathrm{mmol})$ was added to a solution of diethyl 2-aminomalonate hydrochloride (10) (4.00 g, 18.9 mmol$)$ in 1,4-dioxane: $\mathrm{H}_{2} \mathrm{O}(5: 2,17 \mathrm{~mL})$, and the solution was magnetically stirred on ice. A solution of $\mathrm{Boc}_{2} \mathrm{O}(4.74 \mathrm{~g}, 21.7 \mathrm{mmol})$ in the same solvent $(4 \mathrm{~mL})$ was slowly added via a syringe, and the mixture solution was stirred at $0^{\circ} \mathrm{C}$ for 15 min , and then at $55^{\circ} \mathrm{C}$ for 15 h . The resulting yellow solution was concentrated to 10 mL under vacuum. The solution was added with water (40 mL), and the aqueous solution was extracted with $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL} \times 3)$. The combined organic layers were washed with saturated aqueous solution of $\mathrm{NaHCO}_{3}(40 \mathrm{~mL} \times 2)$, water $(40 \mathrm{~mL} \times 2)$, and brine $(40 \mathrm{~mL} \times 1)$, dried over MgSO_{4}, and concentrated under vacuum to obtain a colorless oil of $\mathbf{1 4 a}$. Yield: 5.02 g , $96 \% ; R_{\mathrm{f}:} 0.71(\mathrm{EtOAc} / n$-hexane $1: 1) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.25(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H})$ $1.41(\mathrm{~s}, 9 \mathrm{H}), 4.16-4.16(\mathrm{~m}, 4 \mathrm{H}), 4.9(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.60 \mathrm{ppm}(\mathrm{br} \mathrm{d}, \mathrm{J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.9,28.2,62.4,67.0,80.5,154.8,166.6 \mathrm{ppm}$.

Diethyl (tert-butoxycarbonyl)-L-glutamate (14b)

A similar protocol to the synthesis of $\mathbf{1 4 a}$ was applied. 11' ($5.92 \mathrm{~g}, 24.7 \mathrm{mmol}$) was used as the starting material. $\mathrm{Et}_{3} \mathrm{~N}(3.79 \mathrm{~mL}, 27.2 \mathrm{mmol})$ and $\mathrm{Boc}_{2} \mathrm{O}(6.20 \mathrm{~g}, 27.2 \mathrm{mmol})$ were used as the reagents. 14b was obtained as colorless oil. Yield: $6.75 \mathrm{~g}, 90 \% ; R_{\mathrm{f}}: 0.63$ ($\mathrm{Et}_{2} \mathrm{O} / n$-hexane 1:1); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.90-1.98(\mathrm{~m}, 1 \mathrm{H}), 2.14-2.21(\mathrm{~m}, 2 \mathrm{H}), 2.33-2.45(\mathrm{~m}, 2 \mathrm{H}), 4.13(\mathrm{q}$, $J=7.1,2 \mathrm{H}), 4.19(\mathrm{q}, J=7.1,2 \mathrm{H}), 4.25-4.35(\mathrm{~m}, 1 \mathrm{H}), 5.16 \mathrm{ppm}(\mathrm{br} \mathrm{d}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125.8 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=14.1,14.2,27.8,28.3,30.4,53.0,60.6,61.5,79.9,155.4,172.3,172.8$ ppm.

tert-Butyl (1,3-dihydroxypropan-2-yl)carbamate (15a)

90% sodium borohydride ($4.21 \mathrm{~g}, 100.2 \mathrm{mmol}$) was slowly added to the solution of $\mathbf{1 4 a}$ (2.77 $\mathrm{g}, 10.0 \mathrm{mmol})$ in dry $\mathrm{EtOH}(40 \mathrm{~mL})$ on ice, the solution was magnetically stirred for 30 min at
$0^{\circ} \mathrm{C}$ and then under reflux condition for 1 h . The resulting white cake was pulverized by using a spatula and added with in brine (50 mL), and the mixture solution was vigorously stirred for 10 min at room temperature. After removing a suspended white material by filtration under reduced pressure, the obtained filtrate was concentrated in vacuo to 40 mL . The remaining aqueous solution was extracted with $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL} \times 4)$. The combined organic layers were washed with brine ($60 \mathrm{~mL} \times 1$), dried over MgSO_{4}, and concentrated under vacuum to obtain a white solid of 15a. Yield: $1.65 \mathrm{~g}, 86 \%$; $R_{\mathrm{f}:} 0.74$ (EtOAc/n-hexane $5: 1$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.46(\mathrm{~s}, 9 \mathrm{H}), 2.86(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.68-3.80(\mathrm{~m}, 5 \mathrm{H}), 5.43 \mathrm{ppm}(\mathrm{br} \mathrm{d}$, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=28.4,53.1,62.8,80.0,156.5 \mathrm{ppm}$.
tert-Butyl (S)-(1,5-dihydroxypentan-2-yl)carbamate (15b)
A similar protocol to the synthesis of $\mathbf{1 5 a}$ was applied. $\mathbf{1 4 b}(3.03 \mathrm{~g}, 10.0 \mathrm{mmol})$ was used as the starting material. 90% sodium borohydride $(4.20 \mathrm{~g}, 100.0 \mathrm{mmol})$ was used as the reagents. 15b was obtained as colorless oil. Yield: $2.01 \mathrm{~g}, 92 \%$; Rf: 0.71 (EtOAc/n-hexane 2:1); ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta=1.46(\mathrm{~s}, 9 \mathrm{H}), 1.55-1.70(\mathrm{~m}, 4 \mathrm{H}), 3.47-3.52(\mathrm{~m}, 3 \mathrm{H}), 3.58(\mathrm{t}$, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}$), $5.31(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=14.1,27.4,28.7$, 51.2, 61.4, 64.1, 78.5, 157.0 ppm .

2-(tert-Butoxycarbonylamino)-propane-1,3-diyl dimethanesulfonate (12a)
$\mathrm{Et}_{3} \mathrm{~N}(1.15 \mathrm{~mL}, 8.22 \mathrm{mmol})$ was added to a solution of $\mathbf{1 5 a}(1.34 \mathrm{mg}, 7.00 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(40 \mathrm{~mL})$ and the solution was stirred for 10 min and then cooled to $0^{\circ} \mathrm{C}$. Methanesulfonyl chloride ($2.17 \mathrm{~mL}, 28.0 \mathrm{mmol}$) was added over a period of 5 min , and the solution stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min and then at room temperature for 16 h . Water was added, and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL} \times 3)$. The combined organic phases were washed with saturated aqueous solution of $\mathrm{NaHCO}_{3}(60 \mathrm{~mL} \times 2), \mathrm{NH}_{4} \mathrm{Cl}(60 \mathrm{~mL} \times 2)$, and brine (60 $\mathrm{mL} \times 2$), and dried over MgSO_{4} and the concentrated under vacuum to give a yellow solid.

The obtained crude product was purified by silica gel column chromatography ($\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{CH}_{2} 1: 4$) to give a white solid of 12a. Yield: $1.73,71 \% ; \mathrm{Rf}_{\mathrm{f}} 0.63\left(\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ 1:1); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.47(\mathrm{~s}, 9 \mathrm{H}), 3.15(\mathrm{~s}, 6 \mathrm{H}), 4.25-4.28(\mathrm{~m}, 1 \mathrm{H}), 4.31-$ $4.41(\mathrm{~m}, 4 \mathrm{H}), 5.04(\mathrm{br} \mathrm{s}, \mathrm{J}=10.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=28.3,37.5$, 48.4, 66.8, 80.9, 155.0 ppm .
(S)-2-(tert-Butoxycarbonylamino)-pentane-1,5-diyl dimethanesulfonate (12b)

A similar protocol to the synthesis of $\mathbf{1 2 a}$ was applied. $\mathbf{1 5 b}(2.00 \mathrm{~g}, 9.12 \mathrm{mmol})$ was used as the starting material. $\mathrm{Et}_{3} \mathrm{~N}(4.5 \mathrm{~mL}, 31.9 \mathrm{mmol})$ and methanesulfonyl chloride $(1.8 \mathrm{~mL}, 22.8$ $\mathrm{mmol})$ were used as the reagents. 12b was obtained as a white solid. Yield: $2.65 \mathrm{~g}, 78 \% ; \mathrm{Rf}_{\mathrm{f}}$: $0.60\left(\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 1\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.46(\mathrm{~s}, 9 \mathrm{H}), 1.57-1.98(\mathrm{~m}, 4 \mathrm{H})$, $3.04(\mathrm{~s}, 3 \mathrm{H}), 3.06(\mathrm{~s}, 3 \mathrm{H}), \quad 3.91-3.93(\mathrm{~m}, 1 \mathrm{H}), 4.21-4.30(\mathrm{~m}, 4 \mathrm{H}), 4.74 \mathrm{ppm}(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125.8 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=25.7,27.5,28.3,37.4,49.1,69.2,71.0,80.1,154.8 \mathrm{ppm}$.

2. NMR spectra

2.1: 3-(tert-Butoxycarbonylamino)selenetane (13a)

$\begin{array}{lllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & p p m\end{array}$
${ }^{77} \mathrm{Se}$ NMR in CDCl_{3}

13a

2.2: (S)-3-(tert-Butoxycarbonylamino)tetrahydroselenopyran (13b)

$\left.\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}\right)$
${ }^{77} \mathrm{Se}$ NMR in CDCl_{3}

2.3: 3-Aminoselenetane Hydrochloride (5)

2.4: (S)-3-Aminotetrahydroselenopyran Hydrochloride (6)

6

1000	900	800	700	600	500	400	300	200	100	ppm

3. Supplemental Figures

Figure S1: ${ }^{77}$ Se NMR spectral changes during redox reactions of 6 and acidification and neutralization of the selenoxide derived from selenide 6 in $\mathrm{D}_{2} \mathrm{O}$ at 298 K . Reaction conditions: a, Selenide $6(0.024 \mathrm{mmol})$ in $\mathrm{D}_{2} \mathrm{O}(500 \mu \mathrm{~L})$. b, To a was added $\mathrm{H}_{2} \mathrm{O}_{2}(0.024$ $\mathrm{mmol})$. \mathbf{c}, To \mathbf{b} was added $\mathrm{H}_{2} \mathrm{O}_{2}(0.096 \mathrm{mmol})$. d, To \mathbf{c} was added $\mathrm{HCl}(0.096 \mathrm{mmol})$. e, To b was added $\mathrm{HCl}(0.096 \mathrm{mmol})$. f, To e was added $\mathrm{NaOH}(0.96 \mathrm{mmol})$.

Figure S2: ${ }^{77}$ Se NMR spectral changes during the redox reactions of 5 in $\mathrm{D}_{2} \mathrm{O}$ at 298 K . Reaction conditions: a, Selenide $5(0.024 \mathrm{mmol})$ in $\mathrm{D}_{2} \mathrm{O}(500 \mu \mathrm{~L})$. b, To a was added $\mathrm{H}_{2} \mathrm{O}_{2}$ $(0.024 \mathrm{mmol}) . \mathbf{c}$, To \mathbf{b} was added $\mathrm{H}_{2} \mathrm{O}_{2}(0.096 \mathrm{mmol})$. d, To \mathbf{c} was added $\mathrm{HCl}(0.096 \mathrm{mmol}) . \mathbf{e}$, To d was added DTT ${ }^{\text {red }}$ (0.12 mmol).

Figure S3: ${ }^{77}$ Se NMR spectral changes during the redox reactions of 7 in $\mathrm{D}_{2} \mathrm{O}$ at 298 K . Reaction conditions: a, Selenide $7(0.024 \mathrm{mmol})$ in $\mathrm{D}_{2} \mathrm{O}(500 \mu \mathrm{~L})$. b, To a was added $\mathrm{H}_{2} \mathrm{O}_{2}$ (0.024 mmol). \mathbf{c}, To \mathbf{b} was added $\mathrm{H}_{2} \mathrm{O}_{2}(0.096 \mathrm{mmol})$. d, To \mathbf{c} was added $\mathrm{HCl}(0.096 \mathrm{mmol}) . \mathbf{e}$, To d was added DTT ${ }^{\text {red }}(0.072 \mathrm{mmol})$.

Figure S4: ${ }^{77} \mathrm{Se}$ NMR spectral changes during acidification and neutralization of the selenoxide derived from selenide 7 in $\mathrm{D}_{2} \mathrm{O}$ at 298 K . Reaction conditions: a, Selenide 7 $(0.024 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}_{2}(0.024 \mathrm{mmol})$ were mixed in $\mathrm{D}_{2} \mathrm{O}(500 \mu \mathrm{~L})$. b, To a was added HCl $(0.024 \mathrm{mmol}) . \mathbf{c}$, To \mathbf{b} was added $\mathrm{NaOH}(0.024 \mathrm{mmol})$.

Figure S5: ${ }^{77}$ Se NMR spectral changes during redox reaction of 9 in $\mathrm{D}_{2} \mathrm{O}$ at 298 K . Reaction conditions: a, Selenide $9(0.024 \mathrm{mmol})$ in $\mathrm{D}_{2} \mathrm{O}(500 \mu \mathrm{~L})$. b, To a was added $\mathrm{H}_{2} \mathrm{O}_{2}(0.024$ $\mathrm{mmol}) . \mathbf{c}, \mathrm{To} \mathbf{b}$ was added $\mathrm{H}_{2} \mathrm{O}_{2}(0.096 \mathrm{mmol})$. d, $\mathrm{To} \mathbf{c}$ was added $\mathrm{HCl}(0.096 \mathrm{mmol})$.

Figure S6: ${ }^{77} \mathrm{Se}$ NMR spectral changes during acidification and neutralization of the selenoxide derived from selenide 9 in $\mathrm{D}_{2} \mathrm{O}$ at 298 K . Reaction conditions: a, Selenide 9 $(0.024 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}_{2}(0.024 \mathrm{mmol})$ were mixed in $\mathrm{D}_{2} \mathrm{O}(500 \mu \mathrm{~L})$. b, To a was added HCl (0.096 mmol). c, To b was added NaOH (0.096 mmol).

Figure S7: LC-MS (ESI+) spectrum of the sample solution obtained when the selenoxide derived from selenide 6 was over-oxidized with excess amounts of $\mathrm{H}_{2} \mathrm{O}_{2}$ in water at $25^{\circ} \mathrm{C}$ in the presence of HCl . Selenide $6(0.024 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}_{2}(0.12 \mathrm{mmol})$ was mixed in water $(500 \mu \mathrm{~L})$, and the resulting solution was incubated 18 h at $25^{\circ} \mathrm{C}$ and added with $\mathrm{HCl}(0.096$ mmol). The sample solution was directly injected into an $\mathrm{ESI}(+)-\mathrm{MS}$ chamber from a syringe pump under a continuous flow at $30 \mu \mathrm{~L} / \mathrm{min}$.

Figure S8: LC-MS (APCI+ and ESI+) spectra changes during oxidation of the selenoxide derived from selenide $\mathbf{7}$ in $\mathrm{H}_{2} \mathrm{O}$ at $25^{\circ} \mathrm{C}$. For a-d, $\mathrm{H}_{2} \mathrm{O}(100 \%)$ was used as an eluent for the LC under a continuous flow at $0.3 \mathrm{~mL} / \mathrm{min}$, and $3 \mu \mathrm{~L}$ of the sample solution was injected into the LC and analyzed by APCI+ mode. For (e), the sample solution was directly injected into an ESI(+)-MS chamber from a syringe pump under a continuous flow at $30 \mu \mathrm{~L} / \mathrm{min}$. Reaction
conditions: a, Selenide $7(0.038 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(800 \mu \mathrm{~L})$. b, To a was added $\mathrm{H}_{2} \mathrm{O}_{2}(0.038$ $\mathrm{mmol})$. $\mathbf{c}, \mathrm{To} \mathbf{b}$ was added $\mathrm{H}_{2} \mathrm{O}_{2}(0.19 \mathrm{mmol})$. \mathbf{d} and \mathbf{e}, $\mathrm{To} \mathbf{c}$ was added $\mathrm{HCl}(0.015 \mathrm{mmol})$

Figure S9: ${ }^{77}$ Se NMR spectral changes during redox reactions of 7 and acidification and neutralization of the selenoxide derived from selenide 7 in $\mathrm{CD}_{3} \mathrm{OD}$ at 298 K . Reaction conditions: a, Selenide $7(0.024 \mathrm{mmol})$ in $\mathrm{CD}_{3} \mathrm{OD}(500 \mu \mathrm{~L})$. b, To a was added $\mathrm{H}_{2} \mathrm{O}_{2}(0.024$ $\mathrm{mmol})$. c, To \mathbf{b} was added $\mathrm{H}_{2} \mathrm{O}_{2}(0.096 \mathrm{mmol})$. d, To \mathbf{c} was added $\mathrm{HCl}(0.096 \mathrm{mmol})$. e, To b was added $\mathrm{HCl}(0.096 \mathrm{mmol}) . \mathbf{f}$, To e was added $\mathrm{NaOH}(0.096 \mathrm{mmol})$.

Figure S10: LC-MS (APCI+) spectra changes during oxidation of selenide $\mathbf{7}$ in MeOH at $25^{\circ} \mathrm{C} . \mathrm{MeOH}(100 \%)$ was used as an eluent for the LC. Reaction conditions: (A) Selenide 7 $(0.038 \mathrm{mmol})$ in MeOH was reacted with $\mathrm{H}_{2} \mathrm{O}_{2}(0.19 \mathrm{mmol})$ for 30 min . (B) Selenide 7 (0.038 $\mathrm{mmol})$ in MeOH was reacted with $\mathrm{H}_{2} \mathrm{O}_{2}(0.19 \mathrm{mmol})$ in the presence of $\mathrm{HCl}(0.15 \mathrm{mmol})$ for 30 min .

Figure S11: Spectroscopic analyses during redox reactions of monoamino selenide 6 in methanol. (A) ${ }^{77}$ Se NMR spectral changes in $\mathrm{CD}_{3} \mathrm{OD}$ at 297 K . Reaction conditions: a, Selenide 6 (0.024 mmol) in $\mathrm{CD}_{3} \mathrm{OD}(500 \mu \mathrm{~L})$. (b) To a was added $\mathrm{H}_{2} \mathrm{O}_{2}(0.024 \mathrm{mmol})$. (c) To b was added $\mathrm{H}_{2} \mathrm{O}_{2}(0.096 \mathrm{mmol})$. (d) $\mathrm{To} \mathbf{c}$ was added $\mathrm{HCl}(0.096 \mathrm{mmol})$. (B) LC-MS spectra (APCI+) changes in MeOH at $25^{\circ} \mathrm{C} . \mathrm{MeOH}$ (100%) was used as an eluent for the LC. Reaction conditions: a, Selenide $7(0.038 \mathrm{mmol})$ in $\mathrm{MeOH}(800 \mu \mathrm{~L})$. b, To a was added $\mathrm{H}_{2} \mathrm{O}_{2}$ (0.038 mmol). c, To \mathbf{b} was added $\mathrm{H}_{2} \mathrm{O}_{2}(0.15 \mathrm{mmol})$. d, To \mathbf{c} was added $\mathrm{HCl}(0.15 \mathrm{mmol})$
79
A a

Figure S12: Spectroscopic analysis among the redox reactions of selenide 9 in methanol. (A) ${ }^{77} \mathrm{Se}$ NMR spectral changes in $\mathrm{CD}_{3} \mathrm{OD}$ at 297 K . Reaction conditions: a, Selenide 9 (0.024 mmol) in $\mathrm{CD}_{3} \mathrm{OD}(500 \mu \mathrm{~L})$. (b) To a was added $\mathrm{H}_{2} \mathrm{O}_{2}(0.012 \mathrm{mmol})$. (c) To \mathbf{b} was added HCl (0.096 mmol). (B) LC-MS (APCI-) analysis of hydroxy perhydroxy selenane 4 derived from 9. The sample was prepared by mixing $9(0.038 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}_{2}(0.152 \mathrm{mmol})$ in MeOH in the presence of $\mathrm{HCl}(0.152 \mathrm{mmol})$.

4. Quantum chemical calculations of the selenoxide corresponding 6 and 7

The selenodixe of $\mathbf{6}$ obtained in water with geometry optimization.

Calculation level: RB3LYP/PCM(water)/6-31+G(d,p)
E(RB3LYP): -2727.00248851 a.u.
Minimum frequency: $134.1 \mathrm{~cm}^{-1}$
Atomic coordinates:

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	6	0	-1.905409	0.957024	0.256940
2	6	0	-0.861152	1.671249	-0.618041
3	6	0	0.541392	1.693074	-0.019373
4	6	0	-0.281317	-0.769823	1.271746
5	6	0	-1.623384	-0.519410	0.577970
6	1	0	1.262058	2.205971	-0.659596
7	1	0	-0.816731	1.224635	-1.617490
8	1	0	-1.182277	2.708666	-0.762006
9	1	0	-1.992947	1.472540	1.220064
10	1	0	-2.889612	1.027768	-0.218322
11	1	0	-0.101666	-1.829561	1.466700
12	1	0	-0.230036	-0.226613	2.218322
13	1	0	-2.423028	-0.895219	1.221708
14	1	0	0.580725	2.128447	0.984386
15	34	0	1.244651	-0.149297	0.171293
16	1	0	-1.753908	-2.352113	-0.470201
17	1	0	-2.430539	-1.102806	-1.299234
18	1	0	-0.711389	-1.219838	-1.191070
19	7	0	-1.651818	-1.358362	-0.688080
20	8	0	0.839146	-0.843741	-1.339516

The selenodixe of $\mathbf{6}$ obtained in methanol with geometry optimization.

Calculation level: RB3LYP/PCM(methanol)/6-31+G(d,p)
E(RB3LYP): -2727.00063127 a.u.
Minimum frequency: $136.0 \mathrm{~cm}^{-1}$
Atomic coordinates:

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	6	0	-1.905611	0.956686	0.256279
2	6	0	-0.861036	1.670654	-0.618585
3	6	0	0.541072	1.693290	-0.018818
4	6	0	-0.281069	-0.768544	1.272723
5	6	0	-1.623182	-0.519524	0.578246
6	1	0	1.261538	2.206845	-0.658733
7	1	0	-0.815229	1.223109	-1.617530
8	1	0	-1.182538	2.707751	-0.763770
9	1	0	-1.993613	1.472962	1.218979
10	1	0	-2.889827	1.027201	-0.219009
11	1	0	-0.101030	-1.827863	1.469879
12	1	0	-0.230534	-0.223478	2.218293
13	1	0	-2.423002	-0.895443	1.221788
14	1	0	0.579628	2.128164	0.985249
15	34	0	1.244627	-0.149256	0.170838
16	1	0	-1.752606	-2.352647	-0.469273
17	1	0	-2.427175	-1.103227	-1.300470
18	1	0	-0.707282	-1.220054	-1.188857
19	7	0	-1.649931	-1.359084	-0.687560
20	8	0	0.836604	-0.843799	-1.338901

The selenodixe of 7 obtained in water with geometry optimization.

Calculation level: RB3LYP/PCM(water)/6-31+G(d,p)
E(RB3LYP): -2687.67971351 a.u.
Minimum frequency: $119.1 \mathrm{~cm}^{-1}$
Atomic coordinates:

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	6	0	0.009990	1.413491	-0.782626
2	6	0	0.421832	-0.258613	1.381426
3	6	0	1.645299	-0.040607	0.492746
4	6	0	1.448690	1.293642	-0.239991
5	1	0	-0.092000	1.129039	-1.831935
6	1	0	-0.426098	2.401162	-0.627046
7	1	0	0.385897	0.477236	2.187624
8	1	0	0.315292	-1.263601	1.793233
9	1	0	2.180693	1.421996	-1.043410
10	1	0	1.635758	2.083611	0.491810
11	8	0	-0.909140	-1.264506	-0.893956
12	34	0	-1.108666	0.066359	0.164995
13	1	0	2.571707	-0.039906	1.070264
14	1	0	2.374656	-0.997561	-1.256030
15	1	0	2.052300	-2.049008	-0.031999
16	1	0	0.740974	-1.379675	-0.876703
17	7	0	1.724817	-1.195849	-0.491901

The selenodixe of $\mathbf{7}$ obtained in methanol with geometry optimization.

Calculation level: RB3LYP/PCM(methanol)/6-31+G(d,p)
E(RB3LYP): -2687.67776083 a.u.
Minimum frequency: $125.5 \mathrm{~cm}^{-1}$
Atomic coordinates:

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	6	0	0.010340	1.414438	-0.781630
2	6	0	0.421438	-0.257920	1.382277
3	6	0	1.644823	-0.041169	0.492892
4	6	0	1.449351	1.293068	-0.240306
5	1	0	-0.092562	1.130717	-1.831065
6	1	0	-0.425061	2.402376	-0.625460
7	1	0	0.385662	0.477760	2.188667
8	1	0	0.314559	-1.262997	1.793894
9	1	0	2.180587	1.419757	-1.044729
10	1	0	1.639087	2.083367	0.490472
11	8	0	-0.905134	-1.264097	-0.893913
12	34	0	-1.108487	0.066334	0.164597
13	1	0	2.571663	-0.041218	1.069894
14	1	0	2.371420	-1.000117	-1.256112
15	1	0	2.045738	-2.050725	-0.031792
16	1	0	0.734035	-1.377043	-0.875953
17	7	0	1.721254	-1.196424	-0.491747

