Article

Synthesis of Some New 1,3,4-Thiadiazole, Thiazole and Pyridine Derivatives Containing 1,2,3-Triazole Moiety

Nadia A. Abdelriheem, Ali M. M. Mohamed and Abdou O. Abdelhamid *
Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt; Nadia.abdelhamid5@gmail.com (N.A.A.); Ali.egypt3@gmail.com (A.M.M.M.)
* Correspondence: Abdelhamid45@gmail.com; Tel.: +20-010-0520-5750
Academic Editor: Panayiotis A. Koutentis
Received: 13 December 2016; Accepted: 7 February 2017; Published: 10 February 2017

Abstract

In this study, 1-(5-Methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)ethan-1-one, was reacted with Thiosemicarbazide, alkyl carbodithioate and benzaldehyde to give thiosemicarbazone, alkylidenehydrazinecarbodithioate and 3-phenylprop-2-en-1-one-1,2,3-triazole derivatives. The 1,3,4-thiadiazole derivatives containing the 1,2,3-triazole moiety were obtained via reaction of alkylidenecarbodithioate with hydrazonoyl halides. Also, hydrazonoyl halides were reacted with thiosemicarbazone and pyrazolylthioamide to give 1,3-thiazoles derivatives. Subsequently, 3-phenyl-2-en-1-one was used to synthesize substituted pyridines and substituted nicotinic acid ester. The latter was converted to its azide compound which was reacted with aromatic amines and phenol to give substituted urea and phenylcarbamate containing 1,2,3-triazole moiety. The newly synthesized compounds were established by elemental analysis, spectral data and alternative synthesis whenever possible.

Keywords: 1,3,4-thiadiazoles; 1,2,3-triazoles; hydrazonoyl halides; pyridines; nicotinic ester

1. Introduction

In synthesis, 1,2,3-triazoles are useful building blocks and are additionally important due to their broad range of biological activities [1,2]-they are stable to moisture, oxygen, light and metabolic process. A series of novel 1,2,3-triazoles were synthesized [3] and found to have cytotoxic activity against human cancer cell lines such as U937, THP-1, HL60 and B16-F10. The 1,3,4-thiadiazole ring is one of the most important and well-known heterocyclic nuclei, as a common and integral feature of a variety of natural products and medicinal agents. As a core structural component, 1,2,4-thiadiazole is present in an array of drug categories such as antimicrobial, anti-inflammatory, analgesic, antiepileptic, antiviral, antineoplastic, antitubercular and antinociceptive agents [4,5]. Thiazoles display a broad range of biological activities and are found in many potent biologically active molecules such as antimicrobial, antifungal and antineoplastic drugs [6]. However, they are mostly known for their anticancer [7] and antimicrobial [8] activities. Also, pyridine derivatives, including those bearing various heterocyclic nuclei, have shown potent pharmacological properties, including antifungal [9,10], antitubercular [11], antimalarial [12], antibacterial [13], antimicrobial [14], or insecticide [15]. We report here the synthesis of new 1,3,4-thiadiazoles, 5 -arylazothiazoles, and pyridines containing 1,2,3-triazole moiety.

2. Results

Treatment of 1-(5-methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)ethan-1-one (1) [16] with methyl or benzyl carbodithioate [16,17] in 2-propanol gave the corresponding methyls 2-(1-(5-methyl-1-(p-tolyl)-1H-

1,2,3-triazol-4-yl)ethylidene)hydrazinecarbodithioate (2a) [17] and benzyl 2-(1-(5-methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)ethylidene)hydrazinecarbodithioate (2b) [18], respectively (Scheme 1). Structures $\mathbf{2 a}$ and $\mathbf{2 b}$ were elucidated by elemental analyses, spectral data and chemical transformation. Thus, treatment of $\mathbf{2 a}$ or $\mathbf{2 b}$ with ethyl 2-chloro-2-(2-phenylhydrazono)acetate (3a) in ethanolic triethylamine at room temperature gave one isolated product formulated as ethyl 5-((1-(5-methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)ethylidene)-hydrazono)-4-phenyl-4,5-dihydro-1,3,4-thiadiazole-2-carboxylate (7a) (Scheme 1). The latter was confirmed by elemental analysis, spectral data, and an alternative synthesis route. Thus, ethyl 5-hydrazono-4-phenyl-4,5-dihydro-1,3,4-thiadiazole-2-carboxylate (8) [19] was reacted with compound 1, in 2-propanol to give a product identical in all aspects (m.p., mixed m.p., and spectra) with 7a.

Scheme 1. Synthesis of 1,3,4-thiadiazoles 7a,b.
In light of these results, the mechanism outlined in Scheme 1 seems to be the most plausible pathway for the formation of $\mathbf{7 a}$ from the reaction of the $\mathbf{2 a}$ (or $\mathbf{2 b}$) with $\mathbf{3 a}$. The reaction involves initial formation of thiohydrazonate 5 , which undergoes intermolecular cyclization as soon as it is formed to yield the intermediate $\mathbf{6}$ or via 1,3-dipolar cycloaddition of nitrilimine $\mathbf{4 a}$ (generated in situ from 3a with triethylamine) to the $C=S$ double bond of 2 . The formations of 5 and 6 are similar to the reactions of hydrazonoyl halides with 1-phenyl-1,4-dihydrotetrazole-5-thione [20] and 5-phenyl-1,3,4-thiadiazole-2(3H)-thione [21]. Intermediate 6 was converted to 7 by elimination of methanthiol (or benzylthiol). Analogously, treatment of the appropriate $\mathbf{2 a}$ (or 2b) with $\mathbf{3 b}$ gave 2,3-dihydro-1,3,4thiadiazoles 7b, in good yield (Scheme 1).

After 2-(1-(5-Methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)ethylidene)hydrazinecarbothioamide (9) [21] was reacted with hydrazonyl chloride 3 c in ethanolic triethylamine under reflux to give the
corresponding(2-(2-(1-(5-methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)ethylidene)-hydrazinyl)-4-phenyl-5(phenyldiazenyl)thiazole (11b) in quantitative yield (Scheme 2), structure $\mathbf{1 1 b}$ was confirmed by elemental analysis, spectral data and alternative synthesis. Thus, 2-(2-(1-(5-methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)ethylidene)-hydrazinyl)-4-phenylthiazole (12) [22], prepared from reaction of $\mathbf{1}$ with 2-hydrazinyl-4-phenylthiazole (13) [23], or reaction of 9 with ω-bromoacetophenone [21], was coupled with benzenediazonium chloride in ethanolic sodium acetate at $0-5^{\circ} \mathrm{C}$ to furnish a product identical in all aspects (m.p., mixed m.p., and spectra) to 11b. Analogously, treatment of 9 with the appropriate $\mathbf{3 b}, \mathbf{d}, \mathbf{e}$ gave thiazole derivatives 11a, c,d respectively, in good yields (Scheme 2).

Scheme 2. Synthesis of thiazoles 11a-d.

A similar treatment of 9 with ethyl 2-chloro-2-(2-phenylhydrazono)acetate (3a) in ethanolic triethylamine gave 2-(2-(1-(5-methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)ethylidene)-hydrazinyl)-5-(2-phenylhydrazono)thiazol-4(5H)-one (14a) (Scheme 3). Structure 14a was elucidated by elemental analysis, spectral data and an alternative synthetic route. Thus, treatment of benzenediazonium chloride with 2-(2-(1-(5-methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)ethylidene)-hydrazinyl)thiazol-4(5H)-one (15), prepared via reaction of 9 with ethyl chloroacetate in boiling ethanol, in a cold ethanolic sodium acetate solution, afforded a product identical in all aspects (m.p., mixed m.p., and spectra) with 14a.

Analogously, the appropriate arenediazonium chloride was coupled with 15 in ethanolic sodium acetate afforded (2-(2-(1-(5-methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)ethylidene)-hydrazinyl)-5-(2-arylhydrazono)thiazol-4(5H)-one $\mathbf{1 4 b}$ and 14c; respectively (Scheme 3). Also, compound 15 was reacted with benzaldehyde in ethanol in the presence of a catalytic amount of piperidene, giving 5-(benzylidene)-2-(2-(1-(5-methyl-1-(-tolyl)-1H-1,2,3-triazol-4-yl)ethylidene)-hydrazinyl)thiazol-4(5H)one (16).

Treatment of 3-(5-methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)-5-phenyl-4,5-dihydro-1 H -pyrazole-1carbothioamide (17) [24,25] with the appropriate α-keto-hydrazonoyl halides $\mathbf{3 a , c}, \mathbf{e}, \mathbf{f}$ in ethanolic triethylamine afforded 5-(aryldiazenyl)-4-substituted-2-(3-(5-methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)-5-phenyl-4,5-dihydro-1H-1H-pyrazol-1-yl)-5-(aryldiazenyl)-4-substituted thiazole 20a-d, respectively (Scheme 4). Structures 20a-d were elucidated via elemental analyses, spectral data and alternative synthetic routes. Thus, 2-(3-(5-methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)-5-phenyl-4,5-dihydro-1H-pyrazol-1-yl)-4-phenylthiazole (21) was coupled with benzenediazonium chloride in ethanolic sodium acetate solution at $0-5^{\circ} \mathrm{C}$, affording a product identical in all aspects (m.p., mixed m.p., and spectra) with 20b.

80 \%

Scheme 3. Synthesis of thiazolone 14a-d.

$\mathrm{R}=5$-methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl

$$
\begin{aligned}
& \mathrm{i}=\mathrm{EtOH}, \mathrm{Et}_{3} \mathrm{~N} / 80^{\circ} \mathrm{C} \\
& 3 \mathrm{a}, \mathrm{R}^{\prime}=\mathrm{CH}_{3}, \mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{5} \\
& \text { c, } \mathrm{R}^{\prime}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{5} \\
& \text { e, } \mathrm{R}^{\prime}=\mathrm{CH}_{3}, \mathrm{Ar}=4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \\
& \text { f, } \mathrm{R}^{\prime}=\mathrm{CH}_{3}, \mathrm{Ar}=4-\mathrm{ClC}_{6} \mathrm{H}_{4}
\end{aligned}
$$

Scheme 4. The 2-(3-(5-Methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)-5-phenyl-4,5-dihydro-1H-pyrazol-1-yl)-5-(aryldiazenyl)-4-substituted thiazole 20a-d.

In the light of these results, the mechanism outlined in Scheme 4 seems to be the most plausible pathway for the formation of $\mathbf{2 0}$ from the reaction of $\mathbf{1 7}$ with 3 . The reaction involves initial formation of thiohydrazonate 18, which undergoes cyclization as soon as it is formed to yield the intermediate 19. The latter suffers dehydration to the final product 20.

Treatment of $\mathbf{1 7}$ with $\mathbf{3 b}$ in ethanolic triethylamine gave 2-(3-(5-methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)-5-phenyl-4,5-dihydro-1H-pyrazol-1-yl)-5-(2-phenylhydrazono)thiazol-4(5H)-one (22) in a good yield. Structure 22 was confirmed by elemental analysis and spectral data.

Next, treatment of compound 23 with each of ethyl acetoacetate, acetylacetone, malononitrile, ethyl cyanoacetate, cyanothioacetamide and benzoylacetonitrile in acetic acid containing ammonium acetate afforded pyridine derivatives 24-29, respectively (Scheme 5). Structures 24-29 were elucidated on the basis of elemental analysis, spectral data and chemical transformation (cf. Experimental and Scheme 5). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 24 showed signals at $\delta=1.34\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 2.4\left(\mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)$, $2.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$, pyridine $\left.\mathrm{H}-2\right)$, $2.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$, triazole $\left.\mathrm{H}-5\right), 4.2\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 7.27-7.73(\mathrm{~m}$, $9 \mathrm{H}, \mathrm{ArH}$'s), 7.90 ($\mathrm{s}, 1 \mathrm{H}$, pyridine $\mathrm{H}-5$).

Scheme 5. Synthesis of substituted pyridine derivatives 24-29.
Thus, treatment of 24 with hydrazine hydrate in boiling ethanol gave 2-methyl-6-(5-methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)-4-phenylnicotinohydrazide (31) in a good yield. Structure 31 was elucidated via elemental analyses, spectral data and chemical transformation. Compound 31 was reacted with each of acetylacetone, ethyl acetoacetate, or with sodium nitrite in the presence of acetic acid to give 32, 33 and azido 34, respectively (Scheme 6).

Meanwhile, each of the compounds 32 and 33 were reacted with benzenediazonium chloride in ethanolic sodium acetate solution, giving (3,5-dimethyl-4-(phenyldiazenyl)-1H-pyrazol-1-yl)-(2-methyl-6-(5-methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)-4-phenylpyridin-3-yl)methanone (35a) and 5-methyl-2-[2-methyl-6-(5-methyl-1-(p-tolyl)-1H-[1,2,3]triazol-4-yl)-4-phenylpyridine-3-carbonyl]-4-(phenyl-hydrazono)-2,4-dihydro-pyrazol-3-one (36a) (Scheme 6). The structure of compounds 35a and 36a were confirmed by alternative synthesis, by treatment of the hydrazide 31 with each of 3-(2-
phenylhydrazono)pentane-2,4-dione (37a) [26] and ethyl 3-oxo-2-(phenylhydrazono)butanoate (37b) [27] in boiling acetic acid for products identical in all aspects (m.p., mixed m.p., and spectra) with 35 a and 36a, respectively.

Analogously, p-tolyldiazonium chloride was reacted with each 32 and 33 , giving (3,5-dimethyl-4-(p-tolyldiazenyl)-1H-pyrazol-1-yl)(2-methyl-6-(5-methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)-4-phenylpyridin-3-yl)methanone (35b) and 5-methyl-2-(2-methyl-6-(5-methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)-4-phenylnicotinoyl)-4-(2-(p-tolyl)-hydrazono)-2,4-dihydro-3H-pyrazol-3-one (36b), respectively (Scheme 6).

Azido(2-methyl-6-(5-methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)-4-phenylpyridin-3-yl)methanone (34) can be converted into urea derivatives, 38a,b and 3-(2-methyl-6-(5-methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)-4-phenylpyridin-3-yl)quinazoline-2,4(1H,3H)-dione (39) by being boiled with the appropriate aromatic amines, or anthranilic acid in dry dioxane, respectively. Also, phenyl 2-methyl-6-(5-methyl1 -(p-tolyl)-1H-1,2,3-triazol-4-yl)-4-phenylpyridin-3-ylcarbamate 40 can be obtained by boiling the azido 34 with phenol in dry benzene (Scheme 6).

Scheme 6. Synthesis of pyrazoles, urea, quinazoline and carbamate.

3.1. Materials and Methods

All meeting points were determined on an electro thermal Gallen Kamp melting point apparatus (Laim George, Calgary, AB , Canada) and are uncorrected. IR $\left(\mathrm{cm}^{-1}\right)$ spectra were recorded on KBr disk on a FTIR-8201 spectrophotometer (Shimadzu, Tokyo, Japan). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were measured in deuterated dimethyl sulfoxide (DMSO- d_{6}) using a Varian Gemini 300 NMR spectrometer
(Varian, Inc., Karlsruhe, Germany). Mass spectra were recorded on a Shimadzu GCMS-QP1000 EX mass spectrometer (Tokyo, Japan) at 70 eV . Measurements of the elemental analysis were carried out at the Microanalytical Centre of Cairo University, Giza, Egypt. All reactions were followed by TLC (Silica gel, Merck, Kenilworth, NJ, USA). Hydrazonoyl halides were prepared as previously reported [28-31]

3.1.1. Alkyl 2-(1-(5-Methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)-ethylidene)hydrazine-1-carbodithioate 2a and 2b

A mixture of 1-(5-methyl-1-(p-tolyl)-1H-1,2,3-triazol-4yl)ethanone (1) [16] (1g, 5 mmol) and alkyl carbodithioate (5 mmol) in 2-propanol $(20 \mathrm{~mL})$ was refluxed for 30 min . The reaction mixture was cooled and the resulting solid was collected and crystallized from the proper solvent to give $\mathbf{2 a}, \mathbf{b}$.
Methyl 2-(1-(5-methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)-ethylidene)hydrazine-1-carbodithioate (2a). Buff crystals from ethanol: yield: 75%, m.p.: $186^{\circ} \mathrm{C}$, FT-IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3522 (NH), 3064 (CH), 1603 (C=N), 1561 $(\mathrm{C}=\mathrm{C})$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta=2.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.50\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.20$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), $7.38-7.51\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}\right.$'s) and 12.4 (s, br, $1 \mathrm{H}, \mathrm{NH}$). Anal. Calcd. For $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{~S}_{2}$ (319.46) C, 52.64; H, 5.36; N, 21.92; S, 20.07 Found C, 52.70; H, 5.40; N, 21.90; S, 20.18.
Benzyl 2-(1-(5-methy-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)-ethylidene)hydrazine-1-carbodithioate (2b). Buff crystals from DMF: yield 75%, m.p.: $324^{\circ} \mathrm{C}$, FT-IR (KBr, cm^{-1}): $3421(\mathrm{NH}), 3052(\mathrm{CH}), 1611(\mathrm{C}=\mathrm{N}), 1553(\mathrm{C}=\mathrm{C})$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta=2.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.50\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.28(\mathrm{~s}, 2 \mathrm{H}$, CH_{2}), 7.39-7.47 (m, 9H, ArH's) and 12.35 (s, br, 1H, NH). Anal. Calcd. For $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{~S}_{2}$ (395.54) C, 60.73; H, 5.35; N, 17.71; S, 16.21 Found C, 60.69; H, 5.32; N, 17.68; S, 16.30.

3.1.2. 5-((1-(5-Methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)ethylidene-4-phenyl-4,5-dihydro-1,3,4-

 thiadiazole-derivatives 7a,bMethod A: Triethyl amine ($0.75 \mathrm{~mL}, 0.5 \mathrm{~g}, 5 \mathrm{mmol}$) was added dropwise with stirring to a mixture of the appropriate alkyl carbodithioate $\mathbf{2 a}$ or $\mathbf{2 b}(5 \mathrm{mmol})$ and the appropriate hydrazonoyl halides $\mathbf{3 a}, \mathbf{b}$ [27-30] (5 mmol) in ethanol (20 mL). The resulting solid which formed after 30 min was collected and crystallized from the proper solvent to give the corresponding thiadiazole derivatives $\mathbf{7 a}, \mathbf{b}$.

Ethyl 5-((-1-(5-methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)ethylidene)hydrazono)-4-phenyl-4,5-dihydro-1,3,4-thiadiazole-2-carboxylate (7a). Yellow crystals from acetic acid Yield: 70\%, m.p.:205-207 ${ }^{\circ} \mathrm{C}$; FT-IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3047(\mathrm{CH}), 1708(\mathrm{CO}), 1616(\mathrm{C}=\mathrm{N}), 1573(\mathrm{C}=\mathrm{C})$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=1.59(\mathrm{t}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 2.48\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.50\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}_{3}\right)$, and $7.26-8.18$ (m, 9H, AH’s); MS (El, m/z (\%)): 461 (M+100), 433 (20), 400 (80), 289 (20), 243 (20), 184 (30), 91 (30), 80 (100), 64 (40); Anal. Calcd. For $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{7} \mathrm{SO}_{2}$ (461.55), C, 59.85; H, 5.02; N, 21.24; S, 6.95 Found C, 59.90; H, 5.12; N, 21.34; S, 6.99

1(5-((1-(5-Methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)ethylidene)hydrazono)-4-phenyl-4,5-dihydro-1,3,4-thiadiazol-2-yl)ethan-1-one (7b). Yellow crystals from ethanol. Yield: 80%, m.p.: $270-271^{\circ} \mathrm{C}$; FT-IR ($\mathrm{KBr} \mathrm{cm}^{-1}$): $2924(\mathrm{CH}), 1678(\mathrm{CO}), 1616(\mathrm{C}=\mathrm{N}), 1573(\mathrm{C}=\mathrm{C}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.48\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.63$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, and $7.26-8.14\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{ArH}^{\prime} \mathrm{s}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ in $\mathrm{CHCl}_{3} \delta=$ $9.4\left(5-\mathrm{CH}_{3}\right.$ triazole $), 13.9\left(=\mathrm{CH}_{3}\right), 19.9\left(4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right), 24.7\left(\mathrm{CH}_{3} \mathrm{CO}\right), 123.3,125.4,127.2,127.8,129.3$, $130.2,132.4,139.7,140.7,142.33,147.8,152.7,163.8,189.1$ (CO), MS (El, $m / z(\%)): 431\left(\mathrm{M}^{+}, 100\right), 403$ (5), 370 (10), 360 (30), 301 (10), 259 (15), 194 (55), 184 (3), 172 (40), 91 (50), 80 (100), 64 (50); Anal. Calcd. For $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{7} \mathrm{OS}(431.52)$, C, 61.23; H, 4.91; N, 22.72; S, 7.43 Found C, 61.40; H, 4.89; N, 22.80; S, 7.80

Alternative synthesis of Ethyl 5-(1-(5-methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)ethylidene-4-phenyl-4,5-dihydro-1,3,4-thiadiazole-2-carboxylate (7a).

Method B: A mixture of ethyl 5-hydrazono-4-phenyl-4,5-dihydro-1,3,4-thiadiazole-2-carboxylate (8) [18] ($1.3 \mathrm{~g}, 5 \mathrm{mmol}$) and 1-(5-methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)ethanone (1) ($1 \mathrm{~g}, 5 \mathrm{mmol}$) in 2-propanol were heated for 30 min . The crude solid that was collected and crystallized from ethanol gave a product identical in all aspects (m.p., mixed m.p. and spectra) with 7a.

3.1.3. 2-(2-(1-(5-Methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)ethylidene-hydrazinyl-thiazole derivatives 11a-d

Method A: A mixture of $\mathbf{9}(1.4 \mathrm{~g}, 5 \mathrm{mmol})$, the appropriate hydrazonoyl halides $\mathbf{3 b}-\mathbf{e}(5 \mathrm{mmol})$ and triethylamine ($0.5 \mathrm{~g}, 0.7 \mathrm{~mL}, 5 \mathrm{mmol}$) in ethanol was heated under reflux for 3 h . The resulting solid that was collected and recrystallized gave thiazole derivatives 11a-d.
4-Methyl-2-(2-((E)-1-(5-methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)ethylidene)hydrazinyl)-5-((E)-phenyldiazenyl) thiazole (11a). Orange crystals from acetic acid; Yield: 75%, m.p.: $255^{\circ} \mathrm{C}$; FT-IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3417 (NH), $3032(\mathrm{CH}), 1600(\mathrm{C}=\mathrm{C})$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.48(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH} 3), 2.59\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.65(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 3.3\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.96-7.55\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{ArH}^{\prime} \mathrm{s}\right)$ and $9.18(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta=8.1,12.9$, 13.7, 20.8, 114.4, 121.6, 123.8, 129.0, 129.6, 129.9, 130.4, 139.1, 139.6, 146.2, 154.6, 160.1, 164.9. Anal. Calcd. For $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{8} \mathrm{~S}(430.54)$: C, 61.37; H, 5.15; N, 26.03; S, 7.4 Found C, 61.40; H, 5.10; N, 26.13; S, 7.50.

2-(2-((E)-1-(5-Methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)ethylidene)hydrazinyl)-4-phenyl-5-((E)-phenyldiazenyl) thiazole (11b). Orange crystals from ethanol, Yield: 70\%, m.p.: $245^{\circ} \mathrm{C}$; FT-IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3417 (NH), $3074(\mathrm{CH}), 1578(\mathrm{C}=\mathrm{C}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta=2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.49\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.30(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.32-8.28\left(\mathrm{~m}, 14 \mathrm{H}, \mathrm{ArH}^{\prime} \mathrm{s}\right)$ and $10.71(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}, \mathrm{NH})$. Anal. Calcd. For $\mathrm{C}_{2} \mathrm{H}_{24} \mathrm{~N}_{8} \mathrm{~S}(492.61)$: C, 65.83; H, 4.91; N, 22.75; S, 6.51; Found C, 65.79, N, 22.78, S, 6.561.

4-Methyl-2-(2-((E)-1-(5-methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)ethylidene)hydrazinyl)-5-((Z)-p-tolyldiazenyl) thiazole (11c). Gray crystals from acetic acid, Yield: 70%, m.p.: $250^{\circ} \mathrm{C}$; FT-IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3421 (NH), 3020 (CH), 1593 (C=C); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta=2.30(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH} 3), 2.44(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH} 3), 2.58(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), $2.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.15-7.53\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}^{\prime} \mathrm{s}\right), 10.54$ ($\mathrm{s}, \mathrm{br}, 1 \mathrm{H}, \mathrm{NH}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\right.$ DMSO- d_{6}) $\delta=8.1,12.9,13.7,20.8,21.5,114.2,122.0,123.8,129.0,129.6,129.9,136.8,139.4,139.8,146.8$, 151.6, 156.8, 164.7. Anal. Calcd. For $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{8} \mathrm{~S}$ (444.57), C, 62.14 ; H, 5.44 ; N, 25.21; S, 7.21 Found C, 62.15; H, 5.55; N, 25.25; S, 7.30.

5-((Z)-(4-Chlorophenyl)diazenyl)-4-methyl-2-(2-((E)-1-(5-methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)ethylidene) hydrazinyl)thiazole (11d). Red crystals from ethanol, Yield: 70\%, m.p.: $240^{\circ} \mathrm{C}$; FT-IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3387 (NH), 3089, $3028(\mathrm{CH}), 1585(\mathrm{C}=\mathrm{C})$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta=2.49\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.58\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $2.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.34-7.54(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}$'s) and $10.65(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}, \mathrm{NH})$. Anal. Calcd. For $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N} 8 \mathrm{~S}(464.99), \mathrm{C}, 56.83 ; \mathrm{H}, 4.55$; N, 24.10; S, 6.90 Found C, $56.89 ;$ H, $4.60 ;$ N, 24.15; S, 6.85.

Method B: Benzenediazonium chloride (5 mmol), prepared in the usual way from aniline (0.46 g , $5 \mathrm{mmol})$, hydrochloric acid ($1.5 \mathrm{~mL}, 6 \mathrm{M}$) and sodium nitrite (0.35 g , 5 mmol), was added dropwise with stirring to a cold solution of 2-(2-(1-(5-methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)ethylidene)hydrazinyl)-4-phenylthiazole (12) ($1.9 \mathrm{~g}, 5 \mathrm{mmol}$) and sodium acetate ($1.3 \mathrm{~g}, 10 \mathrm{mmol}$) in ethanol $(30 \mathrm{~mL})$ at $0-5^{\circ} \mathrm{C}$. The reaction mixture was stirred for 3 h in an ice bath and was left in refrigerator overnight. The solid was collect and crystallized from ethanol, giving a product identical (m.p., mixed mp and spectra) with 11b.
3.1.4. 2-(2-(1-(5-Methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)ethylidene)hydrazinyl)-4-phenylthiazole (13)

Method A: A mixture of $9(1.4 \mathrm{~g}, 5 \mathrm{mmol})$ and ω-bromoacetophenone $(1 \mathrm{~g}, 5 \mathrm{mmol})$ in ethanol was refluxed for 4 h . The resulting solid that was collected and crystallized from ethanol gave a white crystal of 13, Yield: 75%, m.p. $290^{\circ} \mathrm{C}$ (Lit. m.p. $273{ }^{\circ} \mathrm{C}$ [22]).

Method B: A mixture of 2-hydrazinyl-4-phenylthiazole (12) (1.76 g, 10 mmol$), \mathbf{1}(2.1 \mathrm{~g}, 5 \mathrm{mmol})$ in ethanol (20 mL) and conc. hydrochloric acid (2 drops) was heated under reflux for 15 min . The solid was collected and crystallized from ethanol giving a product identical in all aspects (m.p., mixed m.p., and spectra) with the above sample obtained by Method A.
3.1.5. (E)-5-(2-Arylhydrazono)-2-((Z)-2-(1-(5-methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)ethylidene)-hydrazinyl)thiazol-4(5H)-one 14a-c

Method A: A mixture of $9(1.4 \mathrm{~g}, 5 \mathrm{mmol})$, hydrazonoyl halide $\mathbf{3 a}$ (5 mmol) and triethylamine $(0.5 \mathrm{~g}, 0.7 \mathrm{ml}, 5 \mathrm{mmol})$ in ethanol was boiled under reflux for 3 h . The resulting solid was collected and recrystallized from acetic acid afforded by 14a

Method B: Dropwise addition of arenediazonium chlorides (5 mmol), which was prepared via reaction of the appropriate aniline, p-toluidine, p-chloroaniline (5 mmol), hydrochloric acid (1.5 mL , $6 \mathrm{M})$, sodium nitrite $(0.37 \mathrm{~g}, 5 \mathrm{mmol})$ at $0-5^{\circ} \mathrm{C}$, to a mixture of $\mathbf{1 5}(1.64 \mathrm{~g}, 5 \mathrm{mmol})$ and sodium acetate $(0.66 \mathrm{~g}, 5 \mathrm{mmol})$ in ethanol at $0-5^{\circ} \mathrm{C}$, while stirring. The reaction mixture was stirred for 3 h . The resulting solid was collected, washed with water and crystallized, giving 14a-c.
(E)-2-((Z)-2-(1-(5-Methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)ethylidene)hydrazinyl)-5-(2-phenylhydrazono)thiazol$4(5 H)$-one (14a). Yellow crystals from acetic acid, Yield 75%, m.p. $298-300^{\circ} \mathrm{C}$; FT-IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3431, 3211 (2NH), 3051, 2920 (CH), 1581(C=C), 1659 (CO), 1604 (C=N); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta=$ $2.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.49\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.92-7.85\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{ArH}^{\prime} \mathrm{s}\right) 10.5(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}, \mathrm{NH})$ and 11.9 (s, br, 1H, NH). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right) \delta=8.1,19.2,21.0,115.4,122.0,123.8,127.7,129.8,130.1,139.2$, 139.8, 145.7, 146.3, 147.2, 159.4, 167.9, 176.1. Anal. Calcd. For $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N} 8 \mathrm{SO}(432.51), \mathrm{C}, 58.32 ; \mathrm{H}, 4.66$; N, 25.91; S, 7.41 Found C, 58.30; H, 4.69; N, 25.80; S, 7.50.
(E)-2-((Z)-2-(1-(5-Methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)ethylidene)hydrazinyl)-5-(2-(p-tolyl)hydrazono) thiazol-4(5H)-one (14b). Brown crystals from ethanol, Yield: 80%, m.p. $>300^{\circ} \mathrm{C}$; FT-IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3437, 3267 (2NH), $2931(\mathrm{CH}), 1732(\mathrm{CO}), 1627 v(\mathrm{C}=\mathrm{N}), 1573 v(\mathrm{C}=\mathrm{C}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta=2.26$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), $2.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.49\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.53\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.41-7.50\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}^{\prime} \mathrm{s}\right), 8.41(\mathrm{~s}, \mathrm{br}$, $1 \mathrm{H}, \mathrm{NH}$) and 10.9 (s, br, 1H, NH). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta=8.1,19.2,20.6,21.0,117.4,123.9,128.6,129.9$, 130.2, 136.8, 139.2, 139.8, 145.2, 145.8, 146.3, 159.6, 167.9, 176.0. Anal. Calcd. For $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{8} \mathrm{OS}(446.54)$, C, 59.18; H, 4.97; N, 25.09; S, 7.18 Found C, 59.28; H, 4.89; N, 25.11; S, 7.28.
(E)-5-(2-(4-Chlorophenyl)hydrazono)-2-((Z)-2-(1-(5-methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)ethylidene)hydrazinyl) thiazol-4(5H)-one (14c). Pale brown crystals from ethanol, Yield: 70%, m.p.: $263-265^{\circ} \mathrm{C} ;$ FT-IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$: $3431,3108(2 N H), 2972(\mathrm{CH}), 1664(\mathrm{CO}), 1634(\mathrm{C}=\mathrm{N}),{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta=2.42(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 2.53\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.42-7.51\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}^{\prime} \mathrm{s}\right), 8.32(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}, \mathrm{NH})$ and $11.99(\mathrm{~s}, \mathrm{br}$, $1 \mathrm{H}, \mathrm{NH})$. Anal. Calcd. For $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{8} \mathrm{OSCl}(466.96), \mathrm{C}, 54.02 ; \mathrm{H}, 4.10 ; \mathrm{N}, 24.00 ; \mathrm{S}, 6.87 ; \mathrm{Cl}, 7.59$ Found: C, 54.12; H, 4.20; N, 24.05; S, 6.90.

3.1.6. (E)-2-(2-(1-(5-Methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)ethylidene)hydrazinyl)thiazol-4(5H)-one (15)

A mixture of $9(1.4 \mathrm{~g}, 5 \mathrm{mmol})$ and ethyl chloroacetate $(0.61 \mathrm{~g}, 5 \mathrm{mmol})$ in ethanol was refluxed for 4 h . The resulting solid was collected and recrystallized from ethanol that gave white crystals of 15, Yield: 75%, m.p. $255^{\circ} \mathrm{C}$. FT-IR (KBr, cm^{-1}): 3116 (NH), $2951(\mathrm{CH}), 1735(\mathrm{CO}), 1624(\mathrm{C}=\mathrm{N}) .{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta=2.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.54\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.87\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right)$, $7.42-8.32\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}^{\prime} \mathrm{s}\right)$ and $11.97(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta=8.1,19.1,20.8,37.1,123.9$, 129.7, 129.9, 139.2, 139.7, 146.0, 159.7, 168.0, 183.5. Anal. Calcd. For $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{OS}$ (328.40), C, 54.86; H, 4.91; N, 25.59; S, 9.76 Found: C, 54.90; H, 4.95; N, 25.34; S, 9.70.
3.1.7. (E)-5-Benzylidene-2-((E)-2-(1-(5-methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)ethylidene)-hydrazinyl)thiazol-4(5H)-one (16)

A mixture of 15 ($1.6 \mathrm{~g}, 5 \mathrm{mmol}$) and benzaldehyde ($0.53 \mathrm{~g}, 5 \mathrm{mmol}$) in ethanol and catalytic amount of piperidine (5 drops) was refluxed for 3 h . The resulting solid was collected and recrystallized from acetic acid affording white crystals of 16, Yield: 80%, m.p.: $283{ }^{\circ} \mathrm{C}$. FT-IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $3124(\mathrm{NH}), 2974$ (CH), $1705(\mathrm{CO}), 1624(\mathrm{C}=\mathrm{N}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta=2.49\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.54\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.30$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.42-7.51\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH}^{\prime} \mathrm{s}\right.$ and $\left.=\mathrm{CH}\right)$ and $11.91(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta=$ 8.1, 19.1, 20.8, 123.9, 129.2, 129.7, 129.9, 130.7, 132.5, 138.2, 139.3, 139.6, 146.2, 159.8, 167.8, 174.1. Anal. Calcd. For $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{SO}(416.51)$, C, 63.44; H, 4.84; N, 20.18; S, 7.70 Found: C, 63.50; H, 4.90; N, 20.20; S, 7.75.
3.1.8. 5-(Aryldiazenyl)-4-substituted-2-(3-(5-methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)-5-phenyl-4,5-dihydro-1H-pyrazole-1-yl)thiazole 20a-d, 21

Method A: A mixture of $\mathbf{1 7}(1.9 \mathrm{~g}, 5 \mathrm{mmol})$, the appropriate hydrazonoyl halides $\mathbf{3 a}, \mathbf{c}, \mathbf{e}, \mathbf{f}$ or $\mathbf{3 b}$ $(5 \mathrm{mmol})$ and triethyl amine $(0.5 \mathrm{mg}, 0.75 \mathrm{~mL}, 5 \mathrm{mmol})$ in ethanol $(20 \mathrm{~mL})$ was heated under reflux for 4 h . The resulting solid was collected and recrystallized, giving thiazole derivatives 20a-d and 21.

Method B: Benzenediazonium chloride (5 mmol) which was prepared via reaction of aniline $(0.55 \mathrm{~g}, 5 \mathrm{mmol})$, hydrochloric acid ($3 \mathrm{~mL}, 6 \mathrm{M}$), and sodium nitrite ($0.35 \mathrm{~g}, 5 \mathrm{mmol}$) was added dropwise, with stirring, to a cold solution of 21 . The reaction mixture was stirred for 3 h . The resulting solid was collected, washed with water and crystallized from ethanol, giving 20b.
(E)-4-Methyl-2-(3-(5-methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)-5-phenyl-4,5-dihydro-1H-pyrazol-1-yl)-5(phenyldiazenyl)thiazole (20a). Orange crystals from acetic acid, Yield: 75%, m.p.: $235{ }^{\circ} \mathrm{C}$; FT-IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3045, 2926, $2860(\mathrm{CH}), 1653(\mathrm{C}=\mathrm{N})$, $1587(\mathrm{C}=\mathrm{C})$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta=2.49\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $2.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.72-3.74(\mathrm{dd}, 1 \mathrm{H}, \mathrm{Hb}), 3.78\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right), 5.78\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{x}}\right)$ and 7.26-7.76 (m, 14H, ArH's). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta=8.1,12.82,21.0,33.2,63.6,114.8,121.7,123.8,127.5$, 129.1, 129.5, 129.8, 130.1, 130.7, 130.9, 139.2, 139.7, 144.8, 149.6, 154.1, 161.1. MS (El, $m / z(\%)): 518\left(\mathrm{M}^{+}\right.$, 100), 489 (5), 413 (2), 273 (15), 184 (20), 170 (15), 144 (25), 91 (35\%), 77 (70), 65 (17). Anal. Calcd. For $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{~N}_{8} \mathrm{~S}$ (518.65), C, 67.16; H, 5.05; N, 21.61; S, 6.18 Found C, 67.26; H, 5.10; N, 21.69; S, 6.28.
(E)-2-(3-(5-Methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)-5-phenyl-4,5-dihydro-1H-pyrazol-1-yl)-4-phenyl-5(phenyldiazenyl)thiazole (20b). Red crystals from acetic acid, Yield: 70%, m.p.: $275{ }^{\circ} \mathrm{C}$; FT-IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$: 3043, $2924(\mathrm{CH}), 1666(\mathrm{C}=\mathrm{N})$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.49\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.71(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH} 3), 3.73-3.78$ (dd, 1H, Hb), $4.18\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right) 5.82\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{x}}\right)$, and $7.33-8.18\left(\mathrm{~m}, 19 \mathrm{H}, \mathrm{ArH}\right.$'s), ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (DMSO- d_{6}) $\delta=8.1,12.82,21.0,33.2,63.6,108.7,121.7,123.8,126.7,127.4,128.2,128.7,128.2,129.8,129.9,130.1,130.4$, 130.9, 133.1, 136.2, 139.1, 139.7, 144.7, 154.7, 168.0 MS (El, m / z (\%): 580 (M+, 85), 551 (30), 447 (10), 367 (30), 133 (40), 91(50), 77(100), 65(20). Anal. Calcd. For C $\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{~N}_{8} \mathrm{~S}$ (580.72), C, 70.32; H, 4.86; N, 19.30; S, 5.52 Found C, 70.22; H, 4.75; N, 19.20; S, 5.56.
(E)-4-Methyl-2-(3-(5-methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)-5-phenyl-4,5-dihydro-1H-pyrazol-1-yl)-5-(ptolyldiazenyl)thiazole (20c). Red crystals from acetic acid, Yield: 70%, m.p.: $240^{\circ} \mathrm{C}$; FT-IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3039, $2926(\mathrm{CH}), 1658(\mathrm{C}=\mathrm{N})$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.60$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.5-3.6(\mathrm{dd}, 1 \mathrm{H}, \mathrm{Hb}), 4.1-4.2\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{Ha}_{\mathrm{a}}\right), 5.61-5.64\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{x}}\right)$ and 6.81-8.17 (m, 13H, ArH's). Anal. Calcd. For $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{~N}_{8} \mathrm{~S}$ (532.68), C, 67.65; H, 5.30; N, 2.04; S, 6.02 Found C, 67.72; H, 5.34; N, 2.14; S, 6.12.
(E)-5-((4-Chlorophenyl)diazenyl)-4-methyl-2-(3-(5-methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)-5-phenyl-4,5-dihydro-1H-pyrazol-1-yl)thiazole (20d). Red crystals from ethanol, Yield: 65%, m.p.: $220^{\circ} \mathrm{C}$; FT-IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3037, $2926(\mathrm{CH}), 1670(\mathrm{C}=\mathrm{N})$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.48\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.69$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.63-3.72(\mathrm{dd}, 1 \mathrm{H}, \mathrm{Hb}), 4.11-4.21\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right), 5.64-5.70\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{x}}\right)$ and $6.81-7.71(\mathrm{~m}$, $\left.13 \mathrm{H}, \mathrm{ArH}^{\prime} \mathrm{s}\right)$. Anal. Calcd. For $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{~N} 8 \mathrm{SCl}$ (553.09), C, 62.98; H, 4.56; N, 20.26; S, 5.80; Cl, 6.41 Found C, 62.85; H, 4.55; N, 20.30; S, 5.89.
3.1.9. 2-(3-(5-Methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)-5-phenyl-4,5-dihydro-1H-pyrazol-1-yl)-4phenylthiazole (21)

A mixture of $\mathbf{1 7}(1.85 \mathrm{~g}, 5 \mathrm{mmol})$ and ω-bromoaceophenone $(1 \mathrm{~g}, 5 \mathrm{mmol})$ in ethanol was refluxed for 4 h . The resulting solid was collected and crystallized from ethanol giving white crystals of 21, Yield: 75%, m.p. $220^{\circ} \mathrm{C}$ (Lit. m.p. $193^{\circ} \mathrm{C}$ [25]).
3.1.10. 2-(3-(5-Methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)5-phenyl-4,5-dihydro-1H-pyrazole-1-yl)-5-(2-phenyl-hydrazono)thiazol-4(5H)-one (22)

A mixture of 4,5-dihydro-3-(5-methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)-5-phenyl-pyrazol-1carbothioamide (17) ($1.9 \mathrm{~g}, 5 \mathrm{mmol}$) and ethyl 2-chloro-2-(2-phenylhydrazono)acetate ($\mathbf{3 b}$) ($1.1 \mathrm{~g}, 5 \mathrm{mmol}$) in ethanol $(20 \mathrm{~mL})$ was heated under reflux for 3 h . The resulting solid was collected and recrystallized from acetic acid, giving 22 as pale orange crystals. Yield 75%, m.p. $294-296^{\circ} \mathrm{C}$, FT-IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3437
(NH), 3049, $2929(\mathrm{CH}), 1695(\mathrm{CO}), 1658(\mathrm{C}=\mathrm{N}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.48\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.65$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), $3.73-3.85$ (dd, 1H, Hb), 4.09-4.19 (dd, 1H, Ha), 5.77-5.81 (dd, 1H, Hx), 7.26-7.38 (m, 15H, ArH's and NH). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta=8.1,12.82,21.0,33.2,67.2,115.3,122.3,123.9,127.0,127.8,128.7$, 129.8, 129.9, 130.7, 139.1, 139.7, 144.0, 144.6, 146.7, 149.5, 156.6, 175.1. Anal. Calcd. For $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{~N}_{8} \mathrm{OS}$ (520.62): C, 64.60; H, 4.65; N, 21.52; S, 6.16. Found, C, 64.67; H, 4.70; N, 21.60; S, 6.19.

3.1.11. 6-(5-Methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)-4-phenylpyridine derivatives 24-29

General procedure: A mixture of $23(1.5 \mathrm{~g}, 5 \mathrm{mmol})$, the appropriate acetylacetone, ethyl acetoacetate, ethyl cyanoacetate, cyanothioacetamide, malononitrile, benzoylacetonitrile and ammonium acetate $(0.38 \mathrm{~g}, 5 \mathrm{mmol})$ in acetic acid $(10 \mathrm{~mL})$ was heated under reflux for 4 h . The resulting solid was filtered, washed with water and crystallized from the proper solvent, giving pyridine derivatives 24-29.
Ethyl 2-methyl-6-(5-methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)-4-phenylnicotinate (24). Yellow crystals from ethanol, yield 85% m.p.: $195^{\circ} \mathrm{C}$, FT-IR (KBr, cm ${ }^{-1}$): 3035, 2953 (CH); $1660(\mathrm{CO}), 1629(\mathrm{C}=\mathrm{N}) ; 1579(\mathrm{C}=\mathrm{C})$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.34\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $4.20\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 7.27-7.73\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH}^{\prime} \mathrm{s}\right.$ and pyridine $\left.\mathrm{H}-5\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta=11.5,13.82$, 20.9, 23.5, 61.7, 63.6, 93.3, 118.6, 123.0, 125.3, 125.8, 129.4, 129.8, 133.6, 134.52, 142.4, 146.0, 154.3, 167.9, 175. MS (El, $m / z(\%): 412\left(\mathrm{M}^{+}, 15\right), 395$ (10), 384 (50), 325 (30), 342 (10), 247 (70), 132 (100), 103 (80), 91 (90), 77 (40), 65 (55). Anal. Calcd. for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{~N}_{4}$ (412.49), C, 72.80; H, 5.86; N,13.60. Found: C, 72.86; H, 5.90; N, 13.65 .

1-(2-Methyl-6-(5-methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)-4-phenylpyridin-3-yl)ethan-1-one (25). Orange crystals from acetic, yield 70\% m.p.: $190^{\circ} \mathrm{C}$, FT-IR (KBr, cm^{-1}): 3002, $2949(\mathrm{CH}) ; 1737$ (CO); 1614 (C=N); $1579(\mathrm{C}=\mathrm{C}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.66$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$) and 7.26-8.14 (m, 10H, ArH's and pyridine H-5), MS (El, m/z (\%): 384 ($\mathrm{M}^{+2}, 20$), 369 (10), 354 (60), 341 (70), 247 (40), 194 (35), 144 (15), 132 (95), 91 (99), 77 (40), 65 (60). Anal. Calcd. For $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{ON}_{4}$, (382.47): C, 75.37; H, 5.80; N, 14.65. Found C, 75.47; H, 5.95; N, 14.75.

2-Amino-6-(5-methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)4-phenylpyridine-3-carbonitrile (26). Yellow crystals from acetic acid, Yield 75%, m.p.: $197^{\circ} \mathrm{C}$, FT-IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3427,3224 v(NH_{2}); 3002, $2954 v(\mathrm{CH}) ; 2276$ $v(\mathrm{CN}) ; 1635 v(\mathrm{C}=\mathrm{N}) ; 1581 v(\mathrm{C}=\mathrm{C}),{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 6.95 (s, br, 2H, NH2), 7.26-8.14 (m, 10H, ArH's and pyridineH-5). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta=11.5,20.9$, $63.6,91.7,97.8,118.4,118.8,121.3,127.5,128.8,129.7,133.52,133.7,140.3,142.5,150.6,160.7,166$. MS (EI, $\mathrm{m} / \mathrm{z}(\%)): 366\left(\mathrm{M}^{+}, 60\right), 351(30), 338(40), 247(50), 194(0), 144(30), 132(70), 103$ (50), 91 (70), 80 (100), 64 (50). Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{6}$ (366.43), C,72.11; H, 4.95; N, 22.94 Found: C, 72.15; H, 4.85; N, 22.88.

6-(5-Methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)-2-oxo-4-phenyl-pyridine-3-carbonitrile (27). Yellow crystals from acetic acid. Yield 75%, m.p. $193{ }^{\circ} \mathrm{C}$, FT-IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3433 (NH), 3043, 2929 (CH); 1668 (CO), 1643 $(\mathrm{C}=\mathrm{N}), 1581(\mathrm{C}=\mathrm{C}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.26-8.14(\mathrm{~m}$, $10 \mathrm{H}, \mathrm{ArH}$'s and pyridine H-5), 11.65 (s , br, $1 \mathrm{H}, \mathrm{NH}$), MS ($\mathrm{El}, m / z(\%)): 368\left(\mathrm{M}^{+1}, 40\right), 304(10), 247(65)$, 194 (55), 132 (100), 115 (30), 103 (70), 91 (85), 77 (40), 65 (50). Anal. Calcd. For $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}$ (367.41), C, 71.92; H, 4.66; N, 19.06 Found: C, 71.89; H, 4.65; N, 19.16.

6-(5-Methy-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)-4-phenyl-2-thioxo-pyridine-3-carbonitrile (28). Orange crystals from acetic acid, Yield 70\%, m.p. $278{ }^{\circ} \mathrm{C}$, FT-IR (KBr, cm^{-1}): 3437 (NH); 3037, 2920 (CH); 2211 (CN), $1584(\mathrm{C}=\mathrm{C}), 1615(\mathrm{C}=\mathrm{N}),{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.49\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.47-8.12$ ($\mathrm{m}, 10 \mathrm{H}$, ArH's, pyridine H-5), 15.45 (S, br, 1H, NH). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta=8.5,20.9,108.4,112.2$, 118.3, 123.2, 128.8, 129.7, 129.9, 130.4, 135.4, 135.8, 137.4, 139.4, 139.8, 150.3, 150.7, 177.8. MS (El, m / z (\%)): $383\left(\mathrm{M}^{+}, 40\right), 303$ (5), 247 (50), 194 (50), 132 (100), 103 (60), 90 (100), 77 (50), 68 (60). Anal. Calcd. For $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{~S}$ (383.48), C, 68.91; H, 4.47; N, 18.26; S, 8.36. Found C, 68.89; H, 4.37; N, 18.30 S, 8.46.
(2-Amino-6-(5-methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)-4-phenylpyridin-3-yl)(phenyl)-methanone (29). Pale yellow crystals from ethanol, Yield 70\%, m.p.: $183^{\circ} \mathrm{C}$, FT-IR (KBr, cm^{-1}): 3431, $3330\left(\mathrm{NH}_{2}\right)$; 2972, 2925 (CH), $1659(\mathrm{CO}) ; 1596(\mathrm{C}=\mathrm{C}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.49\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.93$
(s, br, 2H, NH2), 7.26-8.12 (m, 15H, ArH's and pyridine H-5). Anal. Calcd. For $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}$ (445.53), C, 75.49; H, 5.20; N, 15.72 Found C, 75.39; H, 5.40; N, 15.65.

3.1.12. 2-Methyl-6-(5-methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)-4-phenylnicotinohydrazide (31)

Equimolar amounts of ethyl 6-(5-methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)-4-phenyl pyridine-3carboxylate (24) ($2.2 \mathrm{~g}, 5 \mathrm{mmol}$) and hydrazine hydrate ($1 \mathrm{~mL}, 10 \mathrm{mmol}$) in ethanol (10 mL) were refluxed for 5 h . The resulting solid was collected and recrystallized, giving 31 as white crystals from ethanol, Yield 89%, m.p. $145{ }^{\circ} \mathrm{C}$, FT-IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3431, $3335\left(\mathrm{NH}_{2}\right) ; 2960,2923(\mathrm{CH}) ; 1662(\mathrm{CO}) ; 1572$ $(\mathrm{C}=\mathrm{C}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta=2.24\left(\mathrm{~s}, \mathrm{br}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 2.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 2.97 (s, 3H, CH3), 10.20 (s, br, 1H, NH), 7.11-7.61 (m, 10H, ArH's and pyridine H-5). Anal. Calcd. For $\mathrm{C}_{23} \mathrm{H}_{22} \cdot \mathrm{~N}_{6} \mathrm{O}$ (398.42): C, 69.33; H, 5.57; N, 21.09 Found C, $69.35 ;$ H, $5.60 ;$ N, 21.19.
3.1.13. (3,5-Dimethyl-1H-pyrazol-1-yl)(2-methyl-6-(5-methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)-4-phenyl-pyridin-3-yl)methanone (32) and 5-Methyl-2-(2-methyl-6-(5-methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)-4-phenyl-pyridine-3-carbonyl)-2,4-dihydropyrazol-3-one (33)

Equimolar amounts of 31 and the appropriate acetylacetone or ethyl acetoacetate (4 mmol for each) in ethanol (10 mL), with two drops of acetic acid, were refluxed for 4 h . The resulting solid was collected and recrystallized from ethanol, giving the corresponding products 32 and 33 , respectively.
(3,5-Dimethyl-1H-pyrazol-1-yl)(2-methyl-6-(5-methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)-4-phenyl-pyridin-3yl) methanone (32). White crystals from ethanol, Yield 80%, m.p. $207^{\circ} \mathrm{C}, ~ \mathrm{FT}-\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3032,2961$, 2941, 2839 (CH); 1641 (CO); 1589 (C=C). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta=2.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) 2.48(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.49\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.57\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.21-7.57(\mathrm{~m}, 11 \mathrm{H}$, ArH's, pyridine H-5 and pyrazole H-4). Anal. Calcd. For $\mathrm{C}_{28} \mathrm{H}_{26} \cdot \mathrm{~N}_{6} \mathrm{O}(462.56)$: C, $72.71 ; \mathrm{H}, 5.67$; N, 18.17 Found C, 72.80; H, 5.81; N, 18.27.

5-Methyl-2-(2-methyl-6-(5-methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)-4-phenyl-pyridine-3-carbonyl)-2,4-dihydropyrazol-3-one (33). White crystals from ethanol, Yield 80%, m.p. $217{ }^{\circ} \mathrm{C}$, FT-IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3434 (OH); 2976, $2925 v(\mathrm{CH}) ; 1682(\mathrm{CO}) ; 1609(\mathrm{C}=\mathrm{N}), 1575(\mathrm{C}=\mathrm{C}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta=2.21(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right) 2.48\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.57\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.62\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.67(\mathrm{~s}, 2 \mathrm{H}$, pyrazoline $\mathrm{H}-4)$, 7.19-7.52 (m, $10 \mathrm{H}, \mathrm{ArH}$'s, pyridine H-5). Anal. Calcd. For $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{O}_{2}$ (464.53): C, $69.81 ; \mathrm{H}, 5.21 ; \mathrm{N}, 18.09$ Found C, 69.91; H, 5.33; N, 18.19
3.1.14. Azido (2-Methyl-6-(5-methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)-4-phenyl-pyridin-3-yl)methanone (34)

To a stirred solution of $31(5 \mathrm{mmol})$ in acetic acid $(15 \mathrm{~mL})$ at $0-5^{\circ} \mathrm{C}$, sodium nitrite was added portion-wise until effervescence ended. The reaction mixture was stirred for 1 h . The resulting solid was collected, filtered, washed with water and recrystallized, giving the azido derivative 34. Buff crystals from acetic acid, yield (86%) m.p. $160^{\circ} \mathrm{C}$, FT-IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2964, 2924 (CH); 1641 (CO), 1609 $(\mathrm{C}=\mathrm{C}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): ~ \delta=2.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.50\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.17-7.57$ (m, 10H, ArH's and pyridine H-5). Anal. Calcd. For $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N} 7 \mathrm{O}$ (409.49): C, 67.47; H, 4.68; N, 23.95 Found C, 67.50; H, 4.70; N, 23.99.
3.1.15. 4-(Aryldiazenyl-3,5-dimethylpyrazol-1-yl)(2-methyl-6-(5-methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)-4-phenyl-pyridin-3-yl]methanone (35a,35b) and 4-(Arylyhydrazono)-5-methyl-2(2-methyl-6-(5-methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)-4-phenyl-pyridin-3-carbonyl)-2,4-dihydropyrazol-3-one (36a, 36b)

Dropwise addition of the appropriate arenediazonium chloride (5 mmol), which was prepared via reaction of appropriate aniline or p-toluidine (5 mmol), hydrochloric acid ($1.5 \mathrm{~mL}, 6 \mathrm{M}$) and sodium nitrite $(0.37 \mathrm{~g}, 5 \mathrm{mmol})$ at $0-5^{\circ} \mathrm{C}$, to a mixture of the appropriate 32 or $33(5 \mathrm{mmol})$ and sodium acetate ($1.3 \mathrm{~g}, 5 \mathrm{mmol}$) in ethanol $(30 \mathrm{~mL})$ at $0-5^{\circ} \mathrm{C}$ while stirring the reaction mixture was stirred for

3 h . The resulting solid was collected, washed with water and recrystallized from acetic acid, giving $35 a, 35 b, 36 a$ and $36 b$, respectively.
(E)-(3,5-Dimethyl-4-(phenyldiazenyl)-1H-pyrazol-1-yl)(2-methyl-6-(5-methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)-4-phenylpyridin-3-yl)methanone (35a). Orange crystals from acetic acid, Yield 70%, m.p. $170{ }^{\circ} \mathrm{C}$, FT-IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 2925(\mathrm{CH}) ; 1722(\mathrm{CO}) ; 1608(\mathrm{C}=\mathrm{N}), 1566(\mathrm{C}=\mathrm{C})$: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta=2.28(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right) 2.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.50\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$ and 7.17-7.97(m, $15 \mathrm{H}, \mathrm{ArH}^{\prime}$ s, pyridine H-5). Anal. Calcd. For $\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{~N}_{8} \mathrm{O}$ (566.67): C, 72.07; H, 5.34; N, 19.77 Found C, 72.16; H, 5.29; N, 19.88
(E)-(3,5-Dimethyl-4-(p-tolyldiazenyl)-1H-pyrazol-1-yl)(2-methyl-6-(5-methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)-4-phenylpyridin-3-yl)methanone (35b). Orange crystals from acetic acid, Yield 70%,m.p. $175{ }^{\circ} \mathrm{C}$, FT-IR (KBr, cm ${ }^{-1}$): 2966, $2924(\mathrm{CH}) ; 1722(\mathrm{CO}) ; 1647(\mathrm{C}=\mathrm{N}) ; 1605(\mathrm{C}=\mathrm{C}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta=2.25$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$) $2.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.49\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.50\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$ and 7.17-7.98 (m, 14H, ArH's, pyridine H-5). Anal. Calcd. For $\mathrm{C}_{35} \mathrm{H}_{32} \mathrm{~N}_{8} \mathrm{O}$ (580.70): C, 72.39; H, 5.55; N, 19.30 Found C, 72.49; H, 5.66; N, 19.40.
(E)-5-Methyl-2-(2-methyl-6-(5-methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)-4-phenylnicotinoyl)-4-(phenyldiazenyl)-2,4-dihydro-3H-pyrazol-3-one (36a). Orange crystals from acetic acid, Yield 70%, m.p. $165{ }^{\circ} \mathrm{C}$, FT-IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $3432(\mathrm{OH})$; 2975, $2921(\mathrm{CH})$; 1721 (CO); 1679 (C=N); $1584(\mathrm{C}=\mathrm{C}) .{ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, DMSO- d_{6}): $\delta=2.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) 2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.58\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.35(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}$, pyrazoline), $7.09-7.58\left(\mathrm{~m}, 15 \mathrm{H}, \mathrm{ArH}\right.$'s and pyridine H-5). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (DMSO- d_{6}) $\delta=9.6,11.8,20.8,24.4$, 115.3, 123.4, 125.7, 126.8, 128.4, 129.7, 130.4, 132.4, 133.3, 138.8, 139.5, 139.8, 140.8, 169.0, 171.2, 172.5, 170.0. Anal. Calcd. For $\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{~N}_{8} \mathrm{O}_{2}$ (568.64): C, $69.70 ; \mathrm{H}, 4.96$; N, 19.71 Found C, 69.65; H, 4.85; N, 19.72 .
(E)-5-Methyl-2-(2-methyl-6-(5-methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)-4-phenylnicotinoyl)-4-(p-tolyldiazenyl)-2,4-dihydro-3H-pyrazol-3-one (36b). Orange crystals from acetic acid, Yield 70%, m.p. $170{ }^{\circ} \mathrm{C}$, FT-IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2974, $2922(\mathrm{CH}) ; 1721(\mathrm{C}=\mathrm{O}) ; 1649(\mathrm{C}=\mathrm{N}) ; 1608(\mathrm{C}=\mathrm{C}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta=$ $2.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.50(\mathrm{~s}, 1 \mathrm{H}$, pyrazoline $), 2.49\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.57\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.71$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), and $7.14-7.57\left(\mathrm{~m}, 14 \mathrm{H}, \mathrm{ArH}^{\prime} \mathrm{s}\right.$ and pyridine H-5). Anal. Calcd. For $\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{~N}_{8} \mathrm{O}_{2}$ (582.67): C, 70.09; H, 5.19; N, 19.23 Found C, 70.19; H, 5.20; N, 19.10.
3.1.16. 1-(2-Methyl-6-(5-methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)-4-phenyl-pyridin-3-yl)-3-substituted urea (38a, 38b) and 3-(2-Methyl-6-(methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)-4-phenyl-pyridin-3-yl)quinazoline-2,4-(1H,3H)dione (39)

A mixture of $34(2 \mathrm{~g}, 5 \mathrm{mmol})$ and appropriate aniline, p-toluidine, anthranilic acid (or methyl anthranilate) (5 mmol) in dry dioxane (20 mL) was refluxed for 4 h . The resulting solid that was collected and recrystallized from the proper solvent gave $38 a, 38 b$ and 39 , respectively

1-(2-Methyl-6-(5-methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)-4-phenylpyridin-3-yl)-3-phenylurea (38a). White crystals from acetic acid yield 70%, m.p. $180^{\circ} \mathrm{C}$. FT-IR (KBr, cm ${ }^{-1}$): 3426 (NH); 2983, 2926 (CH); 1722 (CO); $1647(\mathrm{C}=\mathrm{N}) ; 1594(\mathrm{C}=\mathrm{C}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta=2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) 2.59\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $2.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.44-7.97$ (m, 15H, ArH's and pyridine H-5), 8.88 ($\mathrm{s}, \mathrm{br}, 2 \mathrm{H}, 2 \mathrm{NH}$). Anal. Calcd. For $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{~N}_{6} \mathrm{O}$ (474.57): C, 73.40; H, 5.52; N, 17.71 Found C, 73.37; H, 5. 63; N, 17.69.

1-(2-Methyl-6-(5-methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)-4-phenylpyridin-3-yl)-3-p-tolylurea (38b). White crystals from acetic acid yield 72%, m.p. $170-172^{\circ} \mathrm{C}$. FT-IR (KBr, cm ${ }^{-1}$): 3423 (NH); 2984, 2962, 2952 (CH); 1722 (CO); $1592(\mathrm{C}=\mathrm{C}),{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta=2.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) 2.49\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $2.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.27-7.98\left(\mathrm{~m}, 14 \mathrm{H}, \mathrm{ArH}^{\prime} \mathrm{s}\right.$ and pyridine $\left.\mathrm{H}-5\right), 8.90(\mathrm{~s}, \mathrm{br}, 2 \mathrm{H}, 2 \mathrm{NH})$. Anal. Calcd. For $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{~N}_{6} \mathrm{O}$ (488.60): C, 73.75; H, 5.17; N, 17.20 Found C, 73.80; H, 5.20; N, 17.30.

3-(2-Methyl-6-(5-methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)-4-phenyl-pyridin-3-yl)-qninazoline-2,4-(1H,3H)dione (39). White crystals from acetic acid, yield 65%, m.p. $190^{\circ} \mathrm{C}$. FT-IR (KBr, cm^{-1}): 3424 (NH); 2983, 2926, 2875 (CH); 1722 (CO); 1594 (C=C). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta=2.43(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH} 3), 2.50\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $2.59\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.44-7.97\left(\mathrm{~m}, 14 \mathrm{H}, \mathrm{ArH}^{\prime} \mathrm{s}\right.$ and pyridine $\left.\mathrm{H}-5\right), 10.54(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}, \mathrm{NH}),{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right)$ $\delta=8.8,20.5,21.1,114.2,115.6,117.2,121.9,123.7,123.8,128.5,129.8,132.7,134.2,134.6,135.2,137.8$,
138.4, 138.7, 139.5, 140.2, 141.3. 144.2, 153.1, 158.6, 161.7, 164.6. Anal. Calcd. For $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{O}_{2}(500.56)$: C, 71.99 ; H, 4.83 ; N, 16.79 Found C, 71.89 ; H, 4.79 ; N, 16.85.
3.1.17. Phenyl 2-Methyl-6-(5-methyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)-4-phenylpyridin-3-yl)carbamate (40)

A mixture of $34(2 \mathrm{~g}, 5 \mathrm{mmol})$ and phenol $(0.47 \mathrm{~g}, 5 \mathrm{mmol})$ in dry benzene $(20 \mathrm{~mL})$ was refluxed for 4 h . The resulting solid was collected and crystallized from ethanol, affording the corresponding 40, as buff crystals, yield 70%, m.p. $140-142^{\circ} \mathrm{C}$. FT-IR ($\mathrm{KBr}^{2} \mathrm{~cm}^{-1}$): 3425 (NH); 2984, 2925, 2866 (CH); 1722 (CO); $1597(\mathrm{C}=\mathrm{C}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta=2.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) 2.49\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.69(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.33-7.97\left(\mathrm{~m}, 15 \mathrm{H}, \mathrm{ArH}^{\prime} \mathrm{s}\right.$ and pyridine H-5), $11.65(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}, \mathrm{NH})$; Anal. Calcd. For $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{2}$ (475.55): C, 73.25; H, 5.30; N, 14.73; Found C, 73.35; H, 5.40; N, 14.85.

4. Conclusions

Compound 1 proved to be useful for synthesis of a new series of novel functionalized 1,3,4-thiadiazoles, 1,3-thiazoles and pyridines containing 1,2,3-triazole moiety using hydrazonoyl halides as precursors. Also, compound 31 proved to be a useful precursor in the synthesis of various pyrazoles, urea and carbamate derivatives. The biological activities of the synthesized products will be reported in extended work.

Acknowledgments: The authors would like to thank the chemistry department, Faculty of Science, Cairo University for their financial support facilitating the publication of this study.

Author Contributions: A.O.A. and N.A.A designed the research; A.O.A., N.A.A. and A.M.M.M. performed the research; A.O.A. and N.A.A. analyzed the data, wrote the paper and approved the final manuscript.

Conflicts of Interest: The authors declare that there is no conflict of interests regarding the publication of this paper.

References

1. Pericherla, K.; Khedar, P.; Khungar, B.M.; Kumar, A. Click chemistry inspired structural modification of azole antifungal agents to synthesize novel 'drug like' molecules. Tetrahedron Lett. 2012, 53, 6761-6764.
2. Slamova, K.; Marhol, P.; Bezouska, K.; Lindkvist, L.; Hansen, S.; Kren, V.; Jensen, H. Synthesis and biological activity of glycosyl-1H-1,2,3-triazoles. Bioorg. Med. Chem. Lett. 2010, 20, 4263-4265.
3. Rao, P.S.; Kurumurthy, C.; Veeraswamy, B.; Kumar, G.S.; Poornachandra, Y. Synthesis of novel 1,2,3-triazole substituted-Nalkyl/aryl nitrone derivatives, their anti-inflammatory and anticancer activity. Eur. J. Med. Chem. 2014, 80, 184-191.
4. Jain, A.K.; Sharma, S.; Vaidya, A.; Ravichandran, V.; Agrawal, R.K. 1,3,4-Thiadiazole and its Derivatives: A Review on Recent Progress in Biological Activities. Chem. Biol. Drug Des. 2013, 81, 557-576.
5. Altıntop, M.D.; Can, Ö.D.; Özkay, Ü.D.; Kaplancıkl, Z.A. Synthesis and Evaluation of New 1,3,4-Thiadiazole Derivatives as Antinociceptive Agents. Molecules 2016, 21, 1004.
6. Siddiqui, N.; Arshad, M.F.; Ahsan, W.; Alam, M.S. Thiazoles: A valuable insight into the recent advances and biological activities. Int. J. Pharm. Sci. Drug Res. 2009, 1, 136-143.
7. Cardia, M.C.; Begala, M.; Delogu, A.; Maccioni, E.; Plumitallo, A. Synthesis and antimicrobial activity of novel arylideneisothiosemicarbazones. IL Farmaco 2000, 55, 93-95.
8. Pandeya, S.N.; Sriram, D.; Nath, G.; Declercq, E. Synthesis, antibacterial, antifungal and anti HIV activities of schiff and mannich bases derived from isatin derivatives and N-[4-(4'chlorophenyl) thiazol-2-yl] thiosemicarbazide. Eur. J. Pharm. Sci. 1999, 9, 25-31.
9. Patrick, G.L.; Kinsmar, O.S. Synthesis and antifungal activity of novel azo-D-homosteroids, hydroisoquinolines, pyridines and hydropyridines. Eur. J. Med. Chem. Chim. Ther. 1996, 31, 615-624.
10. Hishmat, O.H.; Abdel Galil, F.M.; Farrag, D.S. Synthesis and antimicrobial activity of new benzofuranylpyridine derivatives. Pharmazie 1990, 45, 793-795.
11. Doshi, R.; Kagthara, P.; Parekh, H. Synthesis and biological evaluation of some novel isoxazoles and cyanopyridines, a new class of potential anti-tubercular agents. Indian J. Chem. 1999, 38, 348-352.
12. Le Manach, C.; Paquet, T.; Brunschwig, C.; Njoroge, M.; Han, Z.; Cabrera, D.G.; Bashyam, S.; Dhinakaran, R.; Taylor, D.; Reader, J.; et al. A Novel Pyrazolopyridine with in Vivo Activity in Plasmodium berghei- and Plasmodium falciparum-Infected Mouse Models from Structure-Activity Relationship Studies around the Core of Recently Identified Antimalarial Imidazopyridazines. J. Med. Chem. 2015, 58, 8713-8722.
13. Sadana, A.K.; Mirza, Y.; Aneja, K.R.; Prakash, O. Hypervalent iodine mediated synthesis of 1-aryl/hetryl-1,2,4-triazolo[4,3-a]pyridines and 1-aryl/hetryl 5-methyl-1,2,4-triazolo[4,3-a]quinolines as antibacterial agents. Eur. J. Med. Chem. 2003, 38, 533-536.
14. Datta, N.J.; Khunt, R.C.; Parikh, A.R. Aryl amides: Preparation and antimicrobial evaluation. Inst. Chem. India 2000, 72, 133-134.
15. Nagashree, S.; Mallesha, L.; Mallu, P. Synthesis and in vitro biological activity of 6-chloro-pyridin-2-ylamine derivatives. Der Pharma Chem. 2013, 5, 50-55.
16. Pokhodylo, N.T.; Savak, R.D.; Matiichuk, V.S.; Obushak, N.D. Synthesis and selected transformation of 1-[4-(4-R-r-methyl-1-aryl-1H-1,2,3,-triazol-1-yl)phenyl]ethanonees. Russ. J. Gen. Chem. 2009, 79, 309-314.
17. Klayman, D.L.; Bartosevich, J.F.; Griffin, T.S.; Mason, C.J.; Scovill, J.P. 2-Acetylpyridine thiosemicarbazones. 1. A new class of potential antimalarial agents. J. Med. Chem. 1979, 22, 855-862.
18. Bähr, G.; Schleitzer, G. Überemprotideschwermetall-innerkomplexe der A-diketondi-thiosemicarbazone (thiazone). IV. Untersuchungenzurkonstitution. komplexe von thiazon-analogen. Z. Anorg. Allg. Chem. 1955, 280, 161-179.
19. Abdelhamid, A.O.; Zohdi, H.; Rateb, N. Reactions with hydrazonoyl halides part 21. Reinvestigation of the reactions of hydrazonoyl bromides with 1,1-dicyanothioacetanilide. J. Chem. Res. Synop. 1999, 3, 184-185.
20. Butler, R.N. Comprehensive Heterocyclic Chemistry; Katritzky, A.R., Rees, C.W., Scriven, E.F.V., Eds.; Pergamon Press: New York, NY, USA, 1996; Volume 4, pp. 621-678.
21. Huisgen, R.; Grashey, R.; Seidel, M.; Knupfer, H.; Schmidt, R. 1.3-Dipolare additionen, III. Umsetzungen des diphenylnitriliminsmitcarbonyl und thiocarbonyl-verbindungen. Justus Liebigs Chem. 1962, 658, 169-180.
22. Ablajan, K.; Liju, W.; Tuoheti, A. An Efficient synthesis of some new hydrazone derivatives containing 1,2,3-triazole and thiazole. Lett. Org. Chem. 2013, 10, 715-721.
23. Yadav, R.C.; Sharma, P.K.; Singh, J. Synthesis and biological activity of 4"-substituted-2-(4'-formyl-3'-phenylpyrazole)-4-phenyl thiazole. J. Chem. Pharm. Res. 2013, 5, 78-84.
24. Dog, W.-J.; Cui, F.-H.; Gao, Z.-L.; Li, R.-S.; Shen, G.-L.; Dong, H.-S. An efficient synthesis of 5-aryl-4,5-dihydro-3-(5-methyl-1-p-tolyl-1H-1,2,3-triazol-4-yl)-1-(4-phenylthiazol-2-yl)-pyrazoles. J. Heterocycl. Chem. 2011, 48, 1154.
25. Dong, H.-S.; Wang, Y.-F.; Shen, G.-L.; Quan, B.; Dong, W.-J. Synthesis of some new 1-acyl-5-aryl-3-(5-methyl-1-p-tolyl-1H-1,2,3-triazol-4-yl)-4,5-dihydro-1H-pyrazole. J. Heterocycl. Chem. 2012, 49, 149.
26. Sharma, R.N.; Sharma, K.P.; Dixit, S.N. Synthesis, Characterization, and Biological activities of Some New Arylazopyrazoles. Int. J. ChemTech Res. 2010, 2, 800-806.
27. Studennikova, L.D. Hydrazones of acetaceric ester. Sb. Nauch Ref. Zh. Kim. 1969, 1, 71-73.
28. Shawali, A.S.; Osman, A. Synthesis and reactions of phenylcarbamoylarylhydrazidic chlorides. Tetrahedron 1971, 27, 2517-2528.
29. Shawali, A.S.; Abdelhamid, A.O. Reaction of dimethylphenacylsulfonium bromide with N-nitrosoacetarylamides and reactions of the products with nucleophiles. Bull. Chem. Soc. Jpn. 1976, 49, 321-324.
30. Eweiss, N.F.; Osman, A. Synthesis of heterocycles. Part II. New routes to acetylthiadiazolines and alkylazothiazoles. J. Heterocycl. Chem. 1980, 17, 1713-1717.
31. Asiri, A.M.; Zayed, M.E.; Ng, S.W. Ethyl (Z)-2-chloro-2-(2-phenylhydrazin-1-ylidene)acetate. Acta Crystallogr. 2011, 67, o1962.

Sample Availability: Samples of the synthesized compounds are available from the authors.
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

